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Stokes traction on an active particle
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The mechanics and statistical mechanics of a suspension of active particles are determined by the traction
(force per unit area) on their surfaces. Here we present an exact solution of the direct boundary integral
equation for the traction on a spherical active particle in an imposed slow viscous flow. Both single- and
double-layer integral operators can be simultaneously diagonalized in a basis of irreducible tensorial spherical
harmonics and the solution, thus, can be presented as an infinite number of linear relations between the harmonic
coefficients of the traction and the velocity at the boundary of the particle. These generalize Stokes laws for the
force and torque. Using these relations we obtain simple expressions for physically relevant quantities such as
the symmetric-irreducible dipole acting on, or the power dissipated by, an active particle in an arbitrary imposed
flow. We further present an explicit expression for the variance of the Brownian contributions to the traction on
an active colloid in a thermally fluctuating fluid.
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I. INTRODUCTION

A passive colloidal particle produces flow in the ambient
fluid when it translates or rotates. In contrast, an active particle
can produce a flow even when stationary [1–5]. Examples in-
clude microorganisms [6] and autophoretic particles [4]. The
exterior flow of active particles is due to local nonequilibrium
processes such as ciliary motion (in the case of microorgan-
isms) and osmotic flows (in the case of autophoretic particles).
These nonequilibrium processes, when confined to a thin layer
at the surface of the particles, can be modeled by adding
a surface slip vA to the commonly used no-slip boundary
condition on particle surfaces [7–9]. The surface slip sets the
ambient fluid in motion, causing stresses that react back on the
particle. For a rigid particle, these integrate to a net force and
a net torque on the particle center of mass. Since fluid inertia
is negligible at the colloidal scale, fluid motion is governed by
the Stokes equation. The solution of the Stokes equation with
prescribed velocity boundary conditions provides the stress
in the fluid and, when evaluated on the particle, the traction
(force per unit area) [10–17]. The boundary integral formu-
lation of the Stokes equation provides an alternative route to
obtaining the traction that obviates the need to solve for the
fluid flow in the bulk [18–21]. Instead, it provides a direct
linear integral relation between quantities that are defined
only at the boundaries, namely the traction and the velocity
boundary condition. The boundary integral formulation has
been used extensively to describe the dynamics of passive col-
loidal particles [22–26] and, more recently, of active colloidal
particles [27–30].

*gt369@cam.ac.uk

Despite the large body of work on the integral equation ap-
proach to active particle dynamics, the simplest problem of
a single active sphere in an unbounded fluid has not been
solved exactly. Apart from its intrinsic theoretical interest,
such a solution is of potential use in numerical solutions of
the boundary integral equation for many particles, where nu-
merical iterations can be initialized with the exact one-particle
solution. It is known that discretizations of boundary integral
equations for this class of problems leads to diagonally dom-
inant linear systems and the one-particle solution is the exact
solution when hydrodynamic interactions are ignored. This
suggests that iterations initialized at the one-particle solution
can converge rapidly to the diagonally dominant numerical
solutions [30].

In this paper we solve the direct boundary integral equa-
tion exactly for the traction on a spherical active particle in
an unbounded fluid. Expansion in a complete basis followed
by the minimization of the residual is a convenient strategy
for solving linear integral equations. In this so-called Ritz-
Galerkin procedure [28,31,32], a basis that yields a diagonal
linear system is particularly useful as the system, then, is triv-
ially soluble. The direct boundary integral equation contains
a pair of integral operators—the single-layer and double-layer
operators—and it is not obvious that a basis that diagonalizes
one operator will necessarily diagonalize the other. Here we
show that the basis of tensorial spherical harmonics (TSH)
simultaneously diagonalizes both the single-layer and double-
layer integral operators and, in this sense, provides the most
appropriate choice of basis. The boundary integral equation is
reduced, thereby, to an infinite-dimensional diagonal linear
system that can be solved trivially. We obtain compact, closed-
form linear relations between the harmonic modes of the
traction and the boundary velocity. The first two of these are
the familiar Stokes laws for the force and torque of a spherical
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particle of radius b in rigid body motion in an unbounded
fluid of dynamic viscosity η containing the scalar friction
coefficients 6πηb and 8πηb3, respectively [10,33].

In what follows, we present our solution and some im-
plications thereof in detail. In Sec. II we discuss our main
findings—exact linear relations between the traction and the
boundary velocity on an active particle in an imposed flow in
terms of scalar generalized friction coefficients. We refer to
these relations as generalized Stokes laws and emphasize that
the friction coefficients due to imposed flow and activity are
distinct. We then turn towards their derivation in Sec. III. We
briefly recall the boundary integral representation of Stokes
flow for three distinct contributions to the traction on the
surface of an active particle in an imposed flow. These are
(a) rigid body motion, (b) imposed flow, and (c) active slip.
Using spectral expansions and Ritz-Galerkin discretization
of the boundary integral equations we derive an exact solu-
tion thereof in terms of matrix elements of the single- and
double-layer integrals. These matrix elements are found to
diagonalize simultaneously in a basis of TSH. The resulting
linear system of equations is thus solved trivially to find the
generalized Stokes laws. In Sec. IV we discuss a number of
applications of our findings. First, we derive an expression
relating the expansion coefficients of the imposed flow, ex-
panded in TSH on the surface of the sphere, with its Taylor
expansion about the center of the particle, and thus relate our
work to the generalized Faxén relations [34]. We then discuss
the symmetric-irreducible dipole on an active particle in an
imposed straining flow. In terms of the previously derived fric-
tion coefficients we then obtain an expression for the power
dissipated by an active particle. Finally, we present an explicit
expression for the variance of the Brownian contributions to
the traction on an active colloid in a thermally fluctuating
system. We conclude in Sec. V by summarizing our results,
putting them into context with previous work, and suggesting
directions for future research.

II. RESULTS

In this section we briefly outline our main results for the
traction on an active colloidal particle due to the most general
form of surface velocity and arbitrary imposed flow v∞(r).
We consider a spherical active particle of radius b in an in-
compressible fluid of viscosity η. The boundary condition at
the surface of the particle is

v(R + ρ) = V + � × ρ + vA(ρ) = vD(ρ) + vA(ρ). (1)

The rigid body motion vD is specified by the translational
velocity V and angular velocity � of the particle. Here, R is
the center of the colloid, ρ is its radius vector, and vA is its
active slip velocity. The only restriction on the active slip is
that it conserves mass in the fluid, i.e.,∫

ρ̂ · vA dS = 0, (2)

where S is the surface of the colloid and ρ̂ is the unit normal
vector to the surface of the colloid, pointing into the surround-
ing fluid.

It is convenient to express the traction on the particle as a
sum of three distinct contributions:

f = fD + f ∞ + fA. (3)

Here, fD is the traction due to the colloid’s rigid body motion
vD alone, f ∞ represents the traction on a no-slip particle
when held stationary in an imposed flow v∞, and fA is the
contribution from active surface slip vA; see Appendix A.

In order to parametrize the surface fields on the boundary
of the active particle, we expand the velocity and the traction
at the colloid’s surface in tensorial spherical harmonics (TSH)
Y (l )(ρ̂) as

vλ(R + ρ) =
∞∑

l=1

wlV λ(l ) � Y (l−1)(ρ̂),

f λ(R + ρ) =
∞∑

l=1

w̃lFλ(l ) � Y (l−1)(ρ̂), (4)

where λ ∈ {D,∞,A}, and

wl = 1

(l − 1)!(2l − 3)!!
, w̃l = 2l − 1

4πb2
. (5)

The product � represents a maximal contraction of indices
between two tensors. The TSH are defined as

Y (l )
α1...αl

(ρ̂) = (2l − 1)!!�(l )
α1...αl ,β1...βl

ρ̂β1 . . . ρ̂βl

= (−1)l ρ l+1 ∇α1 . . . ∇αl

1

ρ
, (6)

with ρ = ‖ρ‖2, where ‖ · ‖2 is the Euclidean norm and �(l ) is
a rank 2l tensor, which projects a tensor of rank l onto its
symmetric and traceless part. Excellent summaries of their
properties and the identities they obey are available in the
literature [12,13,35].

By definition, Fλ(l ) and V λ(l ) are symmetric irreducible
in their last l − 1 indices, and thus can each be ex-
pressed as the sum of three irreducible tensors, Fλ(lσ ) and
V λ(lσ ), with the index σ ∈ {s, a, t} labeling the symmetric-
irreducible (rank l), the antisymmetric (rank l − 1), and the
trace (rank l − 2) parts of the reducible tensors, respec-
tively [35]. This decomposition and the projection of the
expansion coefficients onto their irreducible subspaces are
given by

Fλ(l ) = D(lσ ) � Fλ(lσ ), Fλ(lσ ) = P(lσ ) � Fλ(l ), (7)

respectively, with analogous expressions for the velocity co-
efficients. Repeated mode indices (lσ ) are summed over
implicitly for the decomposition operators D(lσ ). Both the
decomposition operators and the projection operators are ex-
plicitly defined in Sec. III C.

As derived in Secs. III B and III C, the generalized Stokes
laws for an isolated active particle in an unbounded domain
are

FD(lσ ) = −γlσ VD(lσ ), F∞(lσ ) = γlσ V ∞(lσ ),

FA(lσ ) = −γ̂lσ VA(lσ ), (8)
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TABLE I. Chronology of analytical results for the traction on a single spherical particle in an unbounded Stokes flow. Here “active” implies
a sphere with active surface slip, while “passive” implies a sphere with no-slip, or alternatively a slip-stick boundary condition. In the latter,
passive case, slip must be interpreted as a passive feature, comparable to the slippage at a boundary of the fluid domain [39–41]. The two main
approaches to obtain higher order friction coefficients are (a) using Lamb’s general solution to obtain the flow field around a particle, from
which the stress tensor and thus the traction can be derived, and (b) solving the boundary integral equation (BIE) to obtain the traction directly.

Boundary condition Expansion basis Methodology

Stokes [10] No-slip (passive)

Lighthill [7] and
Blake [8]

Axisymmetric slip (active) Scalar harmonics Lamb’s general solution and scalar harmonic
expansion of boundary condition to
obtain coefficients of the expansion

Felderhof and Schmitz
[23,24,26]

Mixed slip-stick (passive) in
imposed flow

Vector spherical harmonics
(VSH)

BIE for a passive no-slip sphere.
Single-layer diagonalizes under VSH
(antenna theorems), obtained γ

Brunn [12,13] Mixed slip-stick (passive) in
imposed flow

Tensor spherical harmonics
(TSH)

Lamb’s general solution in terms of
multipole potentials, using boundary
conditions to find coefficients, obtained γ

Ghose and Adhikari [27] General slip TSH Indirect formulation of the BIE. Friction
tensors for the first few modes.

Pak and Lauga [14],
Pedley et al. [15,16]

General slip Scalar harmonics Extend Lighthill and Blake’s calculation to
include azimuthal slip using Lamb’s
general solution

This paper General slip TSH Direct formulation of the BIE, introduced in
[28,30]. Friction tensors for all modes due
to slip and imposed flow.

for which we can give the scalar generalized friction coefficients exactly to arbitrary order in l as

γls = 4πηb (2l + 1)

(l + 1)(l − 1)!(2l − 3)!!
, γla = 4πηb

(l − 1)!(2l − 3)!!
, γlt = 4πηb

(l − 2)(l − 1)!(2l − 5)!!
,

γ̂ls = 4πηb (2l2 + 1)

(l + 1)(l − 1)!(2l − 1)!!
, γ̂la = 4πηb (l + 1)

(l − 1)!(2l − 1)!!
, γ̂lt = 8πηb l

(l − 1)!(2l − 1)!!
. (9)

It should be noted that while the friction coefficients due
to imposed fluid flow (γlσ ) and those due to active surface
slip (γ̂lσ ) are equivalent for the modes of rigid body mo-
tion, see Sec. IV, they are in general distinct. The difference
is due to the double-layer integral in the boundary integral
equations (13). The friction coefficients γ1s, γ2s, and γ2a are
available in the literature in terms of a Taylor expansion of the
imposed flow about the center of the particle and referred to
as the Faxén relations [36–38]. On the other hand, our results
have been obtained in terms of expansion coefficients of the
imposed flow for arbitrary (lσ ). We derive a relation between
these two approaches in Sec. IV A. More generally, analogous
expressions to γlσ for arbitrary modes (lσ ) have been obtained
by various authors [12,13,23,24,26]; see Table I.

It is intuitive that in the unbounded domain the gener-
alized Stokes laws, expressing the linear relations between
the irreducible modes of the traction and the corresponding
modes of the boundary velocity, must be scalar relations due
to symmetry considerations. A visualization of this in terms
of the active slip velocity and the resulting hydrodynamic
traction due to a given (lσ ) mode is shown in Fig. 1.

III. DERIVATION

This section is dedicated to the derivation of the general-
ized Stokes laws, Eq. (8). We revisit the boundary integral
formulation of the Stokes equation and define the linearly in-
dependent boundary integral equations for the contributions to
the force per unit area (traction) on the particle due to (a) rigid
body motion, (b) imposed flow, and (c) active slip. We then
solve these boundary integral equations exactly, using spectral
expansions and Ritz-Galerkin discretization. The matrix ele-
ments of the resulting linear system of equations are solved for
in Fourier space and found to diagonalize simultaneously in a
basis of tensorial spherical harmonics. This diagonalization
results directly in the generalized Stokes laws.

A. Boundary integral formulation of the Stokes equation

We recall the boundary integral equation for a particle with
boundary conditions given by Eq. (1) in an imposed flow
v∞(r). Incompressibility of the fluid implies ∇ · v = 0. At the
colloidal scale, the fluid satisfies the Stokes equation, ∇ · σ =
0, with the Cauchy stress tensor σαβ = −pδαβ + η(∇αvβ +
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vA(2s) fA(2s) vA(3t) fA(3t)

vA(3a) fA(3a) vA(4a) fA(4a)

FIG. 1. Panels denoted by vA(lσ ) ( fA(lσ )) show the vector field plots of the slip (traction) due to an isolated (lσ ) mode of the expansion (4).
Here, the irreducible tensors V λ(lσ ) are naturally parametrized in terms of the TSH as follows: Vλ(ls) = V 0,λ

ls Y(l )(e), Vλ(la) = V 0,λ
la Y(l−1)(e),

and Vλ(lt ) = V 0,λ
lt Y(l−2)(e), where the uniaxial parametrizations are defined in terms of the orientation vector e of the active particle and V 0,λ

lσ

are the scalar strengths of the modes. From this parametrization, it follows that the Vλ(lσ ) are either even (apolar) or odd (polar) under inversion
symmetry e → −e with respect to the orientation of the particle. The figure shows the vector fields vA and fA due to the leading modes of
apolar (2s), polar (3t ), achiral (3a), and chiral (4a) symmetry. The fields have been plotted on the surface of the particle with orientation e
along the north pole. For clarity, we have lifted the vector field off the surface slightly, while its magnitude has been overlaid on the surface. It
follows directly from the scalar friction coefficients of the generalized Stokes laws (8) that both slip and traction exhibit the same symmetry.

∇βvα ), where p is the fluid pressure and δ is the Kronecker
delta. The boundary integral representation of the Stokes
equation is then used to write the flow produced by an active
particle in an imposed velocity field v∞(r) [18–22,25,28,42–
44], using the Einstein summation convention for repeated
Cartesian indices,

vα (r) = v∞
α (r) −

∫
Gαβ (r, r′) fβ (r′) dS

+
∫

Kβαν (r′, r)ρ̂ ′
νvβ (r′) dS,

r ∈ V, r′ = R + ρ′ ∈ S. (10)

An outline of the derivation of this classical result is presented
in Appendix A in the notation of this paper. In the above, V
indicates the volume of the surrounding fluid. The integral
kernels for the fluid velocity are the Green’s function G of
Stokes flow and the stress tensor K associated with it. Together
with the pressure field P they satisfy [43]

∇αGαβ (r, r′) = 0,

− ∇αPβ (r, r′) + η∇2Gαβ (r, r′) = −δ(r − r′)δαβ,

Kαβν (r, r′) = −δανPβ (r, r′)

+ η[∇νGαβ (r, r′) + ∇αGνβ (r, r′)], (11)

where the derivatives are taken with respect to the first ar-
gument; here ∇ = ∇r. Furthermore, the Green’s function
satisfies the symmetry Gαβ (r, r′) = Gβα (r′, r). By analogy
with potential theory, the terms in (13) containing the Green’s
function G and the stress tensor K are referred to as “single-
layer” integral and “double-layer” integral, respectively [45].

The traction f is the normal component of the Cauchy stress
tensor evaluated at the surface of the colloid. For r = R + ρ ∈
S being evaluated on the surface of the colloid, and thus
evaluating the double-layer integral as a principal value, we
have [18–22,25,28,42–44]

1

2
vα (r) = v∞

α (r) −
∫

Gαβ (r, r′) fβ (r′) dS

+
∫

Kβαν (r′, r)ρ̂ ′
νvβ (r′) dS, r, r′ ∈ S. (12)

This is a Fredholm integral equation of the first kind for the
unknown traction f , defined in Eq. (3). By linearity of Stokes
flow, the three distinct contributions to the traction satisfy
independent boundary integral equations. These are

vD
α (r) = −

∫
Gαβ (r, r′) f Dβ (r′) dS, (rigid body),

v∞
α (r) =

∫
Gαβ (r, r′) f ∞

β (r′) dS, (imposed flow),

1
2vA

α (r) = −
∫ {

Gαβ (r, r′) f Aβ (r′)

−Kβαν (r′, r)ρ̂ ′
νv

A
β (r′)

}
dS, (active slip).

(13)

In writing the rigid body part of Eq. (13), we have used the
well-known result that rigid body motion is an eigenfunction
of the double-layer integral operator with eigenvalue −1/2
[46] [see Eqs. (32) for a proof]. In the following, we shall
solve these integral equations to find the exact solution for the
Stokes traction on an active particle in an arbitrary imposed
flow given in (8).
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B. Exact solution of the boundary integral equation

To solve the integral equations (13) for the unknown sur-
face tractions, we parametrize the surface fields in terms of
TSH as prescribed in (4). We can use the orthogonality of the
basis functions,∫

Y(l )Y(l ′ )dS = δll ′
1

wl+1w̃l+1
�(l ), (14)

to obtain the expansion coefficients

V λ(l ) = w̃l

∫
vλ(R + ρ)Y (l−1)(ρ̂)dS,

Fλ(l ) = wl

∫
f λ(R + ρ)Y (l−1)(ρ̂)dS. (15)

Having expanded the boundary fields in (13) in an orthog-
onal basis, we use the Ritz-Galerkin method of minimizing
the residual to obtain a self-adjoint linear system for the
expansion coefficients [28,30]. By multiplying the boundary
integral equation by Y (l−1)(ρ̂) and integrating it over the sur-
face of the colloid we obtain the linear system of equations for
the velocity and traction coefficients,

VD(l ) = −G (l,l ′ ) � FD(l ′ ), (rigid body),

V ∞(l ) = G (l,l ′ ) � F∞(l ′ ), (imposed flow),

1
2VA(l ) = −G (l,l ′ ) � FA(l ′ ) + K(l,l ′ ) � VA(l ′ ), (active slip).

(16)

where the matrix elements G (l,l ′ ) and K(l,l ′ ) are due to the
single layer and double layer, respectively. These matrix el-
ements can be evaluated exactly for a spherical colloid in an
unbounded fluid. The two key identities necessary for this are
the expansion of the reducible symmetric tensor ρ̂α1 . . . ρ̂αl in
the TSH basis [35,47,48]

ρ̂α1 . . . ρ̂αl−1 = Y (l−1)
α1...αl−1

(2l−3)!!
+ 1

2l−3

×
∑

jk pairs

δα jαk

Y (l−3)
α1...α j−1α j+1...αk−1αk+1...αl−1

(2l−7)!!

+ O
(
Y (l−5)

)
, (17)

where the big O notation stands for terms involving compo-
nents of TSH of rank �l − 5, and the expansion of the plane
wave in the TSH basis

eik·ρ = 4πb2
∞∑

m=1

im−1wmw̃m jm−1(kρ)Y (m−1)(k̂) � Y (m−1)(ρ̂),

(18)
where jm(kρ) are spherical Bessel functions, ρ = ‖ρ‖2 =
b, and i = √−1 is the imaginary unit. For the one-body
problem, both the single- and double-layer integrals exhibit
singular kernels and thus the boundary integral equations
cannot simply be Taylor expanded as in [28,30,49,50]. How-
ever, exploiting translational invariance, we can solve them in
Fourier space. For this, we use the following Fourier represen-
tation of fields ϕ(r),

ϕ(s) =
∫

ϕ̂(k)eik·s dk
(2π )3

, ϕ̂(k) =
∫

ϕ(s)e−ik·sds. (19)

We now turn to the evaluation of the matrix elements.

1. Single-layer matrix element

The single-layer matrix element of Eq. (16) is given by

G (l,l ′ ) = w̃lw̃l ′

∫
Y (l−1)(ρ̂)G(r, r′)Y (l ′−1)(ρ̂′)dSdS ′,

r, r′ ∈ S. (20)

In an unbounded fluid we have for the Green’s function of
Stokes flow and its Fourier transform [43]

G(s) = 1

8πη

1

s
(δ + ŝŝ),

Ĝ(k) = 1

ηk2

(
δ − k̂k̂

) = 1

3ηk2

(
2δ − Y (2)(k̂)

)
, (21)

where s = ρ − ρ′, and we have used Eq. (17). Using the
Fourier transform, together with the plane wave expansion
(18) in the matrix element (20), we obtain

G (l,l ′ )
αν1...νl−1βκ1...κl′−1

=
∞∑

m,m′=1

τG
ll ′mm′

∫
dS Y (l−1)

ν1...νl−1
(ρ̂)Y (m−1)

μ1...μm−1
(ρ̂)

∫
dk jm−1(kb) jm′−1(kb)

×
∫

dS ′ Y (l ′−1)
κ1...κl′−1

(ρ̂ ′)Y (m′−1)
η1...ηm′−1

(ρ̂ ′)
∫

d�k Y (m−1)
μ1...μm−1

(k̂)k2Ĝαβ (k)Y (m′−1)
η1...ηm′−1

(k̂), (22)

where
∫

dS implies the integral over the surface of a sphere with radius b,
∫

d� the integral over the surface of a unit sphere,
and

∫
dk a scalar definite integral from 0 to ∞, and with

τG
ll ′mm′ = 2ηb4

π
im+3m′

w̃lw̃l ′wmwm′w̃mw̃m′ .

The integral over the pair of spherical Bessel functions can be found in [51]. With this, the results for surface integrals over outer
products of multiple TSH in [13], and the properties of the isotropic tensor � [12,13,35], we eventually obtain the result for the
single-layer matrix element

G (l,l ′ )
αν1...νl−1βκ1...κl′−1

= δll ′G (l )
0

[
δαβ�(l−1)

ν1...νl−1,κ1...κl−1
− l (2l − 1)

2(l − 1)(2l + 1)
�

(l )
αν1...νl−1βκ1...κl−1

]
. (23)

Here, G (l )
0 = (l − 1)2/(2πηbwl−1) and �

(l )
αν1...νl−1βκ1...κl−1

= �
(l )
ν1...νl−1α,βκ1...κl−1

+ �
(l )
ν1...νl−1β,ακ1...κl−1

.
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2. Double-layer matrix element

The double-layer matrix element of Eq. (16) is given by

K(l,l ′ ) = w̃lwl ′

∫
Y (l−1)(ρ̂)K(r′, r) · ρ̂′Y (l ′−1)(ρ̂′)dS dS ′, r, r′ ∈ S. (24)

In the unbounded domain the stress tensor corresponding to the Green’s function (21) and its Fourier transform are [43]

K(s) = − 3

4π

1

s2
ŝŝŝ, K̂(k) = 2i

k
[3(k̂δ)sym − k̂k̂k̂] = 2i

5k

[
9(Y (1)(k̂)δ)sym − 1

3
Y (3)(k̂)

]
, (25)

where s = ρ − ρ′, and the notation (. . . )sym implies a projection onto the symmetric part of the tensor, e.g., (ρ̂αρ̂ ′
β )sym =

1
2 (ρ̂αρ̂ ′

β + ρ̂β ρ̂ ′
α ). We have once again used Eq. (17). Using this Fourier transform and the plane wave expansion (18) in the

matrix element (24) the expression for the double-layer matrix element becomes

K (l,l ′ )
αν1...νl−1βκ1...κl′−1

=
∞∑

m,m′=1

τK
ll ′mm′

∫
dS Y (l−1)

ν1...νl−1
(ρ̂)Y (m−1)

μ1...μm−1
(ρ̂)

∫
dk k jm−1(kb) jm′−1(kb)

×
∫

dS ′ ρ̂ ′
ηY (l ′−1)

κ1...κl′−1
(ρ̂ ′)Y (m′−1)

η1...ηm′−1
(ρ̂ ′)

∫
d�k Y (m−1)

μ1...μm−1
(k̂)kK̂βαη(k)Y (m′−1)

η1...ηm′−1
(k̂), (26)

with

τK
ll ′mm′ = 2b4

π
im′+3mw̃lwl ′wmwm′w̃mw̃m′ .

Again, the relevant integral over spherical Bessel functions
can be found in [51]. Using the results for integrals over
multiple TSH obtained by Brunn [13], and the properties of
the � tensor, we find the double-layer matrix element after
lengthy manipulation,

K(l,l ′ )
αν1...νl−1βκ1...κl′−1

= δll ′K(l )
0

[
δαβ�(l−1)

ν1...νl−1,κ1...κl−1

− 2l

2l + 1
�

(l )
αν1...νl−1βκ1...κl−1

]
, (27)

where K(l )
0 = 3/(4l − 6).

C. Diagonalization of the linear system of equations

In the following, we explicitly define the irreducible rep-
resentation of the coefficients of the boundary velocity and
traction in (7). We then use this to project the linear system
(16) onto its irreducible subspaces. By doing so, the linear
system diagonalizes and thus can be solved trivially. This
results directly in the generalized Stokes laws in Eq. (8).

As is evident from the single-layer, Eq. (23), and double-
layer, Eq. (27), matrix elements, the linear system (31)
naturally diagonalizes in the modes (l ) of the expansion co-
efficients. We will now show that it is in fact diagonal in all
its irreducible subspaces. First, we define the decomposition
operators used in Eq. (7) as

[D(ls) � Fλ(ls)]αν1...νl−1
= �

(l )
αν1...νl−1,βκ1...κl−1,

Fλ(ls)
βκ1...κl−1

,

[D(la) � Fλ(la)]αν1...νl−1
= − l − 1

l
�(l−1)

ν1...νl−1,κ1...κl−1

× εακ1βFλ(la)
βκ2...κl−1

,

[D(lt ) � Fλ(lt )]αν1...νl−1
= 2l − 3

2l − 1
�(l−1)

ν1...νl−1,κ1...κl−1
δακ1 Fλ(lt )

κ2...κl−1
,

(28)

with the corresponding projection operators P(lσ )

[P(ls) � Fλ(l )]βκ1···κl−1 = �
(l )
βκ1···κl−1,σμ1...μl−1

Fλ(l )
σμ1...μl−1

,

[P(la) � Fλ(l )]λκ2...κl−1 = �
(l−1)
λκ2...κl−1,μη2...ηl−1

εμβαFλ(l )
αβη2...ηl−1

,

[P(lt ) � Fλ(l )]κ2...κl−1 = δμλFλ(l )
μλκ2...κl−1

. (29)

Here, ε is the Levi-Civita tensor and δ is the Kronecker delta.
With this we can define what we call the “irreducible matrix
elements”

G (lσ,l ′σ ′ ) = P(lσ ) � G (l,l ′ ) � D(l ′σ ′ ),

K(lσ,l ′σ ′ ) = P(lσ ) � K(l,l ′ ) � D(l ′σ ′ ). (30)

Using these in the linear system (16), the result is a self-
adjoint linear system in the irreducible expansion coefficients,

VD(lσ ) = −G (lσ,l ′σ ′ ) � FD(l ′σ ′ ), (rigid body),

V ∞(lσ ) = G (lσ,l ′σ ′ ) � F∞(l ′σ ′ ), (imposed flow),

1
2VA(lσ ) = −G (lσ,l ′σ ′ ) � FA(l ′σ ′ )

+ K(lσ,l ′σ ′ ) � VA(l ′σ ′ ), (active slip).
(31)

Inserting the matrix elements (23) and (27), together with
the definitions of the decomposition (28) and projection (29)
operators, into Eq. (30), it is straightforward to show that

G (lσ,l ′σ ′ ) � Fλ(l ′σ ′ ) = δll ′δσσ ′ glσ Fλ(lσ ),

K(lσ,l ′σ ′ ) � V λ(l ′σ ′ ) = δll ′δσσ ′ klσV λ(lσ ). (32)

Here, the scalar l-dependent coefficients glσ and klσ are

gls = l + 1

2l + 1
gla, gla = 1

4πηbwl
, glt = l − 2

2l − 3
gla,

kls = 1

2l + 1
kla, kla = − 3

2(2l − 1)
, klt = − 1

2l − 3
kla.

(33)

It is worth noting that both single- and double-layer irre-
ducible matrix elements vanish identically for nondiagonal
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combinations of modes (lσ, l ′σ ′), i.e., when lσ 
= l ′σ ′, apart
from (lσ, l ′σ ′) = (lt, la). However, upon contraction with an
irreducible tensor these too vanish, i.e., G (lt,la) � F (la) = 0
and K(lt,la) � V (la) = 0. Thus the linear system arising from
(13) is diagonal not only in (l ), but also in all its irreducible
subspaces labeled by (lσ ).

Using this diagonal solution for the linear system (31),
we can straightforwardly write down the generalized Stokes
laws in (8) for an isolated active particle in an unbounded
domain. To summarize, we have derived exact expressions for
the friction coefficients γlσ and γ̂lσ due to imposed flow and
active surface slip, obtained using the direct formulation of the
boundary integral equation.

IV. APPLICATIONS

In this section we briefly discuss some applications of the
above results. First, the connection of our results with the
generalized Faxén relations are made explicit. Subsequently,
we express the irreducible expansion coefficients V λ(lσ ) and
Fλ(lσ ) in terms of standard physical quantities. In doing so, we
make the observation that the symmetric-irreducible dipole on
the particle depends on whether it is strained by its active
surface slip or by an imposed shear flow. We then obtain
a simple expression for the power dissipation of an active
colloid in an imposed flow in terms of the generalized friction
coefficients in (9) and the modes V λ(lσ ). Finally, we consider
thermal fluctuations in the fluid and the associated traction
modes acting on the particle. Using the diagonalization of the
matrix elements in a basis of TSH (32) and the results in [29]
on fluctuating hydrodynamics, we give an explicit expression
for the variance of the fluctuation traction modes.

A. Generalized Faxén relations

Here, we derive the relation between a Taylor expansion
of the imposed flow about the center of the particle and its
expansion coefficients. The derivation for a similar relation
regarding the boundary integral of the Green’s function can
be found in [28]. The expansion coefficients V ∞(l ) are defined
in (15). The Taylor expansion of the imposed flow about the
center of the sphere is given as

v∞(R + ρ) =
∞∑

l=1

1

(l − 1)!
(ρ · ∇)(l−1)v∞(R + ρ)|ρ=0,

where we have defined

(ρ · ∇)(l−1) = ρα1ρα2 . . . ραl−1∇α1∇α2 . . . ∇αl−1 .

Using (17) we can write this in terms of TSH

(ρ · ∇)(l−1)

= bl−1

⎡
⎣Y (l−1) � ∇(l−1)

(2l − 3)!!
+ 1

2l − 3

×
∑

jk pairs

Y (l−3) � ∇(l−3)∇2

(2l − 7)!!
+ O

(
Y (l−5) � ∇(l−5)

)⎤⎦.

Due to orthogonality of the TSH, only two terms remain upon
integration over the surface of the sphere in the definition of

the expansion coefficients (15). In the irreducible subspaces,
therefore, a Taylor expansion of the imposed flow and its
expansion coefficients are related as

V ∞(lσ ) = P(lσ ) �
[

bl−1�(l−1)

(
1 + b2

4l + 2
∇2

)
∇(l−1)v∞

]
R
.

(34)

Here [. . . ]R denotes that the function inside the bracket is
evaluated at the center R of the particle. In this paper, we have
used the approach to expand the boundary fields in TSH for
both imposed flow and active surface slip. It should be noted
that a corresponding Taylor expansion about the center of the
particle is not possible for the active slip which is only defined
at the surface of the particle. Using a different method, Brunn
[34] has obtained relations analogous to (34) and termed them
Faxén relations.

B. Symmetric-irreducible dipole and stresslet

With (15) and (7) the irreducible expansion coefficients are
readily expressed in terms of commonly used physical quan-
tities. The rigid body motion velocity expansion coefficients
VD(lσ ) only have two nonvanishing modes, corresponding
to translational velocity V = VD(1s) and rotational velocity
� = VD(2a)/2b, with VD(lσ ) = 0 ∀ lσ /∈ {1s, 2a}. Similarly,
the first two modes of the imposed flow are V ∞(1s) = V ∞

and V ∞(2a) = 2b�∞, while the first two modes of activity
are VA(1s) = −VA and VA(2a) = −2b�A. Here, the active
translational velocity VA and the active angular velocity �A

of a spherical active particle [27,52,53] are given by

VA = − 1

4πb2

∫
vA(ρ)dS,

�A = − 3

8πb4

∫
ρ × vA(ρ)dS. (35)

We also define the rate of strain dyadic Eλ = V λ(2s)/b, due to
activity or imposed flow, as

Eλ
αβ = 3

8πb

∫ (
ρ̂αvλ

β + vλ
αρ̂β

)
dS. (36)

Analogously, we identify the most commonly used traction
tensors produced by the corresponding velocity fields

Fλ(1s) = Fλ, Fλ(2a) = 1

b
T λ, Fλ(2s) = 1

b
Sλ, (37)

where F, T , and S are the familiar hydrodynamic force and
torque and the symmetric-irreducible second moment of the
traction, the symmetric-irreducible dipole. The latter is

Sλ
αβ =

∫ [
1

2

(
f λ
α ρβ + f λ

β ρα

) − δαβ

3
f λ
ν ρν

]
dS. (38)

We note that this is different from the combination of traction
and velocity (2s) mode, first introduced by Landau and Lif-
shitz [11], and subsequently called the stresslet by Batchelor
[54] and derived by various authors since, where more recent
derivations include [49,50,55,56]. While Batchelor’s stresslet
is defined as the contribution of a particle to the bulk stress,
the above, Sλ, describes the hydrodynamic stress experienced
by the particle itself, either due to its active surface slip or due
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to an imposed shear flow. In particular, we want to draw the
attention of the reader to the differing symmetric-irreducible
dipoles acting on the colloid, depending on whether an im-
posed straining flow E∞ or a straining flow due to the active
surface slip EA is applied:

S∞ = 20πηb3

3
E∞, SA = −4πηb3EA. (39)

This result is readily explained by the contribution of the
double-layer integral in (13) for the active surface slip veloc-
ity. Using the above correspondences between the irreducible
modes and the velocity (angular velocity) and the force

(torque) in the generalized Stokes laws (9) we correctly re-
cover Stokes law for the translation (rotation) of a spherical
object in a viscous fluid with a friction coefficient of 6πηb
(8πηb3).

C. Power dissipation

The power dissipation in the volume of the fluid is Ė =∫
σ : (∇v) dV [11]. Using the divergence theorem to rewrite

this as an integral over the surface of the sphere, we obtain for
the power dissipation due to an active colloid in an imposed
flow

Ė =
∑
λ,λ′

(
γ λ

ls V λ(ls) � V λ′(ls) + 2

2l − 3

(
l − 1

l

)2

γ λ
la V λ(la) � V λ′(la) + 2l − 3

2l − 1
γ λ

lt V λ(lt ) � V λ′(lt )

)
,

where γ λ
lσ =

{
γlσ , for λ ∈ {D,∞},
γ̂lσ , for λ = A . (40)

Here, we sum over both, λ, λ′ ∈ {D,∞,A}, while the sum
over the existing modes (lσ ) is left implicit. In obtaining
this result, we have used the generalized Stokes laws (8).
It correctly follows that Ė � 0, i.e., the power dissipation is
always positive definite. It is readily checked that we recover
the correct result for the power dissipation due to rigid body
motion, ĖD = 6πηbV · V + 8πηb3 � · �. In Appendix B we
simplify the result for the power dissipation due to active slip
only, ĖA, further by making use of the uniaxial parametriza-
tion introduced in the caption of Fig. 1.

D. Fluctuating hydrodynamics

So far, we have ignored the role of thermal fluctuations in
the fluid. At a nonzero temperature kBT , considering thermal
fluctuations of the surrounding fluid, we must rewrite Eq. (3)
as

f = fD + f ∞ + fA + fB, (41)

where the term fB now captures the fluctuating contribu-
tion to the traction [57–61]. By linearity of Stokes flow, this
contribution can be solved for independently. The Brownian
traction is a zero-mean Gaussian random variable and so it
is of particular interest to find an explicit expression for its
variance. Using the fluctuation-dissipation relation, and an
expansion of fB in TSH analogous to (4), [29] have found a
formal expression for the variance of the irreducible fluctuat-
ing traction modes FB(lσ ) by “projecting out” the fluid using
the boundary-domain integral representation of Stokes flow.
We can now use the results of Sec. III C to write the variance
of these zero-mean Gaussian random modes explicitly for an
active colloid in an unbounded thermally fluctuating system.
The explicit form of the variance for the fluctuating traction is
then

〈FB(lσ )(t )FB(l ′σ ′ )(t ′)〉 = δll ′δσσ ′ 2kBT δ(t − t ′)

⎧⎪⎪⎨
⎪⎪⎩

γls�
(l ), for σ = s,

2l−3
2

(
l

l−1

)2
γla �(l−1), for σ = a,

2l−1
2l−3 γlt �(l−2), for σ = t,

(42)

where γlσ are the scalar friction coefficients in (9). With this
we readily recover the well-known variances for the Brownian
force and torque [61,62]. Canonically denoting the moments
of the fluctuating traction by the superscript λ = B, we obtain〈

FB
α (t )FB

β (t ′)
〉 = 2kBT 6πηb δαβδ(t − t ′),〈

T B
α (t )T B

β (t ′)
〉 = 2kBT 8πηb3 δαβδ(t − t ′).

Furthermore, we give the variance of the fluctuating
symmetric-irreducible dipole

〈
SB

αβ (t )SB
γ κ (t ′)

〉 = 2kBT
10πηb3

3

×
(

δαγ δβκ + δακδβγ − 2

3
δαβδγ κ

)
δ(t − t ′).

V. CONCLUSION AND OUTLOOK

We used the direct boundary integral formulation of the
Stokes equation and Ritz-Galerkin discretization in a basis
of tensorial spherical harmonics to simultaneously diagonal-
ize the single-layer and double-layer integral operators and,
thereby, obtain an exact solution for the traction on a spherical
active particle in an unbounded fluid. The central result of
this paper, Eq. (8), are expressions for the linear response of
an arbitrary traction mode to a forcing by the corresponding
mode of the active slip and the imposed flow. We call these
linear relations generalized Stokes laws.

The boundary integral formulation of Stokes flow, spectral
expansion of the surface fields in a basis of polynomi-
als, scalar or vector spherical harmonics, and Ritz-Galerkin
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discretization are classical methods in computing the slow
viscous flows of colloidal particles [22–26,63–65]. It is then
worthwhile to compare our main results in Secs. III B and III C
to related work in the literature. In Table I we have listed some
important contributions in chronological order that have (a)
analytically obtained the traction on a single spherical particle
in unbounded Stokes flow or (b), alternatively, obtained the
flow field around such a particle, from which the stress tensor
and thus the traction can be derived. This list by no means is
exhaustive and is meant as a chronological overview, rather
than a collection of every relevant contribution to the field.
The present paper fits into the context of other related previ-
ous work by some of the authors [28,30] as follows. Despite
the treatment of rather general problems, such as many-body
problems in arbitrary confining geometries, the simplest pos-
sible system of a single active colloid in an unbounded and
arbitrary imposed flow was not solved. In particular, it was not
known whether the single- and double-layer integral operators
could be diagonalized simultaneously in a basis of TSH. The
present work completes these developments that follow from
[28,30].

In future work, we will extend our calculations to obtain
explicit results for the traction on an active particle near
surfaces such as an infinite plane no-slip wall or fluid-fluid
interface [23,24,29,64,66–73]. The exact one-body solution
presented here will be particularly useful in obtaining effi-
cient iterative numerical solutions of the boundary integral
equation for many particles [25,28,49,50,71,74–77]. In this
case, the one-body solution can be used to initialize iterations
that converge to the diagonally dominant numerical solutions
[30]. The complete set of modes of the traction derived here
can also be used to study the rheology of active suspensions
[12,54,78]. In a many-body setting, using TSH as a basis for
expansion of the surface fields has the additional advantage

of the basis functions and the expansion coefficients being
irreducible with respect to rotations [79,80]. This allows for
the simplified use of the rotation based fast multipole method
(FMM) in summing long-ranged harmonics [81–84]. So far,
our approach is limited to spherical particles. There exist a
number of papers that have extended related analyses to close-
to-spherical [13], ellipsoidal [55], and arbitrarily shaped parti-
cles [22,53,56,85], the latter of which tend to use either the re-
ciprocal theorem to obtain quite general results, or numerics.
In future work, we will aim to extend our results of arbitrary
order to more complex particle shapes. All of these directions
present exciting avenues for future work on the mechanics and
statistical mechanics of active colloidal suspensions.
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APPENDIX A: DERIVATION OF THE BOUNDARY
INTEGRAL REPRESENTATION IN AN IMPOSED FLOW

Starting from the well-known integral representation of the
Stokes equation in the absence of any background flow [20]

v′
α (r) = −

∫
Gαβ (r, r′) fβ (r′) dS +

∫
Kβαν (r′, r)ρ̂ ′

νv
′
β (r′) dS, r ∈ V, r′ = R + ρ′ ∈ S, (A1)

we follow the derivations in [43,44] for a situation involving
an undisturbed imposed velocity field v∞(r). In this case, v′
can be interpreted as a disturbance field due to the colloid
being present in the fluid. We can thus write v′ = v − v∞,

with v now being the true velocity field. We can use the
Lorentz reciprocal theorem [19]

∇ · (v∗ · σ∞ − v∞ · σ∗) = 0, (A2)

for the regular imposed flow v∞ and an arbitrary regular flow
v∗, with associated stress tensors σ∞ and σ∗, respectively, to
further simplify the result. Choosing v∗ to be the flow due to
a Stokeslet of strength g located at r we have the fundamental
solution of the Stokes equation

v∗(r′) = G(r′, r) · g, σ∗(r′) = K(r′, r) · g.

Using this in the reciprocal theorem gives

∇ · (G(r, r′) · σ∞ − v∞ · K(r′, r)) = 0. (A3)

Choosing r to lie outside the (arbitrary) fluid domain V and
noting that the above expression in brackets is then regular in
V , we can integrate this over V and use the divergence theorem
to convert it into a surface integral over the bounding surface
of the chosen fluid domain, which in our case is the surface of
the colloid, to obtain

∫
(G(r, r′) · σ∞ − v∞ · K(r′, r)) · ρ̂′ dS = 0.

Writing f ∞ = ρ̂ · σ∞ on the surface of the sphere, we have
the identity

∫
(G(r, r′) · f ∞ − v∞ · K(r′, r) · ρ̂′) dS = 0.
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This yields the boundary integral representation (10),

vα (r) = v∞
α (r) −

∫
Gαβ (r, r′) fβ (r′) dS +

∫
Kβαν (r′, r)ρ̂ ′

νvβ (r′) dS, r ∈ V, r′ = R + ρ′ ∈ S. (A4)

Here, we can also define the three contributions to the
traction in Eq. (3) as follows. Consider the boundary integral
equation, Eq. (12), for a rigid body with boundary condition
v(R + ρ) = V + � × ρ = vD(ρ). We use that rigid body mo-
tion is an eigenfunction of the double-layer integral operator
with eigenvalue −1/2 [46] to obtain

vD(r) = v∞(r) −
∫

G(r, r′) · f (r′) dS.

If the rigid body is held stationary, i.e., vD = 0, in the im-
posed flow we have

v∞(r) =
∫

G(r, r′) · f ∞(r′) dS,

which defines f ∞ as the traction necessary to keep a rigid
body stationary when exposed to an imposed flow v∞(r).
Using the linearity of Stokes flow, we can write for a non-
stationary rigid particle

vD(r) = v∞(r) −
∫

G(r, r′) · ( fD(r′) + f ∞(r′)) dS.

Let us now look at an active particle with boundary condition
given by (1). Following the same steps as above we obtain

vD(r) + 1

2
vA(r) = v∞(r)

−
∫

G(r, r′) · (
fD(r′) + f ∞(r′) + fA(r′)

)
dS

+
∫

vA(r′) · K(r′, r) · ρ̂′ dS,

with fA the traction caused by the active slip. By linear-
ity, this equation contains the three independent boundary
integral equations (12). As can be seen from this derivation,

the boundary integral equations for the imposed background
flow v∞ and activity vA, with the present definitions of the
three distinct contributions to the traction as in (3), cannot be
written in equivalent form. This possibly unintuitive result has
been noted before in [30], although without derivation.

APPENDIX B: POWER DISSIPATION
FOR UNIAXIAL SLIP FLOW

With the uniaxial parametrization introduced in the caption
of Fig. 1 we can rewrite the power dissipation due to activity
ĖA in the following way. We have

VA(ls) � VA(ls) = (
V 0,A

ls

)2
Y (l )(e) � Y (l )(e), (B1a)

VA(la) � VA(la) = (
V 0,A

la

)2
Y (l−1)(e) � Y (l−1)(e), (B1b)

VA(lt ) � VA(lt ) = (
V 0,A

lt

)2
Y (l−2)(e) � Y (l−2)(e), (B1c)

and with the orthogonality relation of TSH (14) and the iden-
tity �(l )

μ1...μl ,μ1...μl
= 2l + 1 [12] one can show that

Y (l )(e) � Y (l )(e) = 1

wl+1
. (B2)

Thus the power dissipation in terms of the friction coefficients
and the strengths of the slip modes is

ĖA = γ̂ls

wl+1

(
V 0,A

ls

)2 + 2

2l − 3

(
l − 1

l

)2
γ̂la

wl

(
V 0,A

la

)2

+ 2l − 3

2l − 1

γ̂lt

wl−1

(
V 0,A

lt

)2
, (B3)

implicitly summing over all slip modes that are present. With
this we can compute the power dissipated by any isolated
mode of slip, which is potentially useful in optimization prob-
lems such as the question for the most efficient way to swim
for a certain microorganism [7,88,89].
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