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Inertial active Ornstein-Uhlenbeck particle in the presence of a magnetic field
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We consider an inertial active Ornstein-Uhlenbeck particle in an athermal bath. The particle is charged,
constrained to move in a two-dimensional harmonic trap, and a magnetic field is applied perpendicular to
the plane of motion. The steady-state correlations and the mean-square displacement are studied when the
particle is confined as well as when it is set free from the trap. With the help of both numerical simulation
and analytical calculations, we observe that inertia plays a crucial role in the dynamics in the presence of a
magnetic field. In a highly viscous medium where the inertial effects are negligible, the magnetic field has no
influence on the correlated behavior of position as well as velocity. In the time asymptotic limit, the overall
displacement of the confined harmonic particle gets enhanced by the presence of a magnetic field and saturates
for a stronger magnetic field. On the other hand, when the particle is set free, the overall displacement gets
suppressed and approaches zero when the strength of the field is very high. Interestingly, it is seen that in the time
asymptotic limit, the confined harmonic particle behaves like a passive particle and becomes independent of the
activity, especially in the presence of a very strong magnetic field. Similarly, for a free particle the mean-square
displacement in the long time limit becomes independent of activity even for a longer persistence of noise cor-
relation in the dynamics.
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I. INTRODUCTION

Recently, research on active matter has emerged as a vital
area of research and attracted much attention in various fields
of science [1–4]. Active matter is a special class of nonequi-
librium systems which is inherently or intrinsically driven
far away from equilibrium. The particles in such a system
are capable of self-propelling in the environment. They con-
sume energy from the environment by means of their internal
mechanisms and generate a spontaneous flow in the system
[4,5]. These particles are termed active or self-propelling
particles. Examples of active matter include motile biologi-
cal microorganisms such as bacteria or unicellular protozoa
[6–8], artificially synthesized microswimmers such as Janus
particles [9,10], microrobots, hexbugs [11], etc. There exist
some standard models such as the active Brownian particle
(ABP) model to treat the dynamics of such particles at both the
single-particle level and the collective level [12–16]. Recently,
a simple and nontrivial model known as the active Ornstein-
Uhlenbeck particle (AOUP) model [17–19] was proposed for
modeling the overdamped dynamics of such self-propelled
particles. In the ABP model, both the translational and the
rotational diffusion of the particles are taken into account,
while in the AOUP model, the velocity of the particle follows
the Ornstein-Uhlenbeck process. The AOUP model has been
explored in detail as it makes the exact analytical calcula-
tions possible [20–26]. Both these models are successful in
explaining many important features of active matter such as
accumulation near boundary [27,28], motility-induced phase
separation [29] etc. Unfortunately, inertia, which is an impor-
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tant property of physical systems, was not initially considered
in these models.

For macroscopic or massive self-propelling particles mov-
ing in a gaseous or low-viscous medium, inertial effects
become prominent and this poses some new challenges in
the theoretical modeling of this kind of system. Typically,
millimeter-size particles moving in a low-viscous medium
are strongly influenced by inertia. Macroscopic swimmers
[30–32] and flying insects [33] are apt examples where inertia
plays an important role in their dynamics, at both the single-
particle level and the collective level [16]. Hence, inertia needs
to be introduced in both AOUP and ABP models. Indeed, in
some of the recent works, the introduction of inertia in these
models could describe well the dynamics of active particles
[34,35]. It has also been reported that fine tuning of inertia re-
sults in qualitative modification in the fundamental properties
of active systems such as inertial delay between orientation
dynamics and translational velocity of active particles [36],
development of different dynamical states [37], motility in-
duced temperature difference coexisting phases [38], etc.

The stochastic dynamics of a charged particle in the pres-
ence of a magnetic field is an interesting problem with
potential applications in plasma physics, astrophysics, elec-
tromagnetic theory, etc. [39–45]. According to the Bohr–van
Leeuwen theorem [46–49], there is no orbital magnetism for a
classical system of charged particles in equilibrium. However,
when an inertial system exhibits activity in the dynamics, it
does not follow the well known fluctuation-dissipation theo-
rem [50] and comes out of equilibrium. As a result, a nonzero
orbital magnetism appears in the presence of a magnetic field
and the system passes through a magnetic phase transition
depending on the complex interplay of the activity time and
other timescales involved in the dynamics [51,52].
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When a time-dependent magnetic field is applied to
charged Brownian swimmers, it can either enhance or reduce
the effective diffusion of swimmers [53]. On the other hand,
the dynamics of a charged active Brownian particle subjected
to a space-dependent magnetic field induces inhomogeneity
and flux in the system [54]. Similarly, under stochastic reset-
ting, an active system in the presence of a magnetic field yields
some exotic steady-state behavior [55]. Motivated by these
recent findings, herein we explore the transport properties
of a charged and inertial active Ornstein-Uhlenbeck particle
in a viscous medium and under a static magnetic field. In
particular, we show that inertia is necessary for the magnetic
field to influence the dynamics.

The Brownian dynamics of an inertial charged particle
in a magnetic field driven by an exponentially correlated
noise and by a colored Gaussian thermal noise has al-
ready been discussed in Refs. [56–61], respectively. In these
models, the dynamics is always mapped to its thermal equi-
librium limit, where the generalized fluctuation-dissipation
relation is satisfied. In our work we consider the model as
the dynamics of an active particle, which is different from
the dynamics described in the previously discussed models
in the sense that the active fluctuations are athermal and hence
cannot always be mapped to an equilibrium limit. However,
in the equilibrium limit of our model, where the fluctuation-
dissipation relation is satisfied and in the vanishing limit of
noise correlation time, some of our findings, especially the
steady-state diffusion, show behavior similar to that reported
in Refs. [56,57] for a free particle and in Refs. [58,60] for a
confined harmonic particle.

We have organized the paper in the following way. In
Sec. II we present our model, the methodology adopted, and
an introduction to the dynamical parameters of interest. The
results and a discussion are presented in Sec. III, followed by
a summary in Sec. IV.

II. MODEL AND METHOD

We consider a charged active Ornstein-Uhlenbeck particle
of mass m self-propelling in a two-dimensional (2D) plane.
The particle is confined by a harmonic potential U (x, y) =
1
2 k(x2 + y2), with k being the harmonic constant. A magnetic
field B = Bẑ is applied perpendicular to the plane of the
motion of particle, where ẑ is the unit vector along the Z
direction. The dynamics of the particle is given by Langevin’s
equation of motion [49,52,62]

mr̈(t ) = −γ v(t ) + |q|
c

[v(t) × B] − kr(t ) +
√

2Dξ (t ), (1)

where r̈ = v̇ is the acceleration of the particle and mr̈ is the
inertial force in the dynamics. The first term on the right-hand
side of Eq. (1) is the viscous force on the particle because of
the interaction of the particle with the surrounding medium,
with γ being the viscous coefficient of the medium. The sec-
ond term represents the Lorentz force caused by the presence
of a magnetic field [63] and the third term is the force exerted
by the harmonic confinement. In addition, ξ (t ) is the noise
term, which follows the Ornstein-Uhlenbeck process

tcξ̇ (t ) = −ξ (t ) + η(t ), (2)

with η(t ) being the delta-correlated white noise. Further, D is
the strength of the Ornstein-Uhlenbeck noise [23,64,65]. Here
ξ (t ) satisfies the properties

〈ξα (t )〉 = 0, 〈ξα (t )ξβ (t ′)〉 = δαβ

2tc
e−|t−t ′ |/tc , (3)

where tc is the noise correlation time or persistence time
of the dynamics and (α, β ) ∈ (X,Y ). A finite correlation of
noise for a time tc represents the persistence of activity up to
t = tc and it decays exponentially with tc. Hence, a finite and
nonzero tc especially quantifies the activity of the system. In
the limit tc → 0, the active fluctuation becomes thermal and
the system becomes passive in nature. In the present work we
consider D = γ kBT (fluctuation-dissipation relation) to have
the typical thermal equilibrium limit of the dynamics at tem-
perature T [66,67]. However, for a nonzero tc, the dynamics
is in nonequilibrium with an effective temperature which is
different from the actual temperature of the system [68]. In
the long time limit, one can define this effective temperature
with the self-propulsion speed of the active particle and can
relate it to the strength of noise, D [69].

By defining � = γ

m , ωc = |q|B
mc , and ω0 =

√
k
m and intro-

ducing a complex variable z(t ) = x(t ) + i y(t ), Eq. (1) can be
rewritten in terms of z(t ) as

z̈(t ) + �ż(t ) − jωcż(t ) + ω2
0z(t ) = ε(t ), (4)

where j = √−1 and ε(t ) =
√

2D
m [ξx(t ) + j ξy(t )]. By per-

forming the Laplace transform of the complex vari-
ables z(t ) and ż(t ) [L{z}(s) = ∫ ∞

0 e−st z(t )dt and L{ż}(s) =∫ ∞
0 e−st ż(t )dt], with initial conditions z(0) = z0 and ż(0) =

v0, respectively, and using the partial fraction method, the
solution of the dynamics [Eq. (4)] can be obtained as

z(t ) =
2∑

i=1

biz0esit +
2∑

i=1

aiv0esit +
2∑

i=1

ai

∫ t

0
esi (t−t ′ )ξ (t ′)dt ′.

(5)
Here the si are given by

s1,2 =
−� ±

√
�2 − 4ω2

0

2
,

with � = � − jωc. The coefficients ai and bi are given by

a1,2 = ± 1√
�2 − 4ω2

0

, b1,2 = ±
� ∓

√
�2 − 4ω2

0

2
√

�2 − 4ω2
0

,

respectively. In order to analyze the transport behavior of such
a system, we focus mainly on the mean displacement, steady-
state correlations, and mean-square displacement. The mean
displacement (MD) 〈R(t )〉 can be calculated from the relation

〈R(t )〉 = 〈z(t ) − z(0)〉
= 〈x(t ) − x(0)〉 + j〈y(t ) − y(0)〉
= a1[es1t (s1z0 + v0 + �z0)

− es2t (s2z0 + v0 + �z0)] − z0. (6)
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FIG. 1. Simulated trajectories of a free particle (ω0 = 0) in (a)
and (b) and in the presence of harmonic confinement (ω0 = 1.0)
in (c) and (d). The color map shows the strength of the harmonic
confinement. Low magnetic field (ωc = 0.01) is considered for (a)
and (c) while high magnetic field (ωc = 5.0) is taken for (b) and (d).
The other common parameters are m = 1, γ = 1.0, and tc = 1.0.

The steady-state position correlation [Cr (t )] and velocity cor-
relation [Cv (t )] can be defined as

Cr (t ) = lim
t ′→∞

〈r(t ′) · r(t ′ + t )〉
= lim

t ′→∞
Re{〈z(t ′)z∗(t ′ + t )〉} (7)

and

Cv (t ) = lim
t ′→∞

〈v(t ′) · v(t ′ + t )〉
= lim

t ′→∞
Re{〈ż(t ′)ż∗(t ′ + t )〉}. (8)

In Eqs. (7) and (8) the asterisk denotes the complex conjugate
and Re{ } represents the real part. Similarly, the mean-square
displacement (MSD) 〈R2(t )〉 is given by the relation

〈R2(t )〉 = 〈[r(t ) − r0]2〉
= 〈|z(t ) − z0|2〉. (9)

The simulation of the dynamics [Eq. (1)] is carried out
using Heun method algorithm [70] and Fox algorithm ap-
proaches [71]. A time step of 10−3 s is chosen for each run
of the simulation. For each realization, the simulation is run
up to 105 s. The averages are taken over 105 realizations
after ignoring the initial transients (up to 103 s) in order for
the system to reach the steady state. The detailed simulation
results along with the analytical calculations are discussed in
the following section.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the simulated trajectories of the dynam-
ics [Eq. (1)] for a free particle [Figs. 1(a) and 1(b)] and a har-

FIG. 2. The 2D parametric plot of MD [Eq. (10)] is shown in (a),
(c), and (d) for a free particle (ω0 = 0.0) and in (b) for a confined
harmonic particle (ω0 = 1.0). The color map indicates the evolution
of MD with time in both (a) and (b). For a free particle, MD attains a
non-zero stationary value in the long time limit or at the steady state.
The color map in (c) and (d) represents the evolution of this station-
ary MD with ωc and γ , respectively. The other common parameters
in (c) are: z0 = 0 + 0 j, tc = 1.0, v0 = 1 + j, m = 1, and γ = 1.
Similarly, the other common parameters in (d) are: z0 = 0 + 0 j, tc =
1.0, v0 = 1 + j, m = 1, and ωc = 1.

monically confined particle [Figs. 1(c) and 1(d)]. The results
presented in Figs. 1(a) and 1(c) are for a low-strength mag-
netic field (ωc = 0.01) whereas those in Figs. 1(b) and 1(d) are
for a high-strength magnetic field (ωc = 5.0). It can be seen
that in the absence of harmonic confinement (ω0 = 0), the par-
ticle is set as free and the influence of a strong magnetic field
makes the particle confined to a very small region. In this case,
the directional movement of the self-propelling particle is sup-
pressed and the particle behaves as if it is trapped in the pres-
ence of a strong magnetic field [see Fig. 1(b)]. On the other
hand, when the particle is confined in a harmonic trap, it can-
not come out of the trap, and under the influence of the mag-
netic field, it moves around the field before returning to the
mean position in the long time limit. When the strength of the
magnetic field is very large, the particle moves around the field
for a longer time and travels a larger distance [see Fig. 1(d)].

We have exactly calculated the mean displacement 〈R(t )〉
in the transient regime by expanding Eq. (6) in the lower
powers of t as

〈R(t )〉 = v0t − 1
2

(
v0� − z0ω

2
0

)
t2 + O(t3). (10)

The parametric plot of MD [〈y(t )〉 vs 〈x(t )〉] is shown in Fig. 2
when the particle is set free as well as when the particle is con-
fined in a harmonic trap. The time asymptotic limit of the MD
approaches zero value for a harmonically confined particle
[ lim
t→∞〈R(t )〉 = 0] irrespective of the strength of the magnetic

field. That is why in the long time limit the particle reaches
the center of harmonic trap (z = 0), which is nothing but the
initial position (z = 0) of the particle, as depicted in Fig. 2(b).
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However, this is not the case for a free particle [Fig. 2(a)]. For

a free particle, it is found that lim
t→∞〈R(t )〉( f ) = v0

�
and hence

it depends on the magnetic field as well as on the viscosity of
the medium. In the absence of a magnetic field, i.e., for the

limit ωc → 0, lim
t→∞〈R(t )〉( f ) = v0

�
, which reflects that the MD

depends on the inertia of the particle. This is indeed consistent
with the results reported in Ref. [72] for steady-state MD.
Figures 2(c) and 2(d) depict the 2D plots of the variation of
the steady-state MD with ωc and γ , respectively. It starts from
the value v0

�
for ωc = 0 and approaches zero value for a strong

magnetic field [Fig. 2(c)]. Similarly, it starts from the value
jv0

ωc
for γ = 0 and approaches zero for a larger value of γ

[Fig. 2(d)]. This clearly indicates that the magnetic field has
a strong influence on the MD only in the presence of inertia
in the dynamics. In the absence of a magnetic field, the MD
increases with inertia and approaches zero for the large-γ
limit. It is also noteworthy that 〈R(t )〉 does not depend on
the activity time or persistence time of the dynamics. This
is because of the definition of statistical properties of the
AOUP noise. In the lower time regime (the limit t → 0), the
MD varies linearly with time and depends only on the initial
velocity of the particle.

Next we examine the steady-state behavior of the position
correlation Cr (t ) and velocity correlation Cv (t ). Substituting
the solution z(t ) from Eq. (5) and the noise properties from
Eq. (3) in Eq. (7), Cr (t ) can be calculated as

Cr (t ) = Re

{
2∑

i=1

2∑
j=1

2aia∗
j D

m2

(
tce−t/tc

(tcsi − 1)(tcs∗
j + 1)

− 2es∗
j t

(si + s∗
j )

(
1 − t2

c s∗2
j

))}
. (11)

Similarly, substituting the solution z(t ) from Eq. (5) and the
noise properties from Eq. (3) in Eq. (8), Cv (t ) can be calcu-
lated as

Cv (t ) = Re

{
2∑

i=1

2∑
j=1

2cic∗
j D

m2

(
tce−t/tc

(tcsi − 1)(tcs∗
j + 1)

− 2es∗
j t

(si + s∗
j )

(
1 − t2

c s∗2
j

))}
, (12)

where

c1,2 =
−� ±

√
�2 − 4ω2

0√
�2 − 4ω2

0

. (13)

For a confined harmonic particle, the normalized Cr (t ) and
Cv (t ) are plotted as a function of t in Fig. 3 for different values
of ωc. The results presented in Figs. 3(a) and 3(b) for Cr (t )
are for inertial (γ = 1) and overdamped (γ = 10) regimes,
respectively. Similarly, the results presented in Figs. 3(c) and
3(d) for Cv (t ) are for inertial (γ = 1) and overdamped (γ =
10) regimes, respectively. The obtained analytical results are
in good agreement with the simulation. It is observed that with
an increase in magnetic field strength ωc, the correlation in
position persists for a longer time before decaying to zero,
whereas the velocity correlation decays faster with ωc, as

FIG. 3. Normalized Cr (t ) [Eq. (11)] as a function of t is shown
in (a) and (b) and normalized Cv (t ) [Eq. (12)] as a function of t is
shown in (c) and (d), respectively for a confined harmonic particle
(ω0 = 1), obtained from the analytical calculations as well as from
the simulation for different values of ωc. We have taken γ = 1.0
in (a) and (c) and γ = 10.0 in (b) and (d). The other common
parameters are tc = 1 and m = 1.

expected. Most importantly, in the overdamped regime (γ =
10), where the inertial effects are negligible, the magnetic field
does not influence the correlated behavior of either position or
velocity.

The dependence of steady-state correlations on harmonic
confinement ω0 and correlation time tc are shown in Fig. 4.
Both Cr (t ) and Cv (t ) decay faster with an increase in ω0,

FIG. 4. Normalized Cr (t ) [Eq. (11)] as a function of t obtained
from both analytical calculations and simulation for different values
of ω0 and tc are shown in (a) and (b), respectively. Normalized Cv (t )
[Eq. (12)] as a function of t obtained from both analytical calcula-
tions and simulation for different values of ω0 and tc are shown in
(c) and (d), respectively. We have taken tc = 1 in (a) and (c) and
ω0 = 1.0 in (b) and (d). The other common parameters are ωc = 1,
m = 1, and γ = 1.
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whereas with an increase in tc, both quantities persist for a
longer time before decaying to zero.

Using Eq. (5) in Eq. (9), the MSD of the harmonically
confined particle 〈R2(t )〉 can exactly be calculated as

〈R2(t )〉 =
∣∣∣∣a1

(
− z0

a1
+ (es1t − es2t )(v0 + �z0) + s1z0es1t − s2z0es2t

)∣∣∣∣
2

+
∑

i

∑
j

2aia∗
j D

m2

×
(

tcet (s∗
j −1/tc )

(tcsi + 1)(1 − tcs∗
j )

+ tcet (si−1/tc )

(1 − tcsi )(tcs∗
j + 1)

+ tc(si + s∗
j ) − 2

(si + s∗
j )(tcsi − 1)(tcs∗

j − 1)
+ et (si+s∗

j )(tc(si + s∗
j ) + 2)

(si + s∗
j )(tcsi + 1)(tcs∗

j + 1)

)
.

(14)

With the help of Taylor series expansion, Eq. (14) can be expanded in the powers of t and by dropping the higher powers of t ,
〈R2(t )〉 can be obtained as

〈R2(t )〉 = |v0|2t2 − |v0|2 + 2(v∗
0z0 + v0z∗

0 )ω2
0

2
t3

+ 1

12

(
6D

m2tc
+ ω2

0(5� − jωc)(v0z∗
0 + z0v

∗
0 ) + 3|z0|2ω4

0 + |v0|2
(
7�2 − 4ω2

0 − ω2
c

))
t4 + O(t5). (15)

We have plotted the MSD as a function of t for a free particle and for a confined harmonic particle in Figs. 5(a) and 5(b),
respectively, for different values of ωc. From the exact calculation of the MSD, it is confirmed that in the limit t → 0, 〈R2(t )〉 is
proportional to t2, and hence the dynamics is ballistic in nature. The initial ballistic regime (proportional to t2) depends solely
on the initial velocity v0 of the particle. When v0 = 0, the initial regime of the MSD is proportional to t4. The dependence of
the MSD on ωc appears, starting from the fourth power of t . Since there is harmonic confinement, the particle cannot escape to
infinity. Hence, in the long time regime, the MSD attains a constant or saturated value 〈R2〉st [see Fig. 5(b)], which is given by
the expression

〈R2〉st = |z0|2 + 2D
[
t2
c

(
ω2

c + �2 + ω2
0

)]
�m2ω2

0

{[
tc
(
ω2

0tc + �
) + 1

]2 + t2
c ω2

c

} + 2D
(
�ω2

0t3
c + 2�tc + 1

)
�m2ω2

0

{[
tc
(
ω2

0tc + �
) + 1

]2 + t2
c ω2

c

} . (16)

This saturated value of the MSD depends on ωc. In the limit ωc → 0, 〈R2〉st is obtained as

lim
ωc→0

〈R2〉st = |z0|2 + 2D(1 + tc�)

m2ω2
0[� + tc�

(
� + tcω2

0

)] , (17)

which is the same as that reported in Ref. [72] in the absence of a magnetic field. In the presence of a very strong magnetic
field, i.e., in the limit ωc → ∞, the stationary MSD is simply |z0|2 + 2D

m2�ω2
0
, which is independent of tc. The same value of 〈R2〉st

is obtained when we take the white noise limit, i.e., in the limit tc → 0. This confirms that the particle behaves like a passive
particle in the presence of a high magnetic field. In the thermal equilibrium limit of our model, the MSD shows behavior similar
to that reported in Ref. [58]. It is also observed that 〈R2〉st is an increasing function of ωc, and hence the magnetic field enhances
the overall displacement for a confined harmonic particle. This is clearly reflected in Fig. 5(b).

The MSD for a free particle 〈R2(t )〉( f ) can be calculated by substituting ω0 = 0 and simplifying Eq. (14) as

〈R2(t )〉( f ) = 2|v0|2e−�t [cosh(�t ) − cos(ωct )]

�2 + ω2
c

+ 2D

m2(�2+ ω2
c )

×
(

e−�t
{
2 cos(ωct )

[
tcω2

c (�tc + 1) + �(�tc − 2)(�tc − 1)
] − 2ωc sin(ωct )

[
t2
c

(
�2 + ω2

c

) − 4�tc + 2
]}

(
�2 + ω2

c

)[
t2
c ω2

c+ (�tc − 1)2
]

+ 2t2
c e−t (�+1/tc )

{
ωc sin(ωct )

[
t2
c

(
�2 + ω2

c

) − 2�tc − 1
] + cos(ωct )

[−�
(
�2t2

c − 1
) − tcω2

c (�tc + 2)
]}

[
t2
c ω2

c + (�tc − 1)2
][

t2
c ω2

c + (�tc + 1)2
]

− 4�

�2 + ω2
c

+ 2tce−t/tc (�tc − 1)

t2
c ω2

c + (�tc − 1)2
+ e−2�t (�tc − 1)

�
[
t2
c ω2

c + (�tc − 1)2
] + (�tc + 1)(2�tc + 1)

�
[
t2
c ω2

c + (�tc + 1)2
] + 2t − 2tc + 2tce−t/tc

)
.

(18)

Expanding Eq. (18) in powers of t , we get

〈R2(t )〉( f ) = |v0|2t2 − �|v0|2t3 +
(

D

2m2tc
+ 7�2|v0|2

12
− |v0|2ω2

c

12

)
t4 + O(t5). (19)
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FIG. 5. MSD as a function of t for different ωc values (a) for
a free particle [Eq. (18)] and (b) for a confined harmonic particle
[Eq. (14)]. The other common parameters are tc = 1, γ = 1, and m =
1.

From this equation it is confirmed that 〈R2(t )〉( f ) depends on
the magnetic field and in the absence of a magnetic field (the
limit ωc → 0), the result for 〈R2(t )〉( f ) is consistent with that
reported for a free particle in Ref. [72]. In the time asymptotic
limit (t → ∞), the MSD in Eq. (18) reduces to

〈R2〉( f )
st = 2D

m2
(
�2 + ω2

c

)(
− 4�

�2 + ω2
c

+ 2t − 2tc

+ (�tc + 1)(2�tc + 1)

�
[
t2
c ω2

c + (�tc + 1)2
])

. (20)

Thus, the steady-state MSD for a free particle depends on
ωc and approaches zero in the limit ωc → ∞. This indicates
that the presence of a magnetic field suppresses the overall
displacement of a free particle in contrast to that of a harmoni-
cally confined particle. These results are summarized in Fig. 5,
where it can be seen that the initial ballistic regimes are similar
for both the free and the confined harmonic particle. However,
in the long time regime, the MSD is linearly proportional to
t for a free particle (diffusive in nature) but it approaches a
stationary value for a confined harmonic particle (nondiffu-
sive in nature). The steady-state MSD for a free particle gets

suppressed with the magnetic field, whereas it gets enhanced
for a confined harmonic particle. Other than these, we observe
oscillations in the intermediate time regimes for both free and
harmonically confined particles, which could be due to the
influence of the magnetic field. It should also be noted that in
the limit tc → ∞ (with t � tc), 〈R2〉( f )

st can be obtained as

lim
tc→∞〈R2〉( f )

st = 2D

m2
(
�2 + ω2

c

)(
− 2�

�2 + ω2
c

+ 2t

)
, (21)

which is independent of tc.
The MSD as a function of t is plotted for different � and tc

values in Figs. 6(a) and 6(b) for a confined harmonic particle
and in Figs. 6(c) and 6(d) for a free particle, respectively. It
can be seen that for a free particle in the time asymptotic
limit, the MSD is independent of tc, while for a confined
harmonic particle, tc suppresses the MSD. However, for both
free and harmonically confined particles, the MSD gets sup-
pressed with �. Since the MSD for a free particle in the time
asymptotic limit is proportional to t , the steady-state diffusion
coefficient for a free particle D f can be calculated as

D f = lim
t→∞

〈R2(t )〉( f )

2t
= 2D

γ 2 + m2ω2
c

. (22)

Substituting ωc = qB
mc in the above equation, D f can be sim-

plified as

D f = 2Dc2

γ 2c2 + q2B2
. (23)

Hence, D f is independent of the mass of the particle but
it depends on the magnetic field. It approaches zero when
the particle is subjected to a strong magnetic field. In the
equilibrium limit (D = γ kBT ), the diffusive behavior is found
to be similar to that reported in Ref. [57], and in the absence
of a magnetic field, the expression of D f is the same as that
reported in Ref. [72].

IV. SUMMARY

In this work we have studied the motion of a charged
inertial active Ornstein-Uhlenbeck particle in the presence of

FIG. 6. For a harmonically confined particle (ω0 = 1.0), MSD as a function of t [Eq. (14)] (a) for different � values fixing tc = 1.0 and (b)
for different tc values fixing � = 1.0. For a free particle, MSD as a function of t [Eq. (18)] (c) for different � values fixing tc = 1 and (d) for
different tc values fixing � = 1.0. The common parameters are ωc = 1.0 and m = 1.0.
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a magnetic field. One of the important observations is that
the magnetic field has a strong influence on the dynamical
behavior of the particle because of the presence of inertia
in the dynamics. The particle (if free) on average covers a
finite distance before settling down at a constant value in the
long time limit. This constant value is found to be dependent
on the magnetic field, which decreases with an increase in
field strength. In contrast, if the particle is confined in a
harmonic trap, it always returns to the mean position of the
trap, irrespective of the magnetic field. For a highly viscous
medium, where the inertial influence is negligible, the dynam-
ical behavior of the particle is not affected by the magnetic
field. Furthermore, the initial time regime of the mean-square
displacement is found to be similar and shows ballistic
behavior for both free and confined harmonic particles. On
the other hand, the time asymptotic regime is diffusive for
a free particle and nondiffusive for a harmonic particle. The
ballistic regime for both free and confined harmonic particles
gets reduced with an increase in the magnetic field strength.

Surprisingly, for a harmonically confined particle, the
steady-state mean-square displacement in the presence of a
very strong magnetic field is the same as that for a passive
particle. When the strength of the magnetic field is very high,
the steady-state mean-square displacement becomes indepen-

dent of the field as well as the noise correlation time or
persistent time of the dynamics, ensuring that the particle
behaves like a passive particle. To understand this feature, it
is further necessary to explore the relaxation behavior of the
dynamics and quantify the degree of irreversibility in terms of
entropy production and nonequilibrium temperature [66,67].
Similarly, for a free particle, in the time asymptotic limit, the
MSD becomes independent of activity despite the persistence
of activity for a longer time.

We believe that the results of our model are amenable to
experimental verification and can be applied to implement
the magnetic control on a charged active suspension by fine-
tuning the strength of the external magnetic field. It would
be further interesting to explore the relaxation behavior of
the dynamics by introducing elasticity in the viscous solution
[64,73]. Moreover, the inertial AOUP under the action of a
magnetic field can be extended to a more complex situation as
in Refs. [54,55].
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