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Enhancement in the diffusivity of Brownian spheroids in the presence of spheres
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In the present paper, we have extended the simulation technique Brownian cluster dynamics (BCD) to analyze
the dynamics of the binary mixture of hard ellipsoids and spheres. The shape dependent diffusional properties
have been incorporated into BCD using Perrin’s factor and compared with analytical results of a one-component
ellipsoidal system. We have investigated pathways to enhance the diffusivity of spheroids in the binary mixture
by manipulating the phase behavior of the system through varying the fraction of spheres in the binary mixture.
We show that at low volume fraction the spherical particles have a higher diffusion coefficient than the ellipsoids
due to the higher friction coefficient. However, at a higher volume fraction, we show that the diffusion coefficient
of the ellipsoids increases irrespective of the aspect ratio due to the anisotropic shape.
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I. INTRODUCTION

Colloidal systems have been investigated for more than
a century, as these systems can mimic atomistic phenomena
and can also be tracked on a single particle scale because
of their micrometer size. The spherical colloidal particles
have been one of the most extensively studied systems both
experimentally as well as theoretically. In these studies, the
phenomena being investigated include transient clustering,
jammed systems, crystal formation, etc. [1–8]. Recent exper-
imental advancements have made it possible to synthesize
colloids of different shapes [9–12]. Among these particles,
the anisotropic colloidal particle has attracted a lot of inter-
est [10,11,13–19]. These ellipsoidal particles display a rich
variety of phases which include nematic phase, crystalliza-
tion, smectic phase, etc. [20,21]. Recently, the dynamics of
hard-core ellipsoidal particles has revealed two types of glass
transition, repulsive glass in terms of translation [22] and ori-
entational or liquid glass in terms of rotational jamming [13].
To simulate the liquid glass, the ellipsoidal particles have been
simulated by introducing a rough wall in the system, to avoid
isotropic-nematic transition.

In simulations, binary system containing hard spheroids
have been studied extensively. Most of these works are fo-
cused on the study of phase behavior related to nematic
ordering. These studies include binary systems of hard rods–
spheroids [23] and spheres-plates [24]. The binary system of
spheres and spheroids has also been studied [25], while con-
sidering the spheres as impurity. The binary system of spheres
and spheroids with a combination of different shapes and sizes
has been analyzed by using density functional theory [26]
as well. In this paper, we have simulated a binary system
of colloids with spheres and spheroids. We used Brownian
cluster dynamics (BCD) to study the diffusivity of the binary
colloidal system, both in the dilute and high concentration
limit, up to the nematic phase.

*sujin@physics.iitd.ac.in

To study the phase properties and dynamics of spheroids
by simulation, a variety of techniques have been proposed
which include molecular dynamics [21,27–29], Monte Carlo
[17,30–32], Langevin dynamics [5,33] etc. Brownian cluster
dynamics is a simulation technique, primarily developed to
study the structure, kinetic, and dynamical properties of col-
loidal systems. BCD can be considered as a variant of the
Monte Carlo method but with the added advantage of being
able to predict the kinetics and dynamics of the system [34].
The rigidity of the bond formed between particles in BCD can
be controlled very easily for equilibrium configuration [35].
Using the BCD technique both reversible and irreversible
aggregation was studied on a lattice [36,37], later extending
the technique to off-lattice spherical particles with an isotropic
square-well potential, for both one-component [7,35,38–40]
and binary colloidal systems [41,42]. It was already shown
that the structure, kinetics, and dynamics of BCD with
the Rouse model agree with event-driven Brownian dy-
namics (EDBD) for the case of square-well potential [34].
Recently, BCD was modified to simulate spherical patchy
particles [43–46] using the Kern-Frenkel potential [30]. The
method was validated by showing the correct static and
dynamic properties for a single polymer chain [43]. The
aggregation of the lysozyme protein was mimicked us-
ing spherical particles with two patches having irreversible
bonds with an overlapping isotropic reversible square-well
potential [44,45].

BCD technique is composed of two steps, the cluster con-
struction step and the movement step. In the present paper,
we are exploring only the dynamics of the athermal mixture
of hard ellipsoid and spherical particles. Within the given
framework of BCD, we study the dynamics of the system
by scaling the physical time, as equal to the time taken by a
particle to diffuse a length of its own diameter. In BCD we do
not solve the equation of motion, which can be computation-
ally expensive for the particles like spheroids. The particles
are moved in a random direction with a fixed translational
and rotational step length. By calibrating step length, we can
scale large physical time for the same number of simulation
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times. In this way, we can study the kinetics of the system
for a longer time as it will be computationally less expensive.
In the present paper, we have extended the BCD technique
to include hard spheroids. We mimic the diffusive motion
of a single spheroid by implementing the friction coefficient
in terms of translational and rotational step length. We have
considered the shape dependent friction of spheroids as given
by Perrin et al. [47] for the stick boundary condition. In the
binary mixture of spheres and spheroids, we found Perrin’s
friction factor playing an important role behind the observed
enhancement in the translational and rotational diffusivities of
the spheroids, with an increasing fraction of spheres. As we
increase the fraction of spheres in the binary mixture keeping
the same volume fraction, the nematic phase vanishes which
is also observed in the case of rod-sphere mixture [23]. It
was also observed that the enhancement of diffusivity of the
spheroid is due to the anisotropy of the spheroids.

The paper is arranged as follows: in Sec. II we give a
detailed explanation regarding the inclusion of asymmetri-
cal particles into the simulation technique Brownian cluster
dynamics. We also explain how we incorporated the friction
equation derived by Perrin et al. [47] as well as the way we
reformulated the definition of time in BCD. In Sec. III we have
discussed the effect of step size to mimic Brownian dynamics,
as well as compared the result of one ellipsoidal particles to
the analytical equation derived by Perrin et al. for the single
particle diffusion. The shape of the isodiffusivity lines of BCD
and EDBD shows a similar trend both for translational and
rotational diffusion. We have shown that the translational dif-
fusion of a binary system consisting of sphere and ellipsoidal
particles both prolate and oblate depends on the aspect ratio,
and the rotational diffusion depends on the nematic transition.
We have also reported a nematic to isotropic transition for
different fractions of the sphere as a function of volume frac-
tion in a binary system. This is followed by the conclusion in
Sec. IV.

II. SIMULATION METHOD

We have modified BCD to incorporate spheroid (prolate
and oblate) particles. The spheroids are defined by the aspect
ratio p = a/b, where a and b are the lengths of the semi-
major (symmetry axis) and semiminor (perpendicular to the
symmetry axis) axes respectively. We represent an ellipsoid
of revolution (ER) with the orientation of a unit vector n̂
along the symmetry axis and the position vector of the center
of mass. In the present paper, we have considered N = 600
particles in a cubic simulation box of size L, with periodic
boundary condition [48]. The ellipsoids with different p con-
sidered in the present paper have a volume equal to the volume
of a sphere with diameter d = 1 such that d = (ab2)1/3. The
corresponding volume fraction is defined as φ = N πd3

6L3 , where
N is the number of spheroids and L is the length of the
simulation box.

We create a random distribution of both the position and
orientation of the ellipsoidal particle inside the simulation
box. We then randomly select 2N ER for the movement step.
The selected particle undergoes either a translational or rota-
tional displacement in a random direction, with a probability
of half. This ensures that the translational and rotational mo-

tion of ellipsoids occurs in an uncorrelated manner [34,43].
The rotational and translational displacement of the ellipsoids
occurs in a random direction with a predefined step length
ST and SR, respectively. Each movement step is followed by
an overlap condition to check the overlap of the hard-core
ellipsoidal particles. The movement step is only accepted if
there is no overlap with other ellipsoidal particles.

For calculating the overlap condition of the ellipsoidal
particles, we define a rectangular box enclosing the ER, with
length and breadth twice those of the semimajor and semimi-
nor axis respectively. If the oriented bounding boxes [49] of
two adjacent ellipsoids overlap, then we employ the method of
the ellipsoidal contact function [50] to verify the overlap of the
particles. After we have attempted to translate or rotate the 2N
particles, we increment the simulation time tsim by one unit,
which is the number of times we have attempted to translate
and rotate all the particles in the system.

To achieve a particular volume fraction, φ with random ini-
tial condition, we distribute 600 particles in a large simulation
box or in other words at very low φ. We gradually reduce the
size of the simulation box from all sides gradually [26], until
the desired φ is achieved. After each compression step, we
relax the system for 104 simulation time before performing the
next compression procedure. After compressing the system,
we relax it for another 2 × 106 simulation time, which is the
starting configuration for all the results reported in the present
paper.

Dynamics

In BCD the center of mass of the particle undergoes a trans-
lation with constant step size ST in a random direction [34].
When ST is small, the random walk of the center of mass of a
sphere can be approximated to a diffusion problem [51]. For a
single sphere, the relation between the physical time tphy and
the simulation time tsim is given by

〈R2〉
d2

= tsim
ST

2

d2
= 6D◦

T

tphy

t0
(1)

where 〈R2〉 is the mean square displacement (MSD) of the
center of mass of the sphere. t0 is defined as the time taken by
a single sphere to travel its own diameter d , such that D◦

T =
1/6 which is the translational diffusion coefficient of a single
sphere. In the present paper the simulation time is defined as
tphy

t0
= tsim

ST
2

d2 as we have considered all the ellipsoids to have
a volume equal to a sphere with d = 1.

The ellipsoid will also undergo a random rotation along the
symmetry axis. Along the other two perpendicular axes to the
symmetry axis, no rotation is undertaken as it is symmetric.
The random rotation of the tip of the unit vector n̂ along the
symmetry axis of ER will perform a two dimensional random
walk, on the surface of a sphere with a step size SR, similar to
rotation done for spherical patches [43,44]. When the step size
is small, it will undergo rotational diffusion with a diffusion
coefficient DR. In the limit DRt � 1,

〈(n̂(t ) − n̂(0))2〉 = tsim
SR

2

d2
= 4D◦

R

tphy

t0
(2)

where D◦
R is the rotational diffusivity of the vector and we can

show that
√

2ST = SR [43].
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For a spherical particle we know from the Stokes-Einstein
relation for diffusion that DT and DR are related to the friction
coefficient as [52]

DT = kBT

γ
, (3a)

DR = kBT

γθ

(3b)

where kB is the Boltzmann constant and T is the temperature.
γ and γθ are the friction coefficients for the translational and
rotational diffusion, respectively, given by

γ = 6πη
d

2
, (4a)

γθ = 6ηV o (4b)

where η is the viscosity of the solvent and V ◦ is the volume of
the particle.

For the asymmetric ellipsoidal particle, the diffusion co-
efficient DT is resolved along the parallel and perpendicular
plane of the symmetry axis as

DT = 2
3 D‖

T + 1
3 D⊥

T (5)

where D⊥
T is the diffusion coefficient in the perpendicular

direction of the symmetry axis and D‖
T is the diffusion co-

efficient parallel to the symmetry axis.
The change in DT and DR for an ellipsoidal particle com-

pared to a spherical particle can be expressed in terms of the
friction coefficient γ and γθ given by [53]

γ ⊥or‖ = 6πηbG⊥or‖
T , (6a)

γθ = ηV oGθ (6b)

where b is the length of the semiminor axis and G is the Perrin
friction factor [47,54]. G measures the deviation in friction
coefficient when the particle deviates from spherical to ellip-
soidal shape. Gθ gives the deviation in the rotational friction
coefficient. G‖

T and G⊥
T denote the translational friction coef-

ficients along the parallel and perpendicular direction of the
symmetry axis respectively. For the stick boundary condition
at the surface of spheroids, the factor G [47,55] for the prolate
case p > 1 is given as

G‖
T = 4

3

[
p

(1 − p2)
+ 2p2 − 1

(p2 − 1)3/2 ln(p +
√

p2 − 1)

]−1

, (7a)

G⊥
T = 8

3

[
p

(p2 − 1)
+ 2p2 − 3

(p2 − 1)3/2 ln(p +
√

p2 − 1)

]−1

, (7b)

Gθ = 2

3

(p4 − 1)

p

[
(2p2 − 1)√

p2 − 1
ln(p +

√
p2 − 1) − p

]−1

. (7c)

For the oblate case, p < 1,

G‖
T = 4

3

[
p

(1 − p2)
+ 1 − 2p2

(1 − p2)3/2 arccos (p)

]−1

, (8a)

G⊥
T = 8

3

[
p

(p2 − 1)
+ 3 − 2p2

(1 − p2)3/2 arccos (p)

]−1

, (8b)

Gθ = 2

3

(p4 − 1)

p

[
(2p2 − 1)√

1 − p2
arccos (p) − p

]−1

. (8c)

The parameter G → 1, as the aspect ratio p → 1, which cor-
responds to a sphere.

We have kept ST constant in the present paper. To incorpo-
rate the effect of anisotropic diffusion, we have introduced two
different step sizes, along the parallel direction S‖

T and along
the perpendicular direction S⊥

T of the symmetry axis. The
diffusion of ER along the direction parallel to the symmetry
axis was compared with that of a sphere with the same vol-
ume; using Eq. (1), it can be shown that D‖

T /D◦
T = (S‖

T )2/S2
T .

Combining Eqs. (3), (4), and (6) the relation between the
transitional and rotational step size of the ER compared to a
sphere of the same volume can be calculated by

S⊥,‖
T

ST
=

√
d

2bG⊥or‖
T

, (9a)

Se
R

ST
=

√
2

Gθ

. (9b)

In the simulation, we fixed the step size S2
T = 2

3 (S‖
T )2 +

1
3 (S⊥

T )2; similarly the step size for rotational diffusion is cal-
culated from Eq. (9b).

III. RESULTS

A. Dynamics of one-component spheroids

In BCD, step size plays a major role in deciding the correct
dynamics of the system. The step size has to be small to attain
the correct diffusion coefficient. Large step sizes lead to a lot
of rejection in the movement step due to the overlap condi-
tion, which leads to the diffusion coefficient being smaller
than the expected value. To understand the effect of step
size ST we have calculated the long-time diffusion coefficient
DT /D◦

T = 〈R2〉/d2

tphy/t0
for the prolate ellipsoidal particle in φ = 0.5

and p = 4, with respect to step size as shown in Fig. 1. The
MSD is defined as 〈R2〉 = 1

N

∑N
i=1[ri(t ) − ri(0)]2 where ri is

the position of the center of mass of the ellipsoidal particle as
a function of time. In Fig. 1 we observe that DT /D◦

T increases
with reducing step size and converges to 0.18. The distance
between the ellipsoids in the equilibrium configuration for
φ = 0.5 is very small. The step size we choose should be less
than the nearest neighbor distance between particles for a par-
ticular φ. For step sizes larger than the interparticle distance
there will be more rejections in the movement step due to the
collision with the nearby ellipsoidal particle. Thus the center
of mass of many particles will not be able to diffuse, leading
to DT /D◦

T smaller than the expected value. To avoid this
problem, if we continue to reduce ST , the physical time over
which we can probe our system will also reduce according
to Eq. (1). As a compromise, we have chosen a step size the
diffusion coefficient of which is accurate within 10% of the
real value, where the step size ST = 0.005 is kept constant
for all the systems reported in the present paper irrespective
of the aspect ratio. We observe that the long-time diffusion
coefficients D‖

T /D◦
T and D⊥

T /D◦
T follow the same trend as the

center of mass diffusion coefficient for the oblate and prolate
particles.

In Fig. 2, we have plotted the mean square displacement
of the prolate ER as a function of time, at φ = 0.5, aspect
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FIG. 1. The effect of step size (ST ) of the center of mass
of ER with D‖

T /Do
T (circles), D⊥

T /Do
T (triangles), and the resultant

DT /Do
T (squares) shown for ER with p = 4.0 at φ = 0.5. The solid

lines are fit to the points. The points can be seen converging to
a particular value, given by D‖

T /Do
T ≈ 0.46, D⊥

T /Do
T ≈ 0.075, and

De
T /Do

T ≈ 0.18.

ratio p = 4, and step size ST /d = 0.005. We also plotted the
MSD along the parallel 〈R2

‖〉 and 〈R2
⊥〉 perpendicular to the

symmetry axis of the ellipsoids as a function of time. We know
that in the case of molecular dynamic simulation short-time
dynamics always leads to ballistic motion, but in the case
of BCD even the short-time dynamics undergoes Brownian
motion. This can be observed in Fig. 2, as the slope of MSD
remains unity even for short-time diffusion. After a long time
tphy/t0 > 8, the MSD again attains a slope of unity but with a
slightly smaller diffusion coefficient due to the hindrance of
the other ellipsoidal particles, as the volume fraction is finite.
We also observe that the MSD along the perpendicular direc-
tion to the symmetry axis diffuses slower than the parallel
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FIG. 2. The MSD of the center of mass of the ER 〈R2〉/d2

(square) is plotted as a function of tphy/to calculated with ST = 0.005
for p = 4 and at φ = 0.50. The MSD is resolved into the parallel
(circle) and perpendicular (red points) direction of the director. They
converge to a slope of unity as shown by the solid lines.
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FIG. 3. (a) D‖
T /Do

T (circles), D⊥
T /Do

T (triangle), and DT /Do
T

(square) shown for the different values of p at φ = 0.002. Solid lines
represent the analytical diffusion coefficient calculated for the single
particle with a constant volume of π/6 for different values of p.
(b) The change in DR/Do

R with respect to p shown for the present
paper (circle) and analytical calculation from the Perrin factor shown
with solid lines.

direction, as the friction coefficient along the perpendicular
direction is larger compared to the parallel direction.

We know that the diffusion of the ellipsoidal particle
should depend on the geometry of the particle. At lower
volume fraction φ = 0.002, the number of collisions with
neighboring particles will be minimal and the ellipsoidal parti-
cle will diffuse like a single noninteracting ER. In Fig. 3(a) we
have plotted D‖

T /D◦
T , D⊥

T /D◦
T and DT /D◦

T for φ = 0.002, as a
function of the aspect ratio p, as obtained from the simulation.
It is compared with the analytical equation of the single ER
diffusion coefficient calculated using Eqs. (3), (6), and (7),
and we observe good agreement with the simulation result
for infinite dilution. We also observe that DT /D◦

T decreases
with increasing shape anisotropy of the ER, as the friction
coefficients for prolate and oblate particles increase along the
perpendicular and parallel direction according to Eq. (7). In
Fig. 3(b) we have plotted the rotational diffusion coefficient
for both prolate and oblate ellipsoidal particles. We calcu-
late the mean squared angular displacement of the ellipsoidal
particle 〈θ2

1 〉, where θ1 is defined as the angle formed by
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FIG. 4. Isodiffusivity lines shown for different φ as a function
of the aspect ratio p, where the solid lines and dotted line represent
translational and rotational diffusion respectively. The diffusion co-
efficients are as indicated in the figure.

the symmetry axis of the ER between a movement step. The
movement of the symmetry axis being two dimensional, we

have defined the rotational diffusion as DR/D◦
R = 〈θ2

1 〉
tphy/t◦

. In
Fig. 3(b) we observe that rotational diffusion is asymmetric
for prolate and oblate ER. The simulation results agree per-
fectly with the theoretical curve given by Eqs. (6)–(8) for an
infinitely dilute system.

In Fig. 4 we have plotted the isodiffusivity lines for the both
translational and rotational components of the ellipsoidal par-
ticles. We observed a similar trend as reported by De Michele
et al. [28] for the diffusion coefficient. The swallowlike shape
of the translational isodiffusivity line as reported by the event-
driven Brownian dynamic method for the fluid of spheroids is
reproduced by the BCD technique as well. The value of the
diffusion coefficient will not match EDBD, as in BCD we use
Perrin’s factor to mimic the dynamics, except at p = 1, where
EDBD and BCD agree perfectly, as already demonstrated
by Babu et al. [34], and reproduced in the present paper.
The rotational diffusion isodiffusivity line shows that DR/D◦

R
reduces when the aspect ratio or φ increases, as reported by
Tang et al. [56]. The rotational diffusion coefficient of BCD
also follows the isotropic-nematic transition, as shown for the
EDBD method [28].

B. Isotropic-nematic transition in the spheroids-spheres
binary mixture

We have already shown that using the BCD method, the
dynamics of one-component hard spheroids can be modeled.
We now advance the study to binary systems, consisting of
a combination of prolate-sphere and oblate-sphere systems.
We define the number fraction of one of the components of
the binary system as f p = np/N where np is the number of
spheroids present in the system corresponding to a particular
aspect ratio p. The volume fraction of the binary system hav-
ing N particles, which includes both spheres and spheroids,

 0.4

 0.5

 0  0.1  0.2  0.3

φ

f 1.0

FIG. 5. Variation in the isotropic-nematic coexistence density φ

with respect to the fraction of sphere f 1.0, present in the binary mix-
ture of sphere and prolate p = 4 system, where upper and lower ticks
on the error bar indicate nematic and isotropic phase, respectively,
confirmed by nematic order-parameter calculation in the simulation.

is calculated as N/L3π/6, since the volume of the individual
particles is kept equal to a sphere of diameter unity.

We calculate the nematic order parameter S for the binary
mixture. S is the largest eigenvalue of the tensor Q defined by

Qα,β = 3

2

1

N

∑
i

〈(nα )i(nβ )i〉 − 1

2
δα,β (10)

where (nα )i(nβ )i ∈ (nx )i, (ny)i, (nz )i with (nα )i the component
of the orientation of the symmetry axis of ER. Here S = 0
means the purely isotropic phase, while S > 0.3 represents
the nematic phase [28]. In Fig. 5 we have plotted the critical
value of φ, where the transition from the isotropic to nematic
phase is observed as a function of the fraction of the sphere in
the binary mixture when p = 4 for the prolate particles. For
an ellipsoidal system of one component with p = 4, we ob-
serve that the isotropic nematic transition occurs at φ ∼ 0.43.
The isotropic nematic transition is shown to be weakly first
order in nature [57]. As shown by Eppenga and Frenkel the
minimum number of particles in the nematic phase should
be above 400 to match with the theoretical calculation [58],
which we have confirmed in the present paper. They have
shown that the system is in the nematic phase when S > 0.3.
In the present paper, we have simulated 20 independent con-
figurations for each φ and f p. When all the configurations give
S > 0.4 we identify the system to be in the nematic phase.
Similarly, when all the 20 configurations have S < 0.2, we
identify the system to be in the isotropic phase. The upper and
lower ticks on the error bar of the phase diagram in Fig. 5
correspond to these two volume fractions and the point is an
average of the volume fractions, for a particular f 1.0. For ex-
ample at f 1.0 = 0.12, we found that S > 0.4 for φ � 0.5 and
S < 0.2 for φ � 0.45. In the phase diagram we have shown
this point at φ = 0.475 with an error bar of ±0.025. As we
increase the volume fraction of the spheres, we observe that
the isotropic nematic transition is stable at higher fractions
of the sphere. It has already been shown analytically that the
glass transition for one-component spheres and ellipsoids with
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FIG. 6. g(n̂I · n̂) shown as a function of n̂I · n̂, which is the cosine
of the angle made by the director with the symmetry axis of the
prolate ellipsoids p = 4 at different fractions of spheres as mentioned
in the figure.

p = 4 is around φ ∼ 0.57 [22]. So we have restricted this
study up to a volume fraction of 0.55 as the main focus is
on the diffusional properties of both spheres and ellipsoids.

In order to show the effect of spheres over the alignment of
spheroids observed for the one-component prolate system, we
have calculated the angular distribution g(n̂I · n̂), with respect
to the nematic director n̂I where n̂ is the unit vector along the
symmetry axes of the ellipsoids at equilibrium. In Fig. 6, we
have plotted g(n̂I · n̂) of the ellipsoids in the binary mixture of
prolate p = 4.0 and the sphere system at φ = 0.5, for different
fractions of spheres. In the nematic phase, the symmetry axis
of the ellipsoids is either parallel or antiparallel to the director.
The two peaks observed for f 1.0 = 0.0 at n̂I · n̂ = 1 and −1,
indicating the presence of a high degree of alignment in the
one-component system of spheroids as also confirmed by the
calculation of the orientational order parameter. When the
sphere fraction is 0.12 we observe that the fraction of aligned
particles steadily decreases, although we have a nematic phase
as confirmed by the S parameter calculation (see Fig. 5).
When the fraction of spheres is further increased, we observe
a curve where almost all the angles have a finite and near equal
probability compared to the other fractions. This signifies an
almost isotropic distribution of spheroids when the fraction is
≈0.24.

In order to understand the local ordering of the ellipsoidal
system, we have calculated gP2 (r) and g2(r) defined as

gP2 (r) = 〈
1
2 (3 cos2 θr − 1)

〉
, (11)

g2(r) = 〈cos (2θr )〉 (12)

where θr is the angle between the symmetry axes of two
ERs at a distance of r from the center of mass of the ER
particle (see Fig. 7). For the nematic phase, we know that
gP2 (r) will not decay to zero as can be observed for the case
of one component f 1.0 = 0 and 0.12. The orientational order
for the one-component system can be clearly seen in a typical
snapshot of the system at equilibrium in Fig. 8. The bounding
box shown in Fig. 8(a) shows the area over which we are able
to observe the nematic phase consistent with the gP2 (r) cal-

 0.1

 1

 2  3  4 1

= 0.0 

0.12

0.27

f 1.0  

g P
2(

r)

r/d

 0.1

 1

 2  3  4 1

g 2
(r

)

FIG. 7. gP2 (r) shown as a function of the distance r/d for a
binary system of spheres and prolate p = 4.0, at φ = 0.50, with a
fraction of the sphere as indicated in the figure. The inset shows the
calculation of g2(r) for the same configuration as indicated in the
figure.

culation of the one-component ellipsoidal system as shown in
Fig. 7. In the binary system when f 1.0 = 0.12 we observe that
gP2 (r) relaxes to a constant value, consistent with the phase
calculation, while g2(r) relaxes faster as it only explores the
local order between ellipsoidal particles. In g2(r) calculation
at f 1.0 = 0.12 we observe local order up to a distance of <2d ,
as shown in the inset of Fig. 7 [also see Fig. 8(b)]. When
the fraction is further increased to f 1.0 = 0.27 the ordering
decays much faster and confined to the distance smaller than
the value 0.9d for both gP2 (r) and g2(r) calculation. This
can be observed in the bounding box in Fig. 8(c), where the
nematic order around the spheres is destroyed. Thus, we have
confirmed that in a binary mixture of sphere-prolate systems,
only local order is observed depending on the fraction of
spherical particles present in a particular volume fraction.

C. Dynamics in the two-component system
of the spheroid-sphere

Figure 9 shows DT /D◦
T which is the diffusion coefficient

of only one species of particle, spheres, or spheroids, in the

FIG. 8. Snapshot of the binary spheroidal-sphere system with an
increasing fraction of the spherical particle from left to right for φ =
0.5, p = 4.0 and at (a) f 1.0 = 0.0, (b) f 1.0 = 0.12, (c) f 1.0 = 0.27.
The ordered reason (the bounding box) can be seen decreasing with
increasing the number of spheres in the system.
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FIG. 9. (a) DT /Do
T shown for the binary system containing par-

ticles with sphere p = 1.0 and prolate p = 4.0. The solid symbols
represent a guide to the eye representing the diffusion coefficient of
only the prolate particles in the binary mixture. The short dashed
line represents the diffusion coefficients of only the spherical parti-
cles. The fraction of spherical particles is as indicated in the figure.
(b) DT /Do

T is plotted for an oblate p = 0.25 and sphere mixture.
The lines which are a guide to the eye are diffusion coefficients
for p = 0.25 (solid) and for spheres (short dash) for the fraction of
sphere indicated in the figure.

binary system as a function of φ. In the binary mixture we
have studied two combinations, one with spheres and the ER
with p = 4 [see Fig. 9(a)] and one with spheres and ERs
p = 0.25 [see Fig. 9(b)]. For the spherical one-component
system f 1.0 = 1, we observe that the diffusion coefficient
of the sphere goes down monotonically [34]. For the oblate
and prolate system of one component ( f 1.0 = 0) the diffusion
coefficient for a low volume fraction is always smaller than
the spherical system, which can also be observed in Fig. 3
for an infinitely dilute system. The diffusion coefficient of
the spheroidal system goes down as we increase the volume
fraction to φ < 0.35 similar to the case of a hard sphere
system. For φ > 0.35 we observe that the slope of the dif-
fusion curve of a one-component ellipsoidal particle increases
and crosses the one-component spherical system. For the el-
lipsoidal system of one component, a nematic transition is
expected for aspect ratio 4 [59–61], which is reproduced by

the BCD technique. We observe that for φ > 0.43 the trans-
lational diffusion coefficient of the one-component ellipsoidal
system becomes higher than the spherical system. This effect
has already been shown in the case of short-time diffusion
coefficient for monomeric rods simulated with hydrodynamic
interaction [10,19].

For the binary mixture with f 1.0 = 0.2, we observe that
DT /D◦

T of only the spheres in the mixture decreases compared
to the case of one component f 1.0 = 1, due to the presence of
ER. For very low φ we observe that diffusion is controlled by
the friction coefficient, and hence the sphere diffuses faster
than ellipsoids. An interesting phenomenon we observe is
that the diffusion coefficient of the ellipsoids increases in
the presence of spherical particles for higher volume fraction
compared to the one-component system of spheres having
the same volume fraction. With increasing volume fraction
of the binary system, the volume available to the center of
mass of both spheres and ellipsoidal particle to diffuse de-
creases. As the number of spheres increases, the channels
of free space available for the ellipsoidal particle to diffuse
become narrower. When the average channel width of the free
space becomes comparable to the diameter of the sphere, we
observe that the diffusion coefficient of the spheres decreases
dramatically in the binary system. For the ellipsoidal particles,
as the semiminor axis is smaller than the radius of the sphere,
it can squeeze through the channel, which is forbidden for the
spheres due to the excluded volume of the binary mixture. As
we increase the fraction of spherical particles to f 1.0 = 0.6,
we observe that the diffusion coefficient of the spherical parti-
cle in the binary mixture is lower compared to the diffusion
coefficient at f 1.0 = 0.2. When the fraction of spheres in-
creases for the same volume fraction, the accessible volume
becomes smaller for the isotropic spheres compared to that of
the anisotropic particle. For the anisotropic particle, there is
a competition between the friction coefficient, which reduces
the diffusion coefficient compared to the sphere, and explo-
ration of the more accessible volume due to the anisotropy
of the ellipsoidal particles. For the fraction f 1.0 = 0.2 the
friction coefficient effect wins φ < 0.3, as the accessible vol-
ume available for the binary mixture is large and thus the
sphere diffuses faster. For φ > 0.3 the ellipsoidal particle can
squeeze through the free space channels created as the length
of the minor axis is smaller than the radius of the sphere. For
the case of oblate particles, we also observe a similar trend
as for the case of prolate ellipsoidal particles. For the prolate
case the crossover for f 1.0 = 0.2 happens at a lower volume
fraction φ ∼ 0.3 compared to the case of f 1.0 = 0.6 where it
happens at φ ∼ 0.35. In the oblate case, the crossover with
the diffusion coefficient of the spherical particle occurs at a
slightly higher volume fraction. For φ > 0.45, in the binary
mixture, the ellipsoidal particles see a decrease in DT /D◦

T
in the presence of spheres, compared to the one-component
ellipsoid case. The trend is opposite, as observed in the low
φ regime, where diffusion is enhanced in the presence of
spheres. At a higher volume fraction, the accessible volume
available to the mixture will be smaller, as the average width
of the free space channel will become comparable to the
semiminor axis, and thus the ellipsoidal particles will slow
down. In the case of one component, ellipsoidal particles, it
undergoes nematic transition.
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FIG. 10. (a) DR/Do
R shown for the binary system containing both

sphere and prolate p = 4 particles at different φ. The fraction of the
sphere is as given in the figure. The solid lines are guides to the
eye. (b) D0.25

R /Do
R is shown for the binary system containing both

sphere and oblate p = 0.25 particles at different φ. The fraction of
the sphere is as shown in the figure and solid lines are guides to the
eye.

The isotropic nematic transition effect is clearly observed
in the case of the rotational diffusion coefficient for the
mixture with aspect ratio 4 and 1. In Fig. 10 we have plotted
the DR/D◦

R as a function of volume fraction for f 1.0 = 0, 0.2,
and 0.6 for prolate [see Fig. 10(a)] and oblate [see Fig. 10(b)]
binary systems. The f 1.0 = 0 ellipsoidal system has a min-
imum rotational diffusion, which is expected as we observe
the isotropic nematic transition for φ > 0.43. For the case
of f 1.0 = 0.2, the rotational diffusion coefficient increases
slightly compared to the case of one component. We also
observe that the diffusion coefficient for f 1.0 = 0.2 tends to-
wards the one-component case for φ � 0.5, as expected for
higher volume fraction as the volume available for the ellip-
soidal particle decreases. When the fraction f 1.0 = 0.6, for the
prolate and oblate ER in the binary mixture, we observe that
the rotational diffusion coefficient is higher than for the sys-
tem of one component. The reason could be that structurally
there is a change in the system compared to the f 1.0 = 0 case,
and it may be the absence of isotropic nematic transition. Note
that the glass transition for the one-component ellipsoidal and

FIG. 11. (a) Snapshot of the monomeric prolate particle with p =
2 at φ = 0.5 as obtained from the simulation. (b) The snapshot of
the binary mixture of sphere and prolate p = 2 with the fraction of
sphere f 1.0 = 0.40. In both the systems we do not observe nematic
transition.

spherical particles is reported at a volume fraction greater than
0.5 [13,22].

To verify whether the nematic order is the only reason for
the observed enhancement in the diffusion coefficient for the
monomeric ER, we performed the simulation of a mixture of
spheres and prolate particles at p = 2. Note that for p = 2 the
isotropic-nematic transition is absent [59,60], which can also
be observed in the snapshot shown in Fig. 11(a) for φ = 0.5
and f 1.0 = 0. We have plotted the transnational diffusion co-
efficient of only the prolate and sphere system in the mixture
as a function of the total volume fraction φ in Fig. 12(a). The
translational diffusion coefficient of p = 2 of the ellipsoids
of one component crosses the corresponding sphere diffusion
coefficient for φ > 0.35. We have also confirmed that the
nematic order is not observed in this case. This implies that
the enhancement in diffusion coefficient happens due to the
anisotropic shape of the particles, and the nematic phase just
assists in the enhancement of the diffusion coefficient for the
higher volume fractions.

In Fig. 12(b) we have plotted the rotational diffusion coef-
ficient for the mixture at f 1.0 = 0.2. Here we observe that due
to the presence of spheres, for low φ the rotational diffusion
coefficient is higher than the one-component prolate system.
As the fraction of spheres increases, the prolate particle will
have more free space for rotation, compared to the one-
component prolate particle, at the same φ. When φ > 0.25,
we can observe that the rotational diffusion of all fractions
agrees with the f 1.0 = 0 case, as the crowding effect of the
spheres increases indicating that the free space to perform
rotational diffusion is equivalent to the one-component prolate
case.

IV. DISCUSSION AND CONCLUSION

Recently, Roller et al. [13], showed the existence of liquid
glass for monomeric ellipsoidal particles. To prevent the sys-
tem from undergoing an isotropic nematic transition, the walls
of the enclosed simulation box were made rough. They ob-
served that the rotational diffusion tends towards zero without
the nematic order. In the present paper, in the ellipsoid-sphere
binary system with f 1.0 = 0.2 we observe that the rotational
diffusion coefficient tends towards the one-component case

014602-8



ENHANCEMENT IN THE DIFFUSIVITY OF BROWNIAN … PHYSICAL REVIEW E 106, 014602 (2022)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

(a)

D
T
 / 

D
T

o

Φ

p = 1.0

2.0

f 1.0 = 1.0

0.6

0.2

0.0

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

(b)

D
R
 / 

D
R

o

Φ

f 1.0 = 0.0

0.2

0.6

FIG. 12. (a) De
T /Do

T shown for the spheres (dashed line) and
prolate particle (solid line) with aspect ratio 2.0 at different φ in the
binary mixture and the lines are guides to the eyes. The fraction of
sphere in the system is as shown in the figure. (b) De

R/Do
R is shown for

the ellipsoidal particles p = 2 in the binary mixture with the fraction
of the sphere as indicated in the figure. The solid line is a guide to
the eye.

for p = 4 at φ = 0.5. Note that in the one-component case the
nematic transition happens for φ > 0.43, while in the binary
system we have shown that the nematic transition is absent,
but still the rotational diffusion tends towards zero. Thus,
adding polydispersity in the form of a sphere, we might be
observing the liquid glass phase proposed by Roller et al. for
the dynamics of the ellipsoidal particle in the binary mixture.
When we further increase the fraction of sphere f 1.0 = 0.6,
the rotational diffusion is higher than the one-component case
exhibiting only liquidlike behavior for the ellipsoidal particle.

As we increase the fraction of the sphere in the binary
mixture, we observed that the nematic phase vanishes for the
particular φ. Similar kinds of phase behavior have also been
observed in the sphere-rod mixture [23] as well as for the
prolate-sphere mixture [25]. Using the density functional the-
ory, the same effect was observed by the authors of Ref. [26].
They also did not observe any demixing of the sphere and
ellipsoidal systems similar to those observed in the present
paper.

In the present paper, we were able to successfully extend
the Brownian cluster dynamics method to include ellipsoids,
which includes both prolate and oblate ellipsoidal particles.
The ellipsoidal particle considered has a constant volume π/6,
which is equivalent to a sphere of unit diameter. To identify
the overlap between different ellipsoids, we employed the
bounding box method where we enclose the ellipsoidal in a
rectangular box if and only if the boxes overlap; we employ
the ellipsoidal contact function to verify the ellipsoids overlap.
If overlap is detected, we reject that particular movement
step. The translational dynamics of ellipsoids is implemented
by moving the center of mass of the ellipsoids in a random
direction. The diffusions along the direction parallel to the
symmetry axis and perpendicular to the symmetry axis are
chosen according to Perrin’s factor, which was solved for the
stick boundary condition [47]. In order to mimic the rotational
dynamics we employ the quaternion method to rotate the ori-
entation vector along the long axis of the ER by using Perrin’s
factor for the rotation. In the present paper, one unit of time
is defined as the time taken by a sphere of unit diameter and
volume π/6 to travel its own diameter.

One of the drawbacks of the method is that the step size
we choose should be smaller than the interparticle distance
to define the diffusion properly. For a larger step size, we
induce a lot of collision with the neighboring particle, thereby
reducing the diffusion coefficient of the system. For a smaller
step size, the physical time over which we can explore the sys-
tem reduces. We have shown that the diffusion coefficient of
the dilute system agrees with the analytical equation given by
Perrin et al. [47], confirming our definition of time is correct.
The isodiffusivity line for the ellipsoidal particle as a function
of volume fraction was predicted to have a swallowlike shape
by event-driven molecular dynamics, which agrees with our
method as well. Although the absolute values of the diffusion
coefficient do not match because of the way the diffusion is
defined in both cases, except for the sphere where both meth-
ods yield the same result. We have also extended the BCD
method to incorporate the binary ellipsoid and sphere systems.
Here, we observe that even though the diffusion of a single
sphere is faster than that of ellipsoids, the diffusion coefficient
of ellipsoids is higher than that of the corresponding sphere at
p = 4 and 2 for a larger volume fraction. It was also shown
that the reason for the increase in the diffusion coefficient
is due to the particle asymmetry, and the isotropic nematic
transition only enhances the absolute value of the diffusion
coefficient. In the binary mixture, we have shown that as the
fraction of spheres increases, nematic ordering starts breaking
in the region close to the sphere. It leads to a gradual decrease
in the order parameter and finally to the isotropic phase, as
shown in the phase diagram. We also calculated the diagram
of the isotropic nematic phase, where we observed that as the
fraction of spheres increases, φ also has to be increased to
maintain the nematic phase. It will be interesting to study the
nematic phases of a mixture of ellipsoids, where both particles
undergo nematic transition for a range of fractions.
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