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Anisotropic correlations of plasticity on the yielding of metallic glasses
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We report computer simulations on the shear deformation of CuZr metallic glasses at zero and room
temperatures. Shear bands emerge in athermal alloys at strain γc, with a finite-size effect found. The correlation
of nonaffine displacement exhibits an exponential decay even after yielding in thermal alloys, but transits to a
power law at γ > γc in athermal ones. The algebraic exponent is around −1 for the decay inside shear bands,
consistent with the theoretical prediction in random elastic media. We quantify the anisotropic correlation with
harmonic projection, finding the spectrum is weak in the exponential-decay regime, while it displays a strong
polar and quadrupolar symmetry in the power-law regime. The nonvanishing quadrupolar symmetry at long
distance signifies the nonlocality of plastic correlation in the athermal alloys. In contrast, the plastic correlation
was found to be isotropic and localized at the yielding in the thermal alloys without shear bands.
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I. INTRODUCTION

Metallic glasses (MGs) are kinds of amorphous solids of
noticeable engineering application due to their unique me-
chanical properties, e.g., relatively high strength, good elastic
deformability, and hardness, compared to the crystalline
counterparts [1–3]. The disordered nature of the atomic-
level structure renders the response of the amorphous solids
inhomogeneous even at the zero-load limit. A nonaffine dis-
placement field exhibits a pattern of vortexlike shape, with
the length scale typically about 30 atomic diameters in a
two-dimensional system [4,5]. The nonaffine vortex is found
to correlate with the breakdown of the elastic continuum limit
and is responsible for the boson peak in amorphous solids [6].

Beyond the near harmonic approximation, plastic events
represented as atoms moving beyond the original local en-
ergy minimum organize in a space of typical features. Upon
deformation, the local energy landscape will be changed by
external force, with the local energy minimum destabilized
and new saddle points emerged [7]. The motion of atoms is,
then, dominated by sequential jumps over a series of inherent
structures if the thermally activated motion can be neglected.
The principle for the organization of the sequential jumps
is unclear, but the elastic continuum mechanism recovers, in
the sense that the local plastic events can be considered as
Eshelby inclusions that cause an anisotropic field in the sur-
rounding matrix [8]. The predicted quadrupolelike anisotropy
for stress or strain has been verified in sheared Lennard-Jones
solids [9], colloidal systems [10], granular materials [11], and
even supercooled liquids [12–14]. The oriented stress field
can trigger the birth of a new irreversible flip nearby [9]. A
consequence of the interaction leads to the spatial organiza-
tion of plastic events. This renders the possibility to calculate
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the size of local irreversible arrangements or the so-called
shear-transformation zones in amorphous solids [15–18].

However, it results in a debate for the decay formula of
the nonaffine displacement correlation: an exponential decay
with a characteristic length scale [18,19] or a power-law decay
with nonvanishing long-range correlation [10,20]. There is
evidence that a small system size can truncate the power-
law decay in large systems into a spurious exponential decay
[21]. Besides the finite-size effect, correlation anisotropy is
another important ingredient to be considered in the corre-
lation decay, as the plastic events could align in peculiar
directions complying with the aforementioned quadrupolelike
stress field. For this, a fourfold angular symmetry has been
reported for nonaffine displacement correlation in the sheared
two-dimensional (2D) Lennard-Jones solids [22,23]. Yet the
correlation anisotropy can, on the other hand, be blurred by
the thermal fluctuation, as unveiled in hard-sphere colloidal
glasses [24].

While most of the works focus on the steady-state flow
regime, plastic correlation on the yielding of the metallic
glasses is still not well clarified, especially in the samples
of distinct mechanical behaviors. In this work, we performed
classical molecular dynamics (MD) simulations on CuZr MGs
with shear deformation in two different situations: one is
the zero-temperature limit where a shear band emerges in
all the system sizes that we investigated; the other one is
the room temperature where no or weak shear banding is
observed. The organization of the plastic events is expected
to be different; the athermal system would develop strongly
heterogeneous plastic regions as the subextensive scaling un-
veiled in 2D Lennard-Jones solids [25], while this feature is
not detected in thermal systems. Here, we focus on the de-
caying formula of the plastic correlations, and the quantitative
characterization of the anisotropy by projecting the azimuthal-
dependent correlator on harmonic spherical functions in
these two kinds of MGs that have discrepant mechanical
properties.
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II. SIMULATION DETAILS

Classical MD simulations were conducted for Cu50Zr50

alloys with the atomic interaction potential formulated by
the embedded-atom method, with the force-field parameters
adequate for describing the amorphous state of Cu-Zr metallic
glasses [26,27]. Samples of the random configuration were
created at T = 2000 K, then quenched to 300 K or zero
temperature with a cooling rate about 4 × 1011 K/s, during
which the NPT ensemble was utilized to adjust the box size to
give zero pressure. More details about the sample fabrication
can be found in Ref. [28].

Uniform shear deformation was performed via the ather-
mal quasistatic shear (AQS) protocol [29] for alloys at zero
temperature. Particle position was affinely transformed: r′

x =
rx + �γ ry, with �γ = 2 × 10−4 the strain increment in ev-
ery step. A subsequent potential energy minimization was
followed to relax the system to the nearest energy mini-
mum. This procedure is repeated until the largest strain is
achieved. For alloys at room temperature (RT, T = 300 K),
shear deformation was accomplished by the affine transfor-
mation of coordinates in every time step in a shear rate of
about 2 × 107 s−1, coupled with the Nose-Hoover thermostat.
The set of thermostat parameters roughly relaxes the system
to the target temperature in a time span of 0.1 ps. To check the
effect of the thermostat protocol, we performed independent
shear deformation at RT using a Langevin thermostat, with
the friction parameter set to 1 ps, a typical relaxation time
in liquids. The results from these two methods are consistent
in terms of the anisotropic decay and the correlation length
obtained. The simulations were carried out with the software
package LAMMPS [30]. To check the finite-size effect, four cu-
bic systems are considered: N = 4 × 104, L = 88.7 Å (with N
the number of particles and L the box length); N = 3.2 × 105,
L = 177 Å; N = 1.1 × 106, L = 266 Å; and N = 1.1 × 107,
L = 576 Å. To improve the statistics, six independent real-
izations are averaged for the calculation of the correlation
functions.

Nonaffine displacement of atoms was evaluated as the de-
viation of the actual displacement of the nearest neighbors
about the central ones to the affine transforming that mini-
mizes the square of the deviation vectors in a strain interval,
�γ [31,32]:

D2
i (γ ) = 1

M

∑

j

[ri j (γ ) − (ε + δi j )ri j (γ − �γ )]2, (1)

where γ is the strain, ε is the strain tensor that gives the mini-
mum nonaffine displacement, and ri j is the vector from atom i
to atom j, with j the nearest neighbor of i defined as their dis-
tance that is smaller than the first minimum position in the pair
distribution function. Note that the nonaffine displacement is
normalized by the number of nearest neighbors M, which is
different from the original definition [31]. The coordination
number of particles depends on their species, e.g., Cu atoms
typically have 12 nearest neighbors, while Zr atoms have 16
neighbors. They should not significantly differ in the nonaffine
displacement due to the atomic species if embedded in the
same elastic matrix. The normalization factor also renders the
calculated D2

i insensitive on the cutoff utilized for the nearest
neighbors. �γ was chosen as 0.1% in the following analysis if

FIG. 1. (a) Stress-strain curves of Cu50Zr50 MGs with different
system sizes both at AQS and RT. Vertical shadowed areas mark the
yielding points (γY = 0.09 at AQS, and 0.06 at RT). (b) Potential
energy vs strain in the steady states of oscillating shear, displaying
a bifurcation at the yielding transition between γmax = 0.09 and 0.1
(with γmax the amplitude of oscillatory shear). Clearly localized plas-
tic zones were observed in (c), while the shear-banding phenomenon
was observed in (d), at the strains marked as the red circles on the
curve at (a).

not specified. This value is relatively large enough to suppress
severe fluctuation in the calculated correlation, and also small
enough to give a good resolution for its strain dependence.

III. RESULTS AND DISCUSSION

A. Yielding of metallic glasses

Under an external force, metallic glasses linearly respond
to strain at the initial stage, yield at some critical point γY, and
finally begin to flow at large strain [Fig. 1(a)]. As the yielding
point is the point at which the material starts to plastically
deform, a clear-cut definition of it is proposed to be the strain
where the sample displays a significant hysteresis in stress or
potential energy under oscillatory shear [33]. In the steady
state, which is referred to as either the limited configurations
that the system periodically visits (in the case of small os-
cillatory amplitudes) or the plastic-flow regime (in the case of
large amplitudes above the yield strain) [34,35], we found that
the evolution of potential energy is reversible at the oscillation
with strain amplitude γmax < 0.09, while it bifurcates into
two minimums at γmax � 0.1 [Fig. 1(b)]. Thus, γY ≈ 0.09 for
AQS, consistent with our previous results [28]. Similarly, we
found γY ≈ 0.06 for RT alloys with oscillatory shear, clearly
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FIG. 2. Critical strain for shear band formation and width of
shear bands in AQS alloys. The dotted and dashed lines are the fitting
according to Eqs. (2) and (3), respectively.

less than the reported value (γY ≈ 0.1) in the simulated CuZr
MGs at RT with the same embedded-atom method (EAM)
potential utilized [18]. The inconsistency comes from the def-
inition discrepancy of the yielding point, which is defined as
the maximum position in the stress-strain curve in Ref. [18].
The maximum, however, is dominated by the drastic drop in
the stress-strain curve that is due to the shear banding and
strongly depends on system size in simulations (which will
be discussed later).

In comparison, the stress-strain curve of the RT alloys dis-
plays lower yielding stress, weaker overshoot, and the absence
of drastic stress drop [Fig. 1(a)]. Thus, the thermal alloys
are more ductile, referring to the brittle-to-ductile transition
induced by temperature [36]. Additionally, we observe the
collapse of the stress-strain curves for different system sizes at
RT, viz., no finite-size effect. This gives a hint that the plastic
events may not be system spanning in the RT alloys.

Besides the discrepant mechanical properties between ther-
mal and athermal alloys, the microscopic distribution of
plastic events also differs; regions of large plastic deformation
in the athermal alloys are more heterogeneously distributed
and organize into a permanent shear band (SB) at large strain
[Figs. 1(c) and 1(d)]. Concomitant with shear banding, stress
shows a sudden drop [Fig. 1(a)], which renders an accurate
determination of the critical strain (γc) for SB emergence
in AQS alloys. Intriguingly, the stress drop is more drastic
in large systems, indicating a more violent transition to the
macroscopic shear localization, in analogy with the percola-
tion phenomenon [37]. We found the associated γc for SB
formation strongly depends on the system size, in a linear
relationship with the inverse of box length L,

γc(L) = γc(∞) + B/L, (2)

with γc(∞) the critical strain in the infinite-size system. The
fit (the dotted line in Fig. 2) gives γc(∞) = 0.11, higher than
γY.

A similar finite-size effect was found for the width of SB,
WSB, in AQS (see Sec. III C for details of the width calcula-
tion),

WSB(L) = WSB(∞) + C/L, (3)
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FIG. 3. Nonaffine correlations on the shear plane (x-y plane, θ =
π/2) along directions: φ = π/4, π/2, 3π/4, and π , with N = 3.2 ×
105. (a),(b) The correlation in athermal alloys; (c),(d) the correlation
in thermal alloys. Top planes are in the elastic regime (γ = 0.05),
with bottom planes in the plastic regime (γ = 0.17).

with WSB(∞) the SB width in an infinite-size system. The fit
(the dashed line in Fig. 2) gives WSB(∞) = 53 Å, or 19 R0

(with R0 the diameter of the average atom size). This value
is comparable to the simulation of the Lennard-Jones model
under oscillatory shear [38], as well as the measured SB
thickness in experiments [39,40]. There is a lower limit for
the SB width. If L is comparable to the lower limit value,
deformation of the sample will become homogeneous, with no
shear banding observed (or one may consider that the whole
simulation system is inside the SB). It has been reported that
there is no SB in a 5000 particle system, while there is in a
40 000 particle system under the oscillatory shear [28].

B. Anisotropic correlation functions

The organization of the plastic events can be characterized
by the spatial correlation function, which is generally defined
as [41]

C(r) = 〈(Ai − Ā)(Aj − Ā)δ[r − |ri j |]〉
〈(Ai − Ā)2

δ[r − |ri j |]〉
, (4)

where Ai is any quantity of atomic attribute, representing
D2

i (γ ) here. 〈·〉 denotes the spatial average, and Ā = 〈Ai〉. It
should be noted that C(r) is isotropic. To characterize the
anisotropy of plastic correlation, we calculate the azimuthal-
dependent correlator C(r, θ, φ), where θ is the angle between
�r and the z axis; φ is the angle between the projected �r in the
x-y plane with the x axis. As illustrated in Fig. 1(d), we always
choose the normal direction of the SB planes as the x axis in
athermal alloys.

In the elastic regime for AQS alloys [Fig. 3(a)], decay of
the correlators along different directions in the shear plane
(θ = π/2) collapses together, viz., is isotropic. By contrast,
the decay speed strongly depends on the direction in the
plastic regime [Fig. 3(b)]. At directions perpendicular to the
shear-banding plane (φ = 0 or π ), the decay is fast; it gradu-
ally slows down on approaching the direction inside the shear
band plane (φ = π/2). The slow decay at φ = π/2 indicates
strong correlation between plastic events, and thus an unstable
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FIG. 4. (a) Nonaffine correlations for athermal alloys at direction
perpendicular to the shear-banding plane, and (b) parallel to the
shear-banding plane; (c) isotropic correlations for thermal alloys
under different shear strains. Solid lines correspond to the fitting via
the (a),(c) exponential or (b) power-law formula. Systems are with
N = 3.2 × 105. Curves are vertically shifted for clarity.

mechanical behavior in this direction. Note that the correlation
anisotropy also emerges at the presence of a transient shear
band before yielding, as unveiled in soft glassy materials [42].

The anisotropy cannot be observed in thermal alloys. The
correlation function nearly collapses together at different di-
rections both in elastic and plastic regimes [Figs. 3(c) and
3(d)], consistent with the reported isotropic correlation in a
thermally dominated regime [24].

For athermal alloys, we separate the correlation in differ-
ent directions. The correlator shows exponential decay in the
direction perpendicular to the shear-banding plane [φ = π ,
Fig. 4(a)]. Interestingly, the exponential scaling even holds on
at γ > γc, with a characteristic length of finite value capturing
the correlation in this direction. This may connect with the
finite width of the shear band formed in amorphous solids for
plastic flow. A power-law decay in the direction parallel to

the shear-banding plane was found, i.e., C(r, θ = π/2, φ =
π/2) ∝ rβ [Fig. 4(b)]. The algebraic decay reflects the spatial
organization principle of plastic events inside the shear band.
It should be noted that the power-law decay occurs as early as
γ = 0.11 (< γc), indicating that the strong spatial correlation
already exists even before SB formation. The exponent β is
about −1.08 at γ > γc, coinciding with the theoretical predic-
tion of the nonaffine correlation (where β = 2 − d , with d the
dimensionality) in random elastic media [43]. This suggests
that the organization feature of plastic events inside a shear
band would be due to the randomness in local moduli coming
from the disordered structure.

As the correlation is isotropic in thermal alloys, we
azimuthally averaged the correlator, finding it displays an ex-
ponential decay both in elastic and plastic regimes [Fig. 4(c)].
The correlator shows fast decay at short distance (r < 6 Å).
The fast-decay regime has been found to correlate with the
neighbor cutoff used for the D2

i calculation [18]. The expo-
nential law dictates that the plastic events are not long-range
correlated, but localized in a zone with the linear size mea-
surable by a characteristic length. This corresponds to a
well-defined shear-transformation zone reported in [15–18].
We fitted the curves via the exponential function, i.e., C(r) ∝
exp[−r/ξcorr], in these cases [see solid lines in Figs. 4(a)
and 4(c)], with the obtained characteristic length scale ξcorr,
summarized in Fig. 7.

C. Spherical harmonic projection

We demonstrate the azimuthal-dependent correlation at
different radial distances and strains in Fig. 5. It shows that
the correlation is azimuthally homogeneous for AQS alloys
in the elastic regime, as well as for RT alloys both in elas-
tic and plastic regimes, coinciding with regimes where the
exponential law was found in Fig. 4. At γ > γc, regions of
positive correlation organize into a narrow band due to the
SB formation in athermal alloys (see red-colored regions at
γ = 0.17). Comparing patterns in Figs. 5(a) and 5(b), the
width of the positive regions shrinks with r increasing, as the
correlator counts more atoms in the elastic matrix that gives
a negative value at larger r. Thus, the pattern will be fully
colored positive (or red) at small enough r, while it splits into
two separate regions if r is larger than the shear-band width.
By this, we accurately determined the shear-band width (with
the results shown in Fig. 2).

To quantify the azimuthal symmetry of the plastic corre-
lation, we project the correlation function onto the spherical
harmonics, Y m

l (θ, φ), analogously to that of the anisotropic
pair distribution functions [44–47],

C(r, θ, φ) =
∑

l,m

Cm
l (r)Y m

l (θ, φ), (5)

where the coefficients, Cm
l (r), are calculated as Cm

l (r) =∫ 2π

0 dφ
∫ π

0 dθ sin(θ )C(r, θ, φ)Y m∗
l (θ, φ). Here, Y m∗

l is the
complex conjugate of the spherical harmonics of degree l and
order m. Due to the symmetry, Cm

l is nonzero only if l is even.
l = 0 presents the isotropic component. The leading terms for
the anisotropic components are l = 2 for polar symmetry, and
l = 4 for fourfold (or quadrupolar) symmetry.
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FIG. 5. Azimuthal-dependent correlation function of nonaffine displacement, C(r, θ, φ), visualized in Cartesian coordinates at constant r,
with (a) r = 40 Å for athermal alloys, (b) r = 80 Å for athermal alloys, and (c) r = 80 Å for RT alloys in the system with N = 3.2 × 105.
Strain increases from 0.07 to 0.17, from left to right.

We consider the square root of the angular power spectrum:
Sl (r) = [(2l + 1)−1 ∑l

m=−l |Cm
l (r)|2]1/2, with the calculated

polar and quadrupolar symmetry terms shown in Fig. 6. The
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FIG. 6. Angular spectrum of nonaffine displacement correlations
in the athermal alloys: (a),(b) the RT alloys without SB, (c),(d) the
RT alloys with SB, (e),(f) with N = 3.2 × 105. Left panels are for
polar symmetry (l = 2); right panels are for quadrupolar symmetry
(l = 4).

spectrum shows a growing tendency with strain in AQS alloys
[Figs. 6(a) and 6(b)], and the polar symmetry is the most
prominent term when a shear band forms (at γ > γc). We also
observed the quadrupolar symmetry, with its intensity about
one-quarter of the polar component. This fourfold symmetry
is not clearly illustrated in Fig. 5 (which will be discussed in
Sec. III D). The spectrum displays a nonmonotonic behavior
in most of the cases: it increases with r at small distance, while
it decreases at longer distance. We define the length scale ξanis

as the position at which the spectrum for l = 2 or 4 is maxi-
mum. The maximum position shifts to large distance with γ

increasing. For thermal alloys without SBs, the spectrum is
much weaker [Figs. 6(c) and 6(d)]. It decays rapidly and fluc-
tuates at long distance. In addition, the decay and fluctuation
are insensitive to strain. Thus, ξanis is hard to be analo-
gously defined for these RT alloys, which is consistent with
the isotropic behavior observed in the azimuthal-dependent
C(r, θ, φ) (see Figs. 3 and 5).

D. Discussions

We separate ξanis from ξcorr; ξanis mainly measures the dis-
tance at which the anisotropy of the correlation reaches the
maximum, while ξcorr characterizes the decaying length of the
correlation. They are not necessarily similar: ξanis only consid-
ers the azimuthal inhomogeneity regardless of the decaying
speed, while it is the opposite for ξcorr.

The obtained ξcorr and ξanis are summarized in Fig. 7.
For AQS alloys, the characteristic length ξcorr monotonically
increases with strain, ultimately saturating at γc for shear
banding [Fig. 7(a)]. As ξcorr was extracted at the direction per-
pendicular to the SB plane, the saturated value could represent
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a length scale proportional to the SB width. Surprisingly, we
do not observe any significant change at the yielding point γY,
at which ξcorr mildly increases; it is also evinced in the case of
RT alloys, for which the length shows a fluctuating behavior
in the whole strain range [see the sample without SB; open
squares in Fig. 7(a)]. This is in contrast to the reported results
that a drastic increment of correlation length was observed at
the yielding point, and the yielding transition was interpreted
as a first-order phase transition [18]. This is due to the fact that
the yielding point there is identified as the strain of maximum
stress where a SB emerges, as discussed in Sec. III A. The
emergence of SB induces an exponential to the power-law
decay for the correlation function, as has been illustrated
here and also reported in Lennard-Jones systems [48,49]. The
transition may lead to a sudden jump in correlations at γc if
the exponential law is still utilized.

Another discrepancy is that no SB occurs in the RT alloys
here compared to Ref. [18], even though the same EAM
potential was adopted. A plausible reason is that the samples
fabricated here are much less aged, and therefore tend to
be more ductile. To check the SB formation, we fabricated
more samples using the same protocol, but with different
random seeds, finding some to develop a clear SB at γ RT

c .
The calculated ξcorr shows a clear increment at small strain,

and saturates at γ RT
c , with the tendency similar to that of AQS

alloys but the value smaller [open circles in Fig. 7(a)]. The
angular spectrum of the harmonic projection in the samples
with SBs was shown in Figs. 6(e) and 6(f). The strength
of polar symmetry is clearly larger than that without SB at
long distance, confirming that the polar symmetry is for the
SB emergence. However, it fluctuates with r, without a clear
maximum exhibited. The quadrupolar spectrum also fluctu-
ates with r. Thus it is difficult to define the anisotropic length
ξanis in the RT alloys.

Heterogeneous mechanical response in time (or in strain
for the AQS protocol) induces a non-negligible fluctuation in
the calculated correlations, which can be seen in the widely
scattered ξanis in the plastic regime for AQS alloys [dotted
lines in Fig. 7(b)]. The heterogeneity is displayed as the in-
crement of stress interrupted by a sudden drop (the so-called
avalanche events) in the stress-strain curve [50,51]. The local
nonaffinity exhibits strong correlation when the calculation of
nonaffinity covers the stress drop events, while the correla-
tion is weaker when calculated in the strain interval where
the stress nearly increases with strain. The anisotropy of the
correlation takes this effect into account. ξanis fluctuates down
in the increment interval, while it fluctuates up when the stress
drop sets in.

We pick up the maximum positions in the fluctuation cor-
responding to the time where plastic events burst, finding a
drastic increase before γc and a saturating behavior after γc,
both for the correlations of l = 2 and l = 4 [Fig. 7(b)]. The
saturated value for l = 2 is around 39 Å, close to the width of
SB in this system (WSB = 37 Å), verifying that the polar sym-
metry correlates with the SB formation. The saturated value
for l = 4 is about 88 Å, the same as the half length of the sim-
ulated box, indicating a system-spanning quadrupolar symme-
try. This corroborates that the emergence of SB is a percola-
tion phenomenon in amorphous solids, as those reported be-
fore [18,48,52]. The system-spanning quadrupolar symmetry
only happens at some strains in the flow regime, not at all the
strains, due to the mechanical heterogeneity discussed above.
Note that the nonaffinity calculated here is instantaneous and
an accumulated calculation of it (i.e., setting the reference
configuration for D2

i calculation always at γ = 0) will give
the results much less affected by the response heterogeneity.

No significant change is found for the correlation lengths
(ξcorr or ξanis) at γY in the simulated RT and AQS alloys, in
contrast to the percolation phenomenon observed at yielding
in the oscillatory sheared Lennard-Jones solids [33]. This
would be ascribed to the deformation protocol that is utilized.
In the continuous shear, plastic flow starts at γY, but the flow
region can still be localized to some extent and not system
spanning before the SB occurrence. Due to the steady state
achieved in the oscillatory shear, the localized plasticity per-
colates the whole system after a number of cycling times,
which is evidenced by the fact that an infinite number of
cycling times is required at γY to achieve the steady state
[35]. Thus, the yielding transition significantly differs here.
The plastic events are still, to some extent, localized and
homogeneously distributed at strains just beyond γY, verified
by the weak signals at the long-distance angular spectrum.

The strain interval for the D2
i calculation was set as

0.1% in the correlation functions. This may affect the plastic
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FIG. 8. Correlation lengths obtained for D2
i calculated at differ-

ent strain windows, �γ , in AQS alloys with N = 3.2 × 105.

correlation as some plastic events can extend over a larger
strain interval, as unveiled by the method of tracing the
time-resolved shear transformations [53]. We checked this by
varying �γ for the D2

i calculation. For �γ = 0.02%, 0.1%,
0.2%, and 0.4%, we found a similar isotropic-to-anisotropic
transition at γc in the azimuthal-dependent correlations (re-
sults are not shown here). The associated correlation lengths
for different �γ at the normal direction of SB were shown
in Fig. 8. Consistent lengths were obtained for different �γ

at γ < γY, indicating that the plastic events are spatially lo-
calized and occur in a short time or strain window. They
deviate from each other at strains beyond γY, implying that
the plastic events organize in a longer timescale and are of
larger correlation lengths.

We do not observe a clear quadrupolelike symmetry in the
nonaffine correlation function as that reported in the steadily
sheared 2D amorphous solids [22]. At γ > γc, the shear band
that is of the polar symmetry dominates the anisotropy of the
correlation function, and thus the quadrupolelike symmetry
is invisible in this regime. Moreover, before the SB emer-
gence, the quadrupolar field is still absent in the illustrated
strains for C(r, θ, φ) (see Fig. 5). This could be due to the
fact that the correlation was calculated at strains or atoms
where the average nonaffine displacement is too small. To
this end, we first selected the strain where there is a clear
stress drop in the stress-strain curve, e.g., at γ ≈ 0.1 (be-
fore shear banding). Second, we calculated C(r, θ, φ) for the
central atoms of large nonaffine displacement, defined as the
atoms whose nonaffinity is larger than some critical value, i.e.,
D2

i > D̄2 + 2σ , where D̄2 is the average nonaffinity and σ is
its standard deviation. The azimuthal-dependent correlation
for D2

i calculated at two strain windows is shown in Fig. 9. The
quadrupolar symmetry can be clearly seen for D2

i calculated
with �γ = 0.1%, and is more remarkable with �γ = 0.5%.
Note that the quadrupolar symmetry is only significant at the
strains where the stress exhibits a clear drop, even in the
case with the selection of the atoms of large nonaffinity. This
indicates that the strong correlation between plastic events,
which is usually manifested by the burst of avalanche events,
is essentially important to detect the quadrupolar symmetry in
the nonaffine displacement field.

FIG. 9. Azimuthal-dependent correlation function visualized in
Cartesian coordinates at r = 80 Å for the atoms of large nonaffine
displacement (see main text for details). D2

i is calculated at (a) �γ =
0.1% and (b) �γ = 0.5%, in AQS samples at γ ≈ 0.1 with N =
3.2 × 105.

IV. CONCLUSION

In this work, we performed classical MD simulations on
the shear deformation of CuZr metallic glasses at zero and
room temperatures. The athermal alloys exhibit higher yield-
ing stress with SBs formed, while the thermal alloys are more
ductile. A significant finite-size effect was found for the for-
mation of SBs in the athermal alloys; both the critical strain
for the SB emergence and its width linearly scale with the
inverse of the simulation box length.

The organization of the plastic events is characterized by
the spatial correlation of nonaffine displacement. We found
that the correlation function is isotropic and exponentially de-
cays in the alloys without the SB formation. At the presence of
SBs, the decay is exponential-like in the SB normal direction,
whereas it is power law in the parallel direction. The obtained
power-law exponent is about −1, consistent with the theoret-
ical prediction in random elastic media [43]. By projecting
the azimuthal-dependent correlations onto the spherical har-
monics, we found a strong polar symmetry accounting for the
emerged SB, and a weaker quadrupolar symmetry accounting
for the displacement field induced by Eshelby inclusions. In
the absence of the SB, the quadrupolar field can be clearly
visualized in the correlations at the strain where the plastic
events burst. We characterized the decaying length ξcorr from
the correlators and the anisotropic length ξanis from the spec-
trum, finding a saturated length at γc, but no significant change
at γY. The weak transition in correlation lengths at yielding is
ascribed to the localized plastic events, which is also evinced
by the isotropic nature of the correlators.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Natu-
ral Science Foundation of Hunan Province, China (Grant No.
2021JJ30833). We are also grateful to the computer resources
provided by the High Performance Computing Cluster (HPC)
of Central South University.

014607-7



SHIHENG CUI, HUASHAN LIU, AND HAILONG PENG PHYSICAL REVIEW E 106, 014607 (2022)

[1] W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R 44,
45 (2004).

[2] C. A. Schun, T. C. Hufnagel, and U. Ramamurty, Acta Mater.
55, 4067 (2007).

[3] B. A. Sun and W. H. Wang, Prog. Mater. Sci. 74, 211 (2015).
[4] A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat, Phys.

Rev. B 66, 174205 (2002).
[5] C. Goldenberg, A. Tanguy, and J.-L. Barrat, Europhys. Lett. 80,

16003 (2007).
[6] F. Léonforte, A. Tanguy, J. P. Wittmer, and J.-L. Barrat, Phys.

Rev. Lett. 97, 055501 (2006).
[7] D. J. Lacks and M. J. Osborne, Phys. Rev. Lett. 93, 255501

(2004).
[8] J. D. Eshelby, Proc. R. Soc. London 241, 376 (1957).
[9] A. Lemaître and C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).

[10] V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall,
Phys. Rev. Lett. 107, 198303 (2011).

[11] Y. Wang, Y. Wang, and J. Zhang, Nat. Commun. 11, 4349
(2020).

[12] A. Lemaître, Phys. Rev. Lett. 113, 245702 (2014).
[13] S. Chowdhury, S. Abraham, T. Hudson, and P. Harrowell,

J. Chem. Phys. 144, 124508 (2016).
[14] M. Maier, A. Zippelius, and M. Fuchs, Phys. Rev. Lett. 119,

265701 (2017).
[15] P. Murali, Y. W. Zhang, and H. J. Gao, Appl. Phys. Lett. 100,

201901 (2012).
[16] E. D. Cubuk, R. J. S. Ivancic, S. S. Schoenholz, D. J. Strickland,

A. Basu, Z. S. Davidson, J. Fontaine, J. L. Hor, Y.-R. Huang, Y.
Jiang, N. C. Keim, K. D. Koshigan, J. A. Lefever, T. Liu, X.-G.
Ma, D. J. Magagnosc, E. Morrow, C. P. Ortiz, J. M. Rieser, A.
Shavit et al., Science 358, 1033 (2017).

[17] D. Wei, J. Yang, M.-Q. Jiang, B.-C. Wei, Y.-J. Wang, and L.-H.
Dai, Phys. Rev. B 99, 014115 (2019).

[18] R. Jana and L. Pastewka, J. Phys. Mater. 2, 045006 (2019).
[19] S. Mandal, V. Chikkadi, B. Nienhuis, D. Raabe, P. Schall, and

F. Varnik, Phys. Rev. E 88, 022129 (2013).
[20] V. Chikkadi and P. Schall, Phys. Rev. E 85, 031402 (2012).
[21] F. Varnik, S. Mandal, V. Chikkadi, D. Denisov, P. Olsson, D.

Vågberg, D. Raabe, and P. Schall, Phys. Rev. E 89, 040301(R)
(2014).

[22] A. Nicolas, J. Rottler, and J.-L. Barrat, Eur. Phys. J. E 37, 50
(2014).

[23] F. Puosi, J. Rottler, and J.-L. Barrat, Phys. Rev. E 94, 032604
(2016).

[24] V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, and
P. Schall, Europhys. Lett. 100, 56001 (2012).

[25] C. Maloney and A. Lemaitre, Phys. Rev. Lett. 93, 016001
(2004).

[26] M. I. Mendelev, D. K. Rehbein, R. T. Ott, M. J. Kramer, and
D. J. Sordelet, J. Appl. Phys. 102, 093518 (2007).

[27] M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D.
Yagodin, and P. Popel, Philos. Mag. 89, 967 (2009).

[28] H. Li, H. Liu, and H. Peng, J. Non-Cryst. Solids 539, 120069
(2020).

[29] C. E. Maloney and A. Lemaitre, Phys. Rev. E 74, 016118
(2006).

[30] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[31] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[32] H. L. Peng, M. Z. Li, and W. H. Wang, Phys. Rev. Lett. 106,

135503 (2011).
[33] P. Leishangthem, A. D. S. Parmar, and S. Sastry, Nat. Commun.

8, 14653 (2017).
[34] I. Regev, T. Lookman, and C. Reichhardt, Phys. Rev. E 88,

062401 (2013).
[35] D. Fiocco, G. Foffi, and S. Sastry, Phys. Rev. E 88, 020301(R)

(2013).
[36] H. B. Yu, X. Shen, Z. Wang, L. Gu, W. H. Wang, and H. Y. Bai,

Phys. Rev. Lett. 108, 015504 (2012).
[37] T. Nakayama and K. Yakubo, Fractal Concepts in Condensed

Matter Physics (Springer, New York, 2003).
[38] A. D. S. Parmar, S. Kumar, and S. Sastry, Phys. Rev. X 9,

021018 (2019).
[39] C. Liu, V. Roddatis, P. Kenesei, and R. Maaß, Acta Mater. 140,

206 (2017).
[40] M. R. Chellali, S. H. Nandam, and H. Hahn, Phys. Rev. Lett.

125, 205501 (2020).
[41] H. L. Peng and T. Voigtmann, Phys. Rev. E 94, 042612 (2016).
[42] A. LeBouil, A. Amon, S. McNamara, and J. Crassous, Phys.

Rev. Lett. 112, 246001 (2014).
[43] B. A. DiDonna and T. C. Lubensky, Phys. Rev. E 72, 066619

(2005).
[44] H. L. Peng, M. Z. Li, and W. H. Wang, Appl. Phys. Lett. 102,

131908 (2013).
[45] Z. Zhang and W. Kob, Proc. Natl. Acad. Sci. USA 117, 14032

(2020).
[46] W. Dmowski, T. Iwashita, C.-P. Chuang, J. Almer, and T.

Egami, Phys. Rev. Lett. 105, 205502 (2010).
[47] G.-R. Huang, B. Wu, Y. Wang, and W.-R. Chen, Phys. Rev. E

97, 012605 (2018).
[48] N. V. Priezjev, Metall. Mater. Trans. A 51, 3713 (2020).
[49] N. V. Priezjev, Phys. Rev. E 94, 023004 (2016).
[50] J. Antonaglia, W. J. Wright, X. Gu, R. R. Byer, T. C. Hufnagel,

M. LeBlanc, J. T. Uhl, and K. A. Dahmen, Phys. Rev. Lett. 112,
155501 (2014).

[51] N. P. Bailey, J. Schiøtz, A. Lemaitre, and K. W. Jacobsen, Phys.
Rev. Lett. 98, 095501 (2007).

[52] G. P. Shrivastav, P. Chaudhuri, and J. Horbach, Phys. Rev. E 94,
042605 (2016).

[53] T. Albaret, F. Boioli, and D. Rodney, Phys. Rev. E 102, 053003
(2020).

014607-8

https://doi.org/10.1016/j.mser.2004.03.001
https://doi.org/10.1016/j.actamat.2007.01.052
https://doi.org/10.1016/j.pmatsci.2015.05.002
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1209/0295-5075/80/16003
https://doi.org/10.1103/PhysRevLett.97.055501
https://doi.org/10.1103/PhysRevLett.93.255501
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.107.198303
https://doi.org/10.1038/s41467-020-18217-x
https://doi.org/10.1103/PhysRevLett.113.245702
https://doi.org/10.1063/1.4944620
https://doi.org/10.1103/PhysRevLett.119.265701
https://doi.org/10.1063/1.4717744
https://doi.org/10.1126/science.aai8830
https://doi.org/10.1103/PhysRevB.99.014115
https://doi.org/10.1088/2515-7639/ab36ed
https://doi.org/10.1103/PhysRevE.88.022129
https://doi.org/10.1103/PhysRevE.85.031402
https://doi.org/10.1103/PhysRevE.89.040301
https://doi.org/10.1140/epje/i2014-14050-1
https://doi.org/10.1103/PhysRevE.94.032604
https://doi.org/10.1209/0295-5075/100/56001
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1063/1.2805655
https://doi.org/10.1080/14786430902832773
https://doi.org/10.1016/j.jnoncrysol.2020.120069
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevLett.106.135503
https://doi.org/10.1038/ncomms14653
https://doi.org/10.1103/PhysRevE.88.062401
https://doi.org/10.1103/PhysRevE.88.020301
https://doi.org/10.1103/PhysRevLett.108.015504
https://doi.org/10.1103/PhysRevX.9.021018
https://doi.org/10.1016/j.actamat.2017.08.032
https://doi.org/10.1103/PhysRevLett.125.205501
https://doi.org/10.1103/PhysRevE.94.042612
https://doi.org/10.1103/PhysRevLett.112.246001
https://doi.org/10.1103/PhysRevE.72.066619
https://doi.org/10.1063/1.4800531
https://doi.org/10.1073/pnas.2005638117
https://doi.org/10.1103/PhysRevLett.105.205502
https://doi.org/10.1103/PhysRevE.97.012605
https://doi.org/10.1007/s11661-020-05774-5
https://doi.org/10.1103/PhysRevE.94.023004
https://doi.org/10.1103/PhysRevLett.112.155501
https://doi.org/10.1103/PhysRevLett.98.095501
https://doi.org/10.1103/PhysRevE.94.042605
https://doi.org/10.1103/PhysRevE.102.053003

