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Structural relaxation dynamics of colloidal nanotrimers
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By Molecular Dynamics simulation, we investigate the dynamics of isotropic fluids of colloidal nanotrimers
whose interactions are described by varying the strength of attractive and repulsive terms of the Mie potential.
To provide a consistent comparison between the systems described by different force fields, we determine the
phase diagram and critical points of each system, characterize the morphology of high-density liquid phases
at the same reduced temperature and density, and finally investigate their long-time relaxation dynamics. In
particular, we detect an especially complex dynamics that reveals the existence of slow and fast nanotrimers
and the resulting occurrence of non-Gaussianity, which develops at intermediate timescales. Deviations from
Gaussianity are temporary and vanish within the timescales of the system’s density fluctuations decay, when a
Fickian-like diffusion regime is eventually observed.
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I. INTRODUCTION

Colloidal sols are two-phase systems comprising solid par-
ticles evenly dispersed in a liquid. The size of these particles
is a crucial parameter as it determines the very existence of
sols, controls their thermodynamic stability, and avoids sedi-
mentation by ensuring the dominance of thermal forces over
gravitational forces. The International Union of Pure and Ap-
plied Chemistry suggests that the dispersed particles should
have at least in one direction a dimension roughly between
1 nm and 1 μm or that in a system discontinuities are found at
distances of that order [1]. This definition allows one to dis-
tinguish colloids from solutions, where solute and solvent are
molecular species, and from suspensions, which incorporate
particles that are much larger than 1 μm and eventually settle
out. This property allows colloids to fill a niche that requires
such properties, such as paints or shampoos. Nevertheless,
in the literature it is not rare to find a very wide and per-
haps confusing spectrum of supposedly identical definitions,
including colloidal solutions and colloidal suspensions. In
addition, there is a confounding use of the term colloid to
refer to particles, rather than to the system in which these
are dispersed. In what follows we employ the term colloid
(or colloidal sol) to refer to a system of nanoparticles evenly
dispersed in a liquid.

Nanoparticles immersed in liquids exhibit ceaseless ran-
dom moves, which were first reported by the botanist Brown,
who, almost two centuries ago, investigated the dynamics of
pollen grains in water [2]. Due to the later theoretical works
by Einstein [3], Sutherland [4], von Smoluchowski [5], and
Langevin [6] and the experiments by Perrin and Hammick
[7,8], we now know that such erratic movements, commonly
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referred to as Brownian motion, stem from the thermal en-
ergy dissipated by the collision between colloidal particles
and the molecules of the dispersing medium. According to
these works, the mean-square displacement (MSD), which
measures the ability of particles to displace a distance �r with
respect to a reference location, grows linearly in time, whereas
the particle displacements follow a Gaussian distribution with
zero mean. In particular, the MSD in three dimensions reads

〈r2〉 = 6Dt, (1)

where D is the particle long-time diffusion coefficient in the
fluid and t is the time. The linearity of the MSD with t is usu-
ally referred to as Fickian diffusion and is normally observed
in most colloidal systems. Nevertheless, anomalous diffusive
behaviors, where �r2 ∝ tγ and γ is either lower (subdiffu-
sion) or larger (superdiffusion) than 1, have been identified
[9–15] and can be accompanied by Gaussian or non-Gaussian
distributions of particle displacements. One might expect the
occurrence of Gaussian deviations only in colloids displaying
anomalous diffusion as the central limit theorem applied to
random walks, which predicts Gaussianity and Fickianity at
sufficiently long timescales, indeed supports this view [16].
However, there exist systems, whose dynamics is Fickian,
but the distribution of their particle displacement is non-
Gaussian, such as biological systems [17–20], supercooled
liquids [21–23], colloidal systems [24–27], two-dimensional
fluids [28–33], and fluids in porous media [34,35]. While this
Fickian yet non-Gaussian (FNG) behavior is being increas-
ingly identified in soft materials and its origin is the topic of
an intense research debate [36–41], recent Brownian dynam-
ics and dynamic Monte Carlo simulations of colloidal liquid
crystals suggest that FNG dynamics might not be ubiquitous
in soft matter [42,43].

In this work we employ Molecular Dynamics (MD) simu-
lations to mimic the equilibrium dynamics of dense colloidal
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sols of triangular nanotrimers, made of three tangent spheres
interacting via different potentials of the Mie family. Our
goal is to explore their long-time diffusion and identify the
key elements determining the system’s structural relaxation
at long times. Investigating such Mie-like nanotrimers has
been motivated by a few considerations. First of all, the Mie
potential, which offers the option of independently tuning re-
pulsive and attractive energy terms, guarantees better accuracy
in the analysis of the phase behavior compared to the more
popular Lennard-Jones (LJ) potential. This flexibility allows
one to better reproduce the tendencies observed experimen-
tally in specific systems of interest. Second, nanotrimers are
anisotropic particles without axial symmetry that are expected
to exhibit a very rich self-assembly behavior, where positional
and orientational ordering have the potential to generate very
intriguing crystal phases. We have so far only explored the
stability domain of the low-density and high-density isotropic
phases, as this knowledge is instrumental to examining the
dynamics, and we are currently investigating the formation
of ordered nanostructures. The kinetics of formation of these
nanostructures would depend on the diffusion of the high-
density isotropic phase of the nanotrimers; thus knowing
the diffusive properties of the nanotrimers allows for further
research into the structures formed. Finally, the complex ge-
ometry of nanotrimers, coupled to the possibility of tuning the
degree of hardness of their interactions, provides an excellent
model system to study the equilibrium dynamics over time
and ponder the occurrence of FNG behavior at sufficiently
long times, when a full structural relaxation decay is expected.

This paper is organized as follows. In Sec. II we discuss
the particle model and the simulation methods employed to
investigate equilibrium and dynamics of isotropic sols of nan-
otrimers. Since MD simulation is a standard technique, we
will only highlight those elements that are instrumental for
the interested reader to reproduce our results. In this sec-
tion we also introduce the main dynamical properties that have
been estimated to characterize the behavior of our systems.
In Sec. III we first report on the phase behavior of colloidal
nanotrimers as a function of the hardness of the Mie potential
explored here. Then we focus on the long-time dynamics by
assessing the ability of nanotrimers to diffuse and the exis-
tence of slow and fast particles that together determine the
system’s structural relaxation decay. In Sec. IV we summarize
and provide conclusions.

II. METHODS

We performed MD simulations of rigid nanotrimers made
of three identical spherical beads of diameter σ , the system
unit length. The solvent is not explicitly modeled, but included
in the effective interactions established between particles. We
stress that implicit-solvent MD simulations create ballistic
trajectories at very short times, when stochastic trajectories
are rather expected. This artificial scenario extends only up
to the so-called cage regime, when each particle starts to
interact with its neighbors, and does not affect the long-time
dynamics, which is governed by particle-particle collisions
[44–46]. The beads comprising a nanotrimer are tangential to
one another and at a mutual distance given by σ , as schemati-
cally shown in the inset of Fig. 1. The interactions established

FIG. 1. Mie potentials employed in this study as a function of
the distance between the center of mass of nonbonded beads and their
comparison with the LJ potential. The inset shows the tangent-sphere
model used to mimic a nanotrimer.

between nonbonded beads, namely, by beads belonging to
distinct nanotrimers, are described by the Mie potential, which
reads [47]

U (r) = Cε
[(σ

r

)n
−

(σ

r

)m]
, (2)

where ε is the depth of the potential well, whereas the ex-
ponents n and m set the range of repulsive and attractive
contributions, respectively. The coefficient C in Eq. (2) is
given by

C ≡
( n

n − m

)( n

m

)m/(n−m)
(3)

and is defined such that the minimum of the potential is −ε. In
this work the potential is cut and shifted at the cutoff distance
of rc = 3σ to allow the whole nanotrimer to interact with
its nearest neighbors. The Mie potential is a more flexible
version of the standard LJ potential, which can be recov-
ered by setting n = 12 and m = 6. By separately modifying
m and n, one can de facto fine-tune the chemistry of the
nanotrimers and ultimately the effective interactions between
them and the implicit dispersing solvent. For instance, by
increasing the attractive or repulsive exponents in Eq. (2),
the critical temperature of the fluid-fluid phase coexistence
decreases and, in the limit of very large values of attractive
or repulsive exponents, this coexistence becomes metastable
and embedded within the fluid-solid coexistence. The specific
(n, m) pairs explored in this work are (24,6), (24,12), (48,6),
and (48,12) and the resulting potentials will be referred to as
Mie(n, m) in the following. The functional form of these four
potentials is reported in Fig. 1 and compared to the standard
LJ or Mie(12, 6) potential.

All simulations were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package [48]. To determine the fluid-fluid phase coexistence
of each Mie potential, we arranged N = 2458 nanotrimers
in elongated orthogonal boxes of sides Lx = Ly = 16σ , and
Lz = 80σ with periodic boundary conditions at different

014604-2



STRUCTURAL RELAXATION DYNAMICS OF COLLOIDAL … PHYSICAL REVIEW E 106, 014604 (2022)

reduced temperatures. In particular, the reduced temperature
is defined as T ∗ ≡ kBT/ε, with T the absolute temperature
and kB the Boltzmann constant, whereas the reduced density is
ρ∗ ≡ ρσ 3, where ρ is the number density of the nanotrimers
in the system. At equilibrium, systems phase separated into
a low-density isotropic phase and a high-density isotropic
phase, the densities of which may be obtained. The critical
properties of each system were determined using the expres-
sions [49]

ρHD − ρLD = C1(Tc − T )βc , (4)

ρHD + ρLD

2
= ρc − C2(Tc − T ), (5)

where Tc is the critical temperature, ρc is the critical density,
ρLD and ρHD are the densities of the low-density and high-
density fluid phases, respectively, βc = 0.325 is the critical
exponent obtained from renormalization-group theory, and C1

and C2 are fitting parameters. Locating Tc and ρc was espe-
cially important to consistently compare the dynamics of the
four different sets of Mie potentials.

To study the dynamics, we then selected high-density fluid
states in the one-phase region of existence of high-density
fluids. In this case, we arranged N = 2000 nanotrimers in
cubic boxes of varying sizes, depending on the required den-
sity, with periodic boundary conditions and equilibrated them
in the canonical (NV T ) ensemble. More specifically, equili-
bration runs took approximately 2 × 105 time steps, with an
elementary time step set to t = 10−4τ , where τ =

√
Mσ 2/ε

is the system time unit and M the mass of one nanotrimer
bead. Systems were considered at equilibrium when their
total energy achieved a steady-state value within statistical
fluctuations. Subsequently, 300 independent time trajectories,
each consisting of 4 × 106 time steps, were used to calculate
the dynamical properties of interest. To keep the temperature
constant, we applied the Nosé-Hoover thermostat.

To compare the behavior of systems exhibiting different
phase diagrams, we opted to assess structural and dynamical
properties at the same reduced temperature and density, de-
fined as Tr ≡ T/Tc and ρr ≡ ρHD/ρc, respectively. At Tr =
0.95 and ρr = 2.5, all systems are dense fluids with no evi-
dence of crystallization, which is expected to be observed at
larger densities, and furthermore, the high temperature of the
fluids ensures that the systems do not get arrested or enter
glasslike dynamical regimes. Therefore, the selected values
of reduced temperature and density are indeed suitable to
coherently compare structure and dynamics of the systems
studied here. We have also explored other state points for
these systems and found no relevant differences in the dy-
namics, apart from the expected variations due to changes in
temperature and density in the high-density fluid phase. The
specific sets of temperature and density of the high-density
fluid phases for each Mie potential are reported in Table I.

To investigate the long-time relaxation dynamics of nan-
otrimers in dense fluids, we calculated a number of dynamical
properties. More specifically, the MSD, which can be used to
determine the self-diffusion coefficients, reads

〈r2(t )〉 = 1

N

〈
N∑

j=1

[r j (t ) − r j (0)]2

〉
, (6)

TABLE I. State points used in the simulations for each potential
to study dynamical properties.

U (r) T ∗ ρ∗
HD T ∗

c ρ∗
c Tr ρr

Mie(24,6) 1.270 0.253 1.337 0.101 0.95 2.5
Mie(48,6) 1.027 0.263 1.081 0.105 0.95 2.5
Mie(24,12) 0.725 0.290 0.764 0.116 0.95 2.5
Mie(48,12) 0.577 0.315 0.607 0.126 0.95 2.5

where 〈· · · 〉 indicates ensemble average and r j (t ) indicates
the location of the center of mass of nanotrimer j at time
t . The distribution of displacements over time and hence the
occurrence of fast and slow nanotrimers was investigated by
computing the self part of the Van Hove correlation function
given by

Gs(r, t ) = 1

N

〈
N∑

j=1

δ(r − |r j (t ) − r j (0)|)
〉
, (7)

where δ is the Dirac delta function. The Gs(r, t ) was nor-
malized such that

∫ ∞
0 4πr2Gsdr = 1 [42]. Deviations from

Gaussian dynamics were assessed by using the non-Gaussian
parameter α2 defined as

α2(t ) = 〈�r4(t )〉
(1 + 2/d )〈�r2(t )〉2

− 1, (8)

where d is the dimensionality of the system studied. The
non-Gaussian parameter is obtained from the first term of the
Hermite polynomial expansion of the Gs(r, t ) [50]. Finally,
to provide a quantitative measure of the time needed to ob-
serve the structural relaxation of the systems and to quantify
the decay of their density fluctuations, we calculate the self-
intermediate scattering function (SISF), which reads

Fs(q, t ) = 1

N

〈
N∑
j=i

exp{iq · [r j (t ) − r j (0)]}
〉
, (9)

where q is the wave vector defined at the main peak of the
static structure factor [27].

III. RESULTS

Before discussing the details of the long-time relaxation
dynamics of our colloidal nanotrimers, we first report on their
phase behavior, limiting our attention to the fluid phases. In
particular, the temperature vs density phase diagrams of nan-
otrimers interacting via the potentials Mie(24,6), Mie(48,6),
Mie(24,12), and Mie(48,12) are presented in Fig. 2.

The coexistence between the low-density and high-density
fluid phases has been investigated in elongated boxes of
the type shown in the inset of the same figure. Following
equilibration, the density of each phase was estimated by
calculating the number of nanotrimers in volume elements
Lxx̂ · Lyŷ · δzẑ, with δz = Lz/500, located far enough from
the interface, where fluctuations are larger, and averaged
over multiple uncorrelated configurations to reduce statistical
noise. The calculated fluid phase coexistence diagrams are
shown in Fig. 2. One can observe that critical temperature and
critical density have an opposite dependence on the nature
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FIG. 2. Fluid-fluid phase coexistence diagrams of colloidal sus-
pensions comprised of nanotrimers interacting via the Mie potentials
listed in the legend. Closed symbols are simulation results, open
symbols are the critical points estimated using Eqs. (4) and (5),
and solid lines are guides for the eye. The inset shows a typical
equilibrium configuration with one nanotrimer highlighted in blue.

of the Mie potential as the former monotonically decreases
from Mie(24,6) to Mie(48,12), whereas the latter increases.
These tendencies agree well with findings that highlighted
the dependence of the critical point on the potential hardness
[51]. In particular, the potential hardness can be estimated by
computing the parameter

H (n, m) = C
[(

1

m − 3

)
−

(
1

n − 3

)]
, (10)

which has been obtained from the mean-field approximation
of the first-order term of the Barker-Henderson perturbation
theory [51]. The values of H for each potential are indicated
in Table II, with lower values of H indicating harder poten-
tials. The table, in conjunction with Table I, shows a clear
correlation of the decrease in H to the decreases in critical
temperature and increases in critical density in the systems of
nanotrimers.

Identifying the binodal line was a preliminary step to locate
the region where the high-density fluid, whose dynamical
properties we wanted to investigate, is stable. To ensure that
these properties would not be calculated in the crystal phases
that are expected to form at sufficiently large densities, we
double-checked the fluid structure by calculating the radial
distribution function g(r) of the nanotrimers’ centers of mass.
These distribution functions, which are reported in Fig. 3 for
each of the four state points listed in Table I, exhibit a primary

TABLE II. Self-diffusion coefficient D∗ evaluated at Tr = 0.95
and ρr = 2.5 for different Mie potentials. Their corresponding hard-
ness H is also presented.

U (r) H D∗

Mie(24,6) 0.605 0.0496
Mie(48,6) 0.479 0.0340
Mie(24,12) 0.254 0.0130
Mie(48,12) 0.188 0.0052

FIG. 3. Radial distribution functions of nanotrimers’ center of
mass at ρr = 2.5 and Tr = 0.95 for the four Mie potentials reported
in the legend. The symbols show simulation data and the lines are
guides for the eye.

peak at approximately r/σ = 1.5 and then converge to unity
at the typically short distances detected in liquidlike systems.
Having established that these are indeed fluid phases, we can
now discuss the main features of their long-time relaxation
dynamics.

To this end, we first estimated the MSD of nanotrimers,
which is reported in Fig. 4(a). It can be observed that different
interaction potentials are not significantly affecting the MSD,
especially so at short timescales, when the system is still in
the ballistic regime and 〈r2〉 ∝ t2. It should be noticed that
implicit-solvent MD simulations cannot reproduce the Brow-
nian motion of colloids at short timescales, where a diffusive
regime is expected [45,46]. The fully deterministic nature of
MD produces an artificial ballistic regime at very short times,
when particles are still displacing within the cage formed
by their neighbors. Nevertheless, as soon as the particle-
particle collisions become the dominant element controlling
the system’s dynamics, these effects become less and less
relevant and eventually fade at sufficiently long times, where
the MSDs as obtained from MD and Brownian dynamics
simulations collapse onto each other [45,46]. In our specific
case, the four systems studied enter the long-time diffusive
regime at approximately 1 < t/τ < 10 and, from this time on,
〈r2〉 ∝ t as expected in Brownian systems.

The onset of the linearity of the MSD with time, also
referred to as Fickian diffusion, can be more accurately lo-
cated by calculating the dependence of the exponent γ of
the power law 〈r2〉 ∝ tγ over time. We know that for γ = 2
the dynamics is ballistic, whereas for γ = 1 the dynamics
is diffusive. In particular, γ = d ln〈r2〉/d ln t is reported in
Fig. 4(b) and exhibits a relatively fast decay to 1, confirming
the beginning of the long-time diffusive regime at approxi-
mately t∗ = t/τ = 1, depending on the Mie potential. It is
interesting to observe that Mie(24,12) and Mie(48,12) nan-
otrimers experience a slightly subdiffusive dynamics between
t/τ = 1 and 102, with 0.9 < γ < 1. It is an almost negligible
effect as γ is still rather large, but it is anyway not observed
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FIG. 4. (a) MSD as a function of time for the systems interacting
via the Mie potentials reported in the legend. The state points of the
systems correspond to a temperature of Tr = 0.95 and a density of
ρr = 2.5. (b) Log-derivative of the MSD, which corresponds to the
slope of the MSDs presented in (a). The dashed line corresponds to
the value of γ = 1, which indicates the onset of Fickian diffusion.
(c) Non-Gaussian parameter as a function of time. The dashed line at
α2 = 0 indicates when the systems exhibit Gaussian dynamics.

with Mie(24,6) and Mie(48,6) nanotrimers, whose exponent
γ never falls below 1. We believe that this is most likely due
to the particle-particle attractive interactions being dominant
over the kinetic energy of the particles at the temperatures
of the simulations for n = 12 compared to n = 6 and thus
slowing particles down when these are just about to diffuse
through the cage of neighbors. The cage effect itself is ex-
pected to be stronger for more attractive nanotrimers, but this
is not especially evident from the analysis of the MSD as the
crossover from the ballistic to the diffusive regime appears
to be equally smooth for the four Mie potentials. Fickian
diffusion allows for the calculation of the self-diffusion co-
efficient of the different nanotrimer systems using Eq. (1).
The coefficients are reported in Table II and follow the pat-
tern shown by the hardness of the potentials, with the harder
potentials diffusing slower. This decrease in diffusivity is most
likely caused by the differences in particle-particle interaction
strength between the potentials, as stronger particle-particle
interactions will impede the ability of nanotrimers to diffuse
through the system.

Changing the form of the Mie potential has also a relevant
effect on the time associated with the structural relaxation of
the system, which has been measured by computing the SISFs,
reported in Fig. 5. This time, referred to as the α-relaxation

FIG. 5. Self-intermediate scattering functions of the four systems
studied. Symbols are simulation results, while solid lines are expo-
nential fits of the type exp[(−t/tα )a], with tα and a fitting parameters.
The dashed line represents the value Fs = 1/e, at which structural
relaxation is considered achieved and defines the α-relaxation time
for each potential.

time, is achieved when Fs(q, t ) = 1/e. Much denser systems,
such as glasses and subcooled liquids, can also show a β-
relaxation time, corresponding to the short-time relaxation at
the particle scale, occurring over the so-called cage regime.
Our systems, which are not as dense, are characterized by a
single structural relaxation decay. In particular, tα/τ ranges
between 0.6 for Mie(24,6) and 3.7 for Mie(48, 12), as shown
in Table III. While quantitatively different, the four SISFs
show a very similar qualitative behavior, characterized by an
exponential decay of the type exp[(−t/tα )a], with tα and a ≈ 1
fitting parameters.

Deviations from Gaussian dynamics have been investi-
gated by analyzing the non-Gaussian parameter α2 defined
in Eq. (8) and reported in Fig. 4(c). As a general tendency,
we notice that deviations are relatively small compared to
other soft-matter systems, such as colloidal glasses, crystals,
and liquid crystals, where α2 was found to be more than
one order of magnitude larger [52–58]. All systems exhibit
a Gaussian dynamics at short timescales with α2 = 0 up to
t/τ ≈ 0.1, although deviations are already noticeable for the
Mie(48,12) potential. At intermediate times, α2 increases and
reaches its maximum at 1 < t/τ < 2, corresponding to the
onset of the diffusive regime. We notice that the peak am-
plitude increases with the potential hardness, suggesting that
particle-particle attractions dominate over repulsive forces in
determining the extent of deviations from Gaussian behavior.

TABLE III. Values of α-relaxation time for different Mie potentials.

U (r) qσ tα/τ

Mie(24,6) 4.46 0.65
Mie(48,6) 4.50 0.76
Mie(24,12) 4.58 1.01
Mie(48,12) 4.70 3.75
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(a) (b) (c)

FIG. 6. Self part of the Van Hove correlation functions at (a) t∗ = 0.1, (b) t∗ = 1, and (c) t∗ = 100 in systems of nanotrimers interacting via
the Mie potentials shown in the legend. Symbols represent simulation results, solid lines are guides for the eye, and dashed lines are Gaussian
approximations.

This result is in line with the above-mentioned subdiffusive
dynamics observed in Mie(48,12) systems over the same
time window where α2 is larger than zero. In particular,
the temporary non-Gaussian dynamics of especially attrac-
tive nanotrimers is accompanied by an equally temporary
non-Fickianity that is completely negligible in systems in-
teracting through the Mie(24,6) and Mie(48,6) potentials. At
sufficiently long times, namely, for t/τ � 100, all systems
recover a full Gaussian and Fickian dynamics, with α2 ≈ 0
and γ ≈ 1. The relatively modest magnitude of the non-
Gaussian parameter suggests that the nanotrimers’ dynamics
is essentially Gaussian at short and long times and slightly
non-Gaussian at intermediate times. In particular, at long
timescales the dynamics is Fickian (〈r2〉 ∝ t) and Gaussian
(α = 0), confirming that FNG dynamics is not necessarily a
distinctive feature of soft materials, as recently observed in
nematic liquid crystals of uniaxial [42,59,60] and biaxial [61]
particles.

The temporary deviations from Gaussianity can also be
detected by the analysis of the self part of the Van Hove
correlation functions, which are reported in Fig. 6 at short
(t/τ = 0.1), intermediate (t/τ = 1), and long (t/τ = 100)
times. These functions offer insight into the probability distri-
bution of particle displacements and are especially convenient
to ponder the existence of slow and fast particles that, re-
spectively, displace distances that are much shorter or longer
than the average. For each curve, we include the Gaussian
fits (dashed lines) that quantify deviations from a normal
distribution of displacements. The Gaussian fits are generally
very good at short and long times, with an R2 between 0.95
and 0.99 across the three timescales reported in Fig. 6. A
more accurate analysis shows that these fits overestimate the
probability of short displacements and underestimate that of
long displacements. In other words, at short, intermediate,
and long timescales, the probability of observing slow and
fast particles is, respectively, lower and higher than what a

Gaussian distribution of displacements would predict. This is
especially evident for systems of Mie(24,12) and Mie(48,12)
nanotrimers, which, due to the stronger particle-particle at-
tractions, are less mobile and thus less likely to displace much
longer distances than the average. By contrast, Mie(24,6) and
Mie(48,6) particles are significantly more mobile and hence
more likely to displace relatively long distances as the tail of
the self part of the Van Hove functions in Fig. 6 shows.

IV. CONCLUSION

In summary, by MD simulations we have investigated the
long-time relaxation dynamics of colloidal nanotrimers that
interact via a range of Mie potentials. Tuning the strength
of repulsive and attractive particle-particle interactions sets
the potential hardness, which in turns determines the system
phase behavior and dynamics. The former was investigated by
calculating the region of coexistence between the low-density
and high-density fluid phases and the corresponding critical
point. Determining the location of the critical point was cru-
cial to set the reduced temperature and density at which all
systems existed as dense fluids and thus consistently compare
their dynamical properties. To this end, we calculated the
mean-square displacements and their derivative with respect
to time and found that a full long-time diffusive regime is
achieved at approximately t/τ ≈ 1, when most nanotrimers
have displaced a distance between 0.1σ and 0.5σ . In addition,
t/τ ≈ 1 is also the time the SISF shows the systems undergo α

relaxation and the non-Gaussian parameter, which quantifies
the deviations from Gaussian dynamics, reaches its maximum
value and then decays to zero at longer times. In general,
these deviations are not significant, with the R2 of the self
part of the Van Hove function never having a value below
0.95. While the deviations are small, especially if compared to
those detected in colloidal liquid crystals, crystals, and glasses
[52–58], they help one appreciate the impact of attractive
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interactions on nanotrimers’ dynamics and on the onset of
the diffusive regime. In particular, the Mie(48,12) potential
shows a slight subdiffusive behavior, with 0.9 < γ < 1, that
extends over at least two time decades and is not observed
in systems of Mie(48,6) nanotrimers, which are significantly
more repulsive and exhibit a more pronounced mobility. The
computation of the self part of the Van Hove correlation func-
tions reveals the essentially Gaussian nature of distribution of
displacements and indicates that deviations from Gaussianity
are observed at short, intermediate, and long times, but be-
come less and less relevant as soon as the diffusive regime
fully develops. The self part of the Van Hove functions also
highlight the occurrence of slow and fast nanotrimers that
are mostly observed in Mie(48,12) and Mie(24,6) systems,
respectively. The former comprise particles whose attractive
interactions are especially strong and are thus more prone
to stick together and consequently less mobile. By con-
trast, weaker attractive interactions enhance the mobility of

particles, which end up displacing significantly longer dis-
tances than the average. Finally, the simultaneous occurrence
of Gaussianity and Fickianity at long times unambiguously
confirms the Brownian nature of the Mie nanotrimers’ dy-
namics and reinforces the idea that FNG dynamics is not a
universal signature of soft-matter systems.
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