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Tensile strength of rubber described via the formation and rupture of load-bearing polymer chains
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A theoretical picture describing the tensile strength σT of elastomers is developed. σT is composed of three
factors: (1) the tensile strength of individual polymer load-bearing chains (LBCs) according to Eyring’s theory,
(2) an occupation number of LBC states using Fermi statistics, and (3) an excluded volume factor reducing the
number of possible LBCs due to the presence of filler particles or crosslinks between polymers. This description
is compared to experimental tensile strengths of carbon black (N339)-filled EPDM (Keltan 4450) as well as to
other experiments in the literature studying the effects of temperature, filler concentration, and particle size as
well as crosslink density.
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I. INTRODUCTION

Filled rubbers are exceedingly complex materials whose
chemo-physical behavior results from a multitude of mech-
anisms spanning wide ranges on the spatial and temporal
scales. Construction of quantitative theories describing this
behavior or predicting useful novel properties in response to
changes in composition is nearly impossible. Faced with this
predicament the goal should be the development of qualitative
theories, including as many of the relevant variables as possi-
ble, in order to understand and utilize the interdependencies
between variables and their effect on rubber properties. Here
we focus on such a theory for tensile strength of filled rubber.

The tensile strength of rubber composites began to be a
focus of theoretical work in “soft matter physics” in the 1940s
and by the 1950s and early 1960s a number of theories had
been developed [1–3]. Bueche’s work certainly is the most
detailed on the subject during this period. The key elements
of his theories are highly strained polymer chains and the hi-
erarchical load transfer to secondary chains when the primary
chains rupture. Subsequently, however, it seems, systematic
theoretical work subsided and was replaced by more quali-
tative discussions (see, for instance, Dannenberg’s excellent
review [4]), and no unifying theoretical picture has emerged
thus far [5]. This is in stark contrast to the many developments
on the experimental side [5]. New product requirements, like
the prevention or reduction of microplastics, which were not
foreseen in the aforementioned decades are current techno-
logical challenges [6]. But whatever the intended purpose of a
new rubber material may be, tensile strength is always among
the standard measurements forming the basis for its evaluation
[7,8].

Measuring the tensile strength σT vs (active) filler vol-
ume fraction φ reveals an s-shaped curve, i.e., a slow initial
increase followed by a significantly steeper increase, which
levels off into a plateau or rather a broad maximum due to
the decrease of the tensile strength at high volume fractions.
The clarity of this observation depends on the number of data
points and their φ range. Until recently there were numer-
ous yet, each by itself, not entirely convincing measurements

supporting this general picture [9–14]. The s-shape of σT vs
φ was demonstrated conclusively by Plagge [15] for carbon
black (CB) filled ethylene-propylene-diene rubber (EPDM)
vulcanizates. Plagge shows that the observed inflection point
is a function of temperature. Additionally, his data collapse
onto a master curve if represented in the form σT /σT,o(T )
vs φ/φc(T ), where both σT,o(T ) and φc(T ) are functions of
temperature T . In his paper Plagge also suggest a theoreti-
cal model, which is based on a combination of two effects.
One is the rupture of single polymer chains described by an
Eyring-like rate expression. The second is the “meandering”
and the “scattering” of a propagating crack by the filler par-
ticles inside the composite. Both contributions in Plagge’s
theory depend on temperature through the introduction of
a Williams-Landel-Ferry shift factor. This theory, however,
applies only to filled elastomers.

The s shape of σT vs φ is suggestive of an underlying
percolation phenomenon. This idea is pursued by Wang et al.
[13], who interpret their results of an extensive study of nanos-
trengthening via nanoparticle addition to styrene-butadiene
rubber (SBR) and EPDM along this line. Percolation of
nanoparticles inside, for instance, an elastomer matrix is well
known. During the initial mixing the filler is dispersed within
the polymer matrix. Subsequent filler flocculation then leads
to the formation of agglomerates [16]. Beyond a certain filler
volume fraction, φp, the agglomerates begin to form percolat-
ing networks traversing the matrix [5,16,17]. φp is established
via conductivity measurements using conducting fillers like
CB [18]. The percolation threshold φp thus established corre-
lates quite well with a marked increase of the storage modulus
μ′(u, φ) in the limit of small strain amplitude u. More pre-
cisely, for small φ below φp the storage modulus usually
is well described by μ′(u, φ) = μ′(u, 0)(1 + 2.5φ + c1φ

2),
where c1 is a constant coefficient [17]. Above φp the φ

dependence of the storage modulus is best described by a
power law, μ′(u, φ) ∼ (φ/φp)y, where y ≈ 3.5 (see Sec. 10.2
in Ref. [19]) or close to this value [20]. If in this filler regime
μ′(u, φ) is measured as function of u, a pronounced decrease
of μ′(u, φ) is found (Payne effect [19]). Typically, this de-
crease, which commonly is explained by the “breakdown”
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of the filler network, occurs between 1% and 10% strain.
This strain range, however, is significantly below the strain
regime at which tensile failure of the sample is observed.
Nevertheless, it not unreasonable to assume that the gaps now
formed between separated particles or particular aggregates
are “bridged” by stretched polymer chains carrying the load
and physically attached to either particle surface (an idea
already discussed by Dannenberg [4]), i.e., a “mechanical
percolation” replaces the “electrical percolation.” It is this idea
which is underlying the interpretation of the measurements in
Ref. [13]. However, as observed by Plagge and by Wang et al.,
φc(T ) depends on temperature, while φp does not. This does
not mean that Wang et al. are wrong, but it means that φc(T )
and φp are not simply the same.

It is important to emphasize that tensile strength is only
one aspect of the “reinforcement of polymer nanocompos-
ites” in general or “reinforcement of elastomers” in particular.
However, even reinforcement of elastomers by itself is a wide
field and this is not the place for a comprehensive overview
(good sources are Refs. [5,19,21]). Much of the theoretical
research on rubber reinforcement has focused on the effects
which fillers and compatibilizing agents, including other rub-
ber components, have on the dynamic moduli in the low and
medium strain range including the Payne effect (with the
notable exception of strain induced crystallization [22] usually
observed at considerable strain). In this regime reinforcement
is largely due to the filler agglomerates and, at higher filler
concentration, the agglomerate network embedded in rather
strongly bound polymer layers. In the present model of tensile
strength, the original agglomerate network no longer exists
due to the large strains involved. The concept of the “polymer
layer” is replaced by an approach that focusses on the individ-
ual polymer chain, which nevertheless must be able to attach
itself to the filler surface, mainly via physisorption, in order to
bear load.

In this work we discuss an explanation for the observed
shape of σT vs φ which is different from the percolation idea
suggested by Wang et al. Nevertheless, the main elements still
are load-bearing chains (LBCs) between particles or particles
and crosslinks or between crosslinks. Here their probability of
occurrence is described by Fermi statistics, which explains the
temperature dependence of φc(T ). In a basic representation
σT is composed of three factors: (1) the tensile strength of
individual polymer LBCs according to Eyring’s theory, (2) an
occupation number of LBC states using Fermi statistics, and
(3) an excluded volume factor reducing the number of possi-
ble LBC due to the presence of filler particles or crosslinks
between polymers. This description is compared to experi-
mental tensile strengths of CB (N339)-filled EPDM (Keltan
4450) as well as to other experiments in the literature studying
the effects of temperature, filler concentration, and particle
size as well as crosslink density.

II. THEORY OF ELASTOMER TENSILE STRENGTH
IN TERMS OF FORMATION AND RUPTURE

OF LOAD-BEARING POLYMER CHAINS

In the following σT is the tensile strength of an elastomer
composite, which here is expressed as a product of three

factors,

σT = σT,o〈n〉(1 − φ). (1)

The quantity σT,o denotes the tensile strength of an in-
dividual polymer LBC, 〈n〉 is an occupation number of a
“load-bearing state,” and (1 − φ), where φ is the filler volume
fraction, is an excluded volume factor.

σT,o may be described in terms of the Eyring expression for
the chain rupture rate kr , which is

kr = ν A exp[−(Eb − f d )/RT ]. (2)

The quantity ν is a molecular attempt frequency and A is
a factor essentially composed of the partition functions on
the two sides of the reaction equation. Eb is an activation
energy along the path of chain rupture. The chain, due to the
externally applied macroscopic stress, experiences a tensile
force f , which acts along the activation length d . In the
following f d is replaced by q σT,oυ, where υ = a d . a is the
cross section of a chain and q(> 1) is a factor, accounting for
the expectation that the stress on an individual LBC exceeds
the overall macroscopic tensile stress on the sample. Here it is
assumed that σT,o is proportional to the inverse rupture rate,

σT,o ∝ 1

kr
. (3)

This stipulation, asserting the existence of a critical chain
rupture rate, is analogous to a similar one already employed
by Büche [23]. We shall return to this point in the discussion.
Relation (3) yields

ln s = e − q s

t
− c. (4)

Here s, e, and t are reduced quantities defined via s =
σT,oυ/(RTo), e = Eb/(RTo), and t = T/To. To is a convenient
reference temperature (in the following To = 273.15 K). c is a
constant which has absorbed the other constants in Eqs. (2)
and (3). Note that A = A(T ), i.e., A does depend on tem-
perature. But the attendant temperature variation [O(ln T )] in
Eq. (4) is weak compared to the 1/T dependence and will be
neglected here. Equation (4) is an implicit equation for σT,o

and is solved numerically. In principle the quantities e, q, υ,
and c are adjustable parameters. Even though q and υ are not
independent, i.e., q υ is the adjustable parameter, it is advan-
tageous to keep them separate. Note that υ, defined above,
possesses a distinct physical meaning and can be estimated
separately. This makes it easier to find and interpret reason-
able values of q. Here we use υ = (0.5 nm)3 ≈ 0.13 nm3.
This number follows assuming a ≈ (0.5 nm)2 and d ≈ 0.5
nm. The value used for the activation length d is motivated in
detail in the Appendix. Numerical values for q are discussed
in the next section in the context of a specific experimental
system. The activation energy e is also adjustable, but only
within bounds. Its upper limit is the potential well depth of
the breaking covalent bond. It may be lower, but should not be
smaller than the typical physical interaction energies between
polymer and filler.

Next we turn to 〈n〉, which is the probability that a chain
is load-bearing. The cartoon in Fig. 1 illustrates how LBCs
can arise in the presence of filler particles. When the sample
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FIG. 1. (a) Cartoon of filler particles (shaded circles) inside an
elastomer close to its breaking stress. The red line illustrate polymer
LBCs or rather chain segments. The green lines are chains which do
not carry much load. Dots indicate anchoring sites on the particle
surface (black dots) or chemical or physical crosslinks (red dots).
(b) Snapshot from an atomistic computer simulation studying the
interaction between two silica particles tied to a surrounding poly-
isoprene matrix via short silanes (taken from Ref. [24]). Notice the
void space appearing between the particles as they are pulled apart
keeping one particle stationary while the other experiences a force
acting on its center of mass.

is stretched, particles previously in close proximity are sepa-
rated, creating voids between them. This is shown explicitly in
a picture from a computer simulation. Two silica particles are
embedded in a crosslinked polyisoprene matrix. One of the
particle is kept stationary while its neighbor is pulled away.
As a result a void space appears between the two particles.
Even though typical rates (of motion) in atomistic computer
simulations are fast compared to the rates used in mechanical
testing, the polymer matrix will not be able to flow around the
particles and close the void due to crosslinking (typical mesh

sizes in most technically relevant elastomers are comparable
to the dimension of the particles). The “walls” of the tubelike
voids will contain several LBCs. The existence of several
LBCs instead of just one or perhaps none is favored by two
circumstances: (1) The walls of the voids present the polymer
chains with increased conformational freedom compared to
the bulk polymer. (2) The chain monomers attached in the
equatorial regions of the particles can slip without being lifted
out of the adsorption potential. This allows a concerted load
uptake of several chains around the equator without breaking
them or lifting them away from the particle surface before
their partners have become load-bearing. In detail this de-
pends on the surface morphology of the particles and on the
type of bond between particle surface and polymer. Note also
that ideas along these line have been formulated before by
Dannenberg (for a summary see Sec. 9.4.3.2 of Ref. [5]).

In the following we divide the chains (or chain segments)
into those which are “slack” and those which are “tight” or
load-bearing. Note that each of those chain segments is an-
chored on both ends either by crosslinks or via adsorption on
a filler particle surface. The overall number of LBC segments
N is given by N = ∑

i ni, where the sum is over all chain
segments and ni = 1 if i is load-bearing and zero otherwise.
The total energy of the LBC is given by E = ∑

i εini, wherein
εi = 0 if i is not load-bearing, i.e., the slack chains define the
zero of this energy scale. The partition function of the LBC
segments is Q = ∑

n1,n2,...
exp[−β

∑
i(εi − μ)ni], where μ is

their chemical potential and β = 1/(RT ). In essence we uti-
lize an open system in terms of the total number of LBCs. This
Q can be rewritten as Q = �i

∑
n exp[−β(εi − μ)n], where

n = 0, 1 and Q = �i(1 + exp[−β(εi − μ)]). The final result
then follows via 〈n j〉 = ∂(−βε j ) ln Q. For the sake of simplicity
we make the approximation that all LBCs possess the same εi

equal to ε. Hence we obtain

〈n〉 = 1

exp[(ε − μ)/RT ] + 1
. (5)

It is useful to consider this calculation and its result in the
context of a different but largely analogous physical prob-
lem, i.e., adsorption of molecules (from a gas phase) onto
a surface. Here an empty adsorption site corresponds to a
slack chain segment, whereas an occupied adsorption site
corresponds to a LBC. If we distribute M noninteraction
indistinguishable molecules on Mo(> M ) adsorption sites,
i.e., the coverage is θ = M/Mo, then the canonical partition
function of the adsorbed molecules is Q = q(T )MMo!/[(Mo −
M )!M!]. The quantity q(T ) = exp[−βεa]qs(T ) is the single
molecule partition function, where we have split off the factor
containing the adsorption energy εa. Using Stirling’s approxi-
mation we obtain the molecule’s chemical potential via βμ =
−∂ ln Q/∂M = ln θ

(1−θ )q(T ) . Solving this equation for θ we

find θ = 1
exp[(εa−μ)/RT ]+1 , where we have set qs(T ) = 1 (al-

ternatively we may adsorb qs(T ) into an effective εa). The
functional form of this equation is identical to that of Eq. (5).
In the case if adsorption, however, chemical equilibrium al-
lows to replace μ by the gas phase chemical potential which
yield the adsorption isotherm θ = θ (P), where P is the gas
pressure [of course, qs(T ) in this case not just unity but
depends on the thermally excited degrees of freedom of the
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adsorbed molecules]. Nevertheless, in a rough sense, the role
of pressure in the case at hand is assumed by quantities like the
filler or the crosslink concentration. Moreover, εa usually is a
function of temperature T if the molecule-surface interaction
involves molecular groups on the surface (e.g., silanol groups
or flexible moieties) possessing thermally excited degrees of
freedom. ε in Eq. (5) also is contributed by many atoms
along a LBC, and consequently we expect ε = ε(T ). It seems
reasonable to invoke equipartition and thus ε = εoT , where εo

is a constant, appears to be a reasonable form.
But what is the chemical potential? The chemical poten-

tial should depend on temperature too of course. In addition
we shall assume that it also depends on the concentration
of anchoring sites able to support excited chain segments.
Anchoring sites can be surface sites or surface bonds due
to filler particles dispersed in the polymer matrix and, of
course, physical or chemical crosslinks in the polymer ma-
trix. Hence, μ = μ(T, ns, nc), where ns denotes the volume
number density of anchoring sites on particle surfaces within
the system and nc refers to the polymer crosslink density in
the system. Increasing ns as well as nc, at least initially, will
lead to an increase of the work required for LBC formation,
because of the increasing stiffness of the material. Formation
of a LBC also requires the proximity of two anchoring sites.
The probability for this to happen is roughly proportional
to (ns + λ(nc)nc)2, where λ(nc) is an additional function of
nc. When nc is not too large, we expect that λ(nc) is close
to unity. There may be a difference in their relative weight
distinguishing surface anchoring sites from crosslinks—but
this is ignored for now. When nc increases we expect that the
work, which must be invested to produce a LBC, is reduced
due to an overabundance of crosslinks. This we model by
the simple approximate form λ(nc) = 1 − nc/nc,o. nc,o is a
certain threshold density beyond which the aforementioned
reduction of the work required to produce a LBC becomes
significant. No such factor is introduced in the case of ns.
This is because the formation of LBC is tied to the motion
of the particle as a whole rather than the “tightening” of a
single short chain segment between two crosslinks. However,
addition of particles reduces the tensile strength by creating
excluded volume for possible LBCs, and this is accounted for
by the factor (1 − φ) in Eq. (1). Hence we assume that the
chemical potential is of the form

μ = μ(T, ns, nc) = μo(T )[ns + λ(nc)nc]2. (6)

Note that ns = As/(asV ), where As is the total filler surface
area in the volume V and as is the effective area of an anchor-
ing site. If Np is the total number of particles, we may express
the filler volume fraction via φ = Npυp/V , where υp is the
volume of a filler particle. In addition, As = Npap, where ap is
a filler particle’s surface area. Assuming that the particles are
spheres of uniform diameter dp we obtain

μ = εoT

(
φ + �

φc

)2

, (7)

where � = υo nc(1 − nc/nc,o), φc = √
εoT/μo(T )υo and

υo = (asdp/6). Equation (5) therefore becomes

〈n〉 = 1

exp
[
(εo/R)

(
1 − (φ + �)2/φ2

c

)] + 1
. (8)
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FIG. 2. Master curves obtained for his data points by Plagge [15]
in comparison to Eq. (8) (solid line) for εo/R = 2.0 and � = 0.

It is worth noting that φ here appears in the argument
of an exponential function. This is different from how φ

enters into theories for the dynamic moduli describing hydro-
dynamic “reinforcement” or the “reinforcement” beyond the
filler percolation threshold in the context of the Payne effect
[19,25]. In particular it signals a distinctly different reinforce-
ment mechanism underlying tensile strength. In the former
case the mechanical behavior of the dynamic moduli of filled
elastomers is often described based on load-bearing paths
composed of filler particles agglomerates and their networks
enveloped in sheaths of polymer traversing a bulk polymer
matrix [26]. At large amplitudes it appears that the load-
bearing capability of individual chain segments becomes the
key element governing a composite’s strength. This idea was
also the basis of Bueche’s considerable theoretical work on
tensile strength (cf. the introduction). Despite this similarity,
however, he followed a conceptual path very different from
the present.

III. A FIRST COMPARISON TO EXPERIMENTAL DATA

Figure 2 depicts master curves obtained from tensile
strength measurements by Plagge [15] in comparison to
Eq. (8). Data points at the indicated temperatures are obtained
via tensile tests of EPDM (Keltan 4450) filled between 10 to
60 phr (parts per hundred rubber by weight) with CB (N339).
The vulcanization system consisted of 1.05 phr sulfur and
1.40 phr N-cyclohexyl-2-benzothiazole sulphenamide (CBS).
The data are scaled horizontally, using the inflection points
of the apparently s-shaped curves. Plagge finds empirically
that φc = co(T − T ∗), where T ∗ ≈ −50 ◦C can essentially
be equated with the glass temperature and co ≈ 1.26×
10−3 K−1. Note that this implies

μo(T ) = εoT

[
υo

co(T − T ∗)

]2

, (9)

i.e., the work necessary to excite a LBC in terms of a stretched
chain segment increases as T approaches T ∗, which appears
reasonable. Of course, the chemical potential cannot diverge
and has to be continuous on both sides of T ∗. But this theory is
expected to be replaced by one build around a different rupture
mechanism near the glass transition. The vertical shift uses
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the apparent plateau value of the tensile strength. The data
do show, of course, a reduction of the tensile strength in the
limit of high filler concentration in accordance with the stan-
dard observation. But this reduction, compared to the overall
scatter, is rather weak in the filler range considered here, i.e.,
a “plateau value” is asserted with reasonable accuracy, and
therefore we shall ignore the excluded volume factor (1 − φ)
for now.

To good approximation the theoretical description of the
reduced data is Eq. (8). However, Eq. (8) depends not only
on φ/φc but also on �/φc. Since φc depends on temperature,
〈n〉 vs φ/φc is going to be different for each temperature
unless � = 0. A comparison of Eq. (8) with the mastered
data is included in Fig. 2 using εo/R = 2.0 and � = 0 (solid
line). The line is in very good accord with the data. But is
� ≈ 0 justified? As we shall see below, φc, for the present
data set, is in the range 0.2 > φc > 0.025. Neglect of �/φc

compared to φ/φc requires φ/φc � �/φc. From Fig. 2 we
see that the smallest value of φ/φc for which there are data
points is 0.25 (φ/φc = 0 must be excluded since the scaling
does not apply to the unfilled system.). Thus we must require
0.25 = φ/φc � �/φc or 0.25φc � � or, inserting the lower
bound of the φc range, 5×10−3 � �. With as ≈ 0.25 nm2,
dp ≈ 50 nm, and nc ≈ 360 mol/m 3 ≈ 0.22 nm−1 [27] one
has � ≈ 0.46(1 − 0.22/nc,o). Combining this with the pre-
vious condition on � we conclude nc,0 ≈ nc. This is not
unreasonable because the crosslink density nc is already quite
high. However, � is not a sensitive parameter in the first place.
Using, for instance, �/φc = 0.1 merely shifts the solid line by
the width of the symbols to the left. Finally note that the value
εo/R = 2 used to fit the master curves with Eq. (8) indicates
that ε corresponds to the energy of about two fully excited
vibration modes.

Figure 3 illustrates the application of Eq. (4) to Plagge’s
data (solid circles) in the apparent plateau regime, i.e.,
Eq. (1) reduces to σT = σT,o(1 − φ) (here φ is set to 0.2),
where σT,o = RToυ s and T = Tot . The theoretical fits (black
lines) are for these data. The three curves represent dif-
ferent parameter sets—dashed line: solution of Eq. (4) for
e = 17.5 (Eb = 40 kJ/mol), c = 13.2, and q = 4; solid line:
solution of Eq. (4) for e = 35 (Eb = 80 kJ/mol), c = 25.5,
and q = 9; dotted line: solution of Eq. (4) for e = 66 (Eb =
150 kJ/mol), c = 46.5, and q = 18. The variation of Eb is
motivated by different types of bonds. The highest value,
Eb = 150 kJ/mol, represents measurements of the dissocia-
tion energy of the tetrasulfide linkages in dimethyl tetrasulfide
via thermal decomposition [28]. The lower values cover the
range of physical bonds involving several monomer units on
CB. Litvonov et al. [29] have studied the interaction of EPDM
(K4802) with various grades of CB (N550, N330, N115) using
low-field proton NMR. They conclude that the thickness of the
immobilised EPDM-CB interface layer is about (and perhaps
slightly greater than) 0.6 nm (0.6 nm is about one chain
diameter) and the average number of C–C bond per adsorption
site is approximately 18. Schröder [30], in his gas adsorption
measurements of C2H4 on CB, observes adsorption energies
between 15 to 25 kJ/mol. The low energy corresponds to
the basal plane whereas higher energies occur at steps and in
corners. However, the 15 kJ/mol sites are the most frequent—
even on CB. In combination with the NMR work this means

1.0 1.1 1.2 1.3 1.4
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4
s

FIG. 3. Temperature dependence of the tensile strength (hol-
low circles) in the plateau regime obtained by Plagge. Here s =
σT,oυ/(RTo) and t = T/To. The solid circles follow from the hollow
circles after subtracting the respective tensile strength for φ = 0. The
error bars, except in the case of the one shown explicitly, are com-
parable to the size of the circles. Dashed line: solution of Eq. (4) for
e = 17.5 (Eb = 40 kJ/mol), c = 13.2, and q = 4; solid line: solution
of Eq. (4) for e = 35 (Eb = 80 kJ/mol), c = 25.5, and q = 9; dotted
line: solution of Eq. (4) for e = 66 (Eb = 150 kJ/mol), c = 46.5, and
q = 18.

that the “adsorption site” energy may be comparable to the
aforementioned dissociation energy, but it is likely, due to the
short range of the adsorption potential [31], that not all of the
18 C–C bonds will posses the optimal separation from the sur-
face and that this will reduce the overall adsorption energy of
the polymer segments. Note that none of the Eb values is ruled
out by the comparison of theory and experiment. However, the
local stress enhancement factor q, introduced above, is quite
large (and perhaps excessively large) when Eb = 150 kJ/mol
(increasing Eb increases the slope of the fit and a larger value
of q is needed to counteract this).

Figure 4 shows an overall comparison of Eq. (1) to the
measured tensile strengths. Here the temperature dependence
is affected not only by σT,o via Eq. (4) but also by the chemical
potential in 〈n〉 via Eq. (8). The overall agreement between
theory and experimental data is quite encouraging. The only
significant deviation is for −25 ◦C. As stated before, this the-
ory will break down near the glass temperature (here approx.
−47 ◦C [15]), i.e. the underlying concept of individual LBC
stretched between anchoring points loses its validity.

IV. COMPARISON TO OTHER MEASUREMENTS
AND DISCUSSION

Comparison of the theory with experimental data requires
considerable knowledge about the system (crosslink density,
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FIG. 4. The symbols depict measured tensile strengths σT vs
filler volume fraction φ at a series of temperatures T (gray: 90 ◦C,
red: 60 ◦C, green: 23 ◦C, blue: 3 ◦C, and black: −25 ◦C) taken from
Ref. [15]. The data are the same as the date depicted in the mastered
representation of the measurements in Fig. 2 using corresponding
colors. The solid lines show the comparison of the experiment to
Eq. (1) for the three parameter sets obtained via the data points in
Fig. 3 (line types correspond).

filler type (important for judging the value of Eb), filler con-
tent, particle size, temperature, etc.). This information is not
always available in its entirety and therefore the following is
qualitative.

The effect of particle size: Fig. 5(a) depicts the theoret-
ical prediction of a hypothetical experiment based on two
temperatures in Fig. 4. The curves are obtained via Eq. (1)
where φ is replaced by φ DN339/D. For D = DN339 the curves
coincide with the Eb = 40 kJ/mol results of the same color,
i.e., temperature, in the previous figure at φ = 0.1 (solid) and
0.2 (dashed). For D �= DN339 the curves illustrate the varia-
tion of the aggregate or particle size. Generally the tensile
strength decreases with increasing D. Note that the diameter
of N339 aggregates is roughly 70 to 80 nm [32]. At small
particle size the theoretical results indicate a saturation value
for σT . Where this occurs depends on temperature and volume
fraction and, presumably, on the system itself. Nevertheless,
curves like these, a number of them featuring a plateau in the
small aggregate limit, have been observed by Sambrook [33],
who studies the influence of temperature and filler type on
the tensile strength of CB filled vulcanizates of NR and SBR.
Unfortunately, he presents these data as quasi-3D plots, which
prevents a reliable extraction of the data. The measurements
(red dots) in Fig. 5(b) are taken from Fig. 10.15 in Ref. [5].
This figure depicts the tensile strength for a series of silicon
rubber compounds filled with 38 phr (roughly φ ≈ 0.12) of
silica with different surface areas. The surface areas were
converted to particle sizes using Table V in Ref. [16]. A rough
qualitative fit of the present theory to the resulting data is
accomplished by using the position of the step, which the
measured tensile strengths clearly exhibit, to define a refer-
ence size Dref . In this case the previous approximation � ≈ 0
does not suffice. The corresponding result is the dashed line,
i.e., here � > 0 is necessary. Nevertheless, the theory appears
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FIG. 5. (a) Tensile strength σT vs particle size relative to N339.
The curves correspond to the theoretical results for T = 60 ◦C
(green) and 23 ◦C (red) at φ = 0.1 (solid lines) and φ = 0.2 (dashed
lines) shown in the previous figure. (b) Measurements (red dots)
taken from Fig. 10.15 in Ref. [5]. This panel depicts the tensile
strength for a series of silicon rubber compounds filled with 38 phr
of silica with different surface areas, which here are converted to
particle size. (c) Tensile strength σT vs particle size relative to N220
in an SBR vulcanizate. The data points are taken from Fig. 4 in
Ref. [13] [40 (red spheres) and 30 (blue diamonds) phr].

to drop below the measured values for the larger particles in
the experimental range. Another experimental example for the
effect of particle size on tensile strength in a CB-filled SBR
vulcanizate is depicted in Fig. 5(c). The data points are taken
from Fig. 4 in Ref. [13]. The reference particle size here is
that of N220. The parameter εo/R is the same as in the two
previous panels. All other parameters are within a factor of
two compared to the measurements discussed in the previous
section. Note that the σT in the limit dp → 0 is adjusted
between the apparent limiting values of the two data sets, i.e.,
the shape of the theoretical curve is due to 〈n〉 alone. As in
Fig. 5(b) the approximation � ≈ 0 does not suffice (dashed
line) and the polymer crosslink density must be included, i.e.,
� > 0 is necessary (solid line).

014505-6



TENSILE STRENGTH OF RUBBER DESCRIBED VIA … PHYSICAL REVIEW E 106, 014505 (2022)

FIG. 6. Open circles: bulk crosslinks; solid circles: surface
bonds. The ratio of displaced bulk crosslinks to surface bonds is 2/5
for the small circle but 27/19 for the large circle.

In this context it is worth mentioning another study in the
literature, discussing the tensile strength of polymer compos-
ites. In Ref. [34] the authors observe a “transition” from an
increase of the tensile strength to its reduction as function of
filler volume fraction depending on the size of the filler par-
ticles. The increase is observed when the particles are small
(∼0.01 μm), while a decrease is observed when the particles
are large (>0.1 μm). The present theory does not apply to
large particle size, because there is a limit to the validity of
(7) when dp becomes large (∼μm). [The two data points at
D/Dref ≈ 12 in Fig. 5(c) are most likely already borderline
cases.) The idea why this is so is depicted in Fig. 6. The
gridlines correspond to a crosslinked polymer network. When
D is small the particles displace few crosslinks in the polymer
network (open circles) in comparison to the anchoring sites
they provide on their surface (filled circles). When D grows
this changes, because the number of replaced crosslinks scales
with D3 whereas the number of anchoring sites scales with
D2.

It is instructive to briefly consider this macroscopic limit
using linear theory of elasticity. The problem is that of a
rigid sphere embedded inside of an elastic matrix subject to
a tensile stress σzz is the z direction. The excess elastic free
energy density Fel/V in a sample containing noninteracting
(or very diluted) rigid spheres at a volume fraction φ is given

Fel

V
= σ 2

zz

2E

(
1 + φ

2

)
, (10)

where E is the matrix’s elastic modulus (see, for instance,
Ref. [35]). This formula is a result en route to Smallwood’s
expression describing the enhancement of the modulus of
an elastic matrix by the addition of spherical particles. Note
that Eq. (10) is derived assuming an ideal (no detachment,
no slip) boundary between the matrix and the particle. This
is a macroscopic theory, which does not contain or require
a molecular description of the matrix-particle interface. Fol-
lowing the guiding principle that the propagation of a crack
requires energy stored in the material, we can replace Fel/V
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nc[mol/m3]0
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FIG. 7. Tensile strength σT vs crosslink density nc. Fit of the
present model (solid lines) to data from Figs. 1 and 3 in Ref. [38]. The
systems are SBR 1006 (red circles) and SBR 1500 (blue diamonds)
containing 30 phr of HAF black.

by a critical elastic energy density ec and simultaneously σzz

by σT . Using E ∝ nc and φ � 1 yields

σT ∼ n1/2
c (1 − φ/2). (11)

Qualitatively this predicts a decrease of σT with φ and an
increase with crosslink density. However, even in this regime
of large particles (several hundred μm) a strong dependence
on particle diameter is possible [36], which this simple the-
oretical argument, probably due to its unrealistic boundary
conditions (cf. Ref. [37]), does not capture.

The effect of crosslinks: As an example we compare to
measurements of the tensile strength vs polymer crosslink
density published by Büche [38]. The systems are sulfur vul-
canizates of SBR 1006 and SBR 1500 containing 30 phr of
HAF (high abrasion furnace) black. The comparison with the
present theory is shown in Fig. 7. The shape of σT vs nc is
governed by 〈n〉, i.e., this mainly is a test of the LBC occupa-
tion number as a function of crosslink density. Due to the lack
necessary information (temperature) we merely adjust σT,o to
match the experimental peak height for SBR 1006. (In general
we expect some dependence of q on the crosslink density
however.) Here φ/φc ≈ 0.68 is kept constant (φ ≈ 0.15). In
addition υo is about three times larger than the value used
in the last section and εo/R ≈ 10. The threshold crosslink
density nc,o is ≈70 mol m−3 for SBR 1006 and ≈100 mol m−3

for SBR 1500. In other words, the two theoretical curves
differ only in their values for nc,o! Note in particular that this
one polymer-specific parameter adjustment not only yields the
correct change of the peak height but also produces a change
of the peak shape in accord with the measurements.

Strain rate dependence: Tensile strength, in general, is
strain rate dependent. The present theory applies in the limit of
small strain rates. Early work by Smith [39] on SBR vulcan-
izates already shows that over a wide range of strain rates ks,
above a certain threshold and below the range when the sam-
ple becomes glassy, the approximate relation σT (1)/σT (2) ≈
ks(2)/[ks(1)]α with α > 0 is satisfied. Here (1) and (2) refer to
two different rates. This means that if the strain rate increases
so does the tensile strength.

In Eq. (4) q(> 1) accounts for the plausible expectation
that the stress on an individual LBC is larger than the macro-
scopic tensile stress on the sample. Thus, q should in fact
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FIG. 8. s vs q according to Eq. (4). The other parameter values
are the same as for the solid line in Fig. 3. Here t = 1.

depend on time, i.e., q = q(t ). This is because the system will
redistribute the applied load during its approach towards an
equilibrium distribution of the internal stress (an early paper
discussing the significance of the equilibrium stress distribu-
tion in the context of filled rubbers is Ref. [40]). Increasing
the strain rate reduces the extend of the internal relaxation,
which means a less inhomogeneous stress distribution, which
in turn means a smaller q. Hence we expect (very roughly)
q ∼ k−β

s (β > 0), i.e., σT,o should increase as q decreases.
This is indeed the case as shown in Fig. 8.

The effect of strain rate on tensile strength depends greatly
on whether the rubber is filled or not, on crosslink density,
polymer type, etc. [41–43]. Probably it is fair to state that
despite the many years which have passed since these ob-
servations were made, there still is no real understanding
(molecular theory), apart from phenomenological ideas usu-
ally centered on the Williams-Landel-Ferry shift factor.

V. CONCLUSION

The unique element in this theory of rubber tensile strength
is the Fermi probability of LBCs 〈n〉, which contains the
dependence on filler volume fraction (aside from an multi-
plicative excluded volume factor), particle size and polymer
crosslink density. The description of the temperature is shared
with σT,o, an effective single chain tensile strength calculated
using Eyring’s theory. The theory appears to be in very good
qualitative accord and, depending how much is known about
the system, also in semiquantitative agreement with the ex-
periments. In particular the dependence of tensile strength on
particle size (at least for active fillers) has been integrated into
a theory for elastomer tensile strength. Since all parameters
in the model do have a physical meaning, it is, in principle,
possible to study their collective and interdependent effect on
rubber tensile strength. It is the hope of the author that this
can be of use to rubber material developers in their quest
to target selected performance parameters for improvement
while keeping others from causing the opposite. Nevertheless,

a full understanding of both strength and elongation at break
requires the ability to calculate failure envelopes [5] includ-
ing their dependence on crosslinking, filler volume fraction,
filler type, temperature, and possibly more. With the model
presented here this is not yet possible.
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APPENDIX: ACTIVATION LENGTH

The following is a discussion of the “activation length” d
and a motivation for its value in this model. The concept of
an activation length can be studied by modeling the thermal
dissociation of a simple model polymer—a Morse chain.

The latter consists of the linear catenation of N beads, inter-
acting via Morse potentials V (r) = D[1 − exp(−a(r − ro))]2

between neighboring beads. The quantity D is the depth of the
potential minimum at ro. This potential is harmonic near the
bottom, V (r) ≈ Da2(r − ro)2 (r ≈ ro), but has a finite depth.
If the force on a pair of neighboring beads exceeds aD/2
the link will break. The chain is thermalized using Langevin
dynamics, �̈ri = �Fi + �Zi − ζ �ri (each bead possesses unit mass).
Here �Fi is the force on bead i, which for every bead between
i = 2 and i = N − 1 is the combined force due to the Morse
bonds with its two neighbors. The terminal beads experience
one Morse interaction, because they possess one neighbor
only, plus a constant tensile force fp(� 0) in the −z direction
in case of i = 1 and the z direction in the case of i = N . The
�Zi are Gaussian random forces satisfying 〈 �Zi(t ) · �Zj (t ′)〉 =
6ζT δ(t − t ′)δi j , where ζ is a friction parameter.

We simulate chain between N = 2 to N = 100 for a series
of temperatures. For each temperature we determine the fre-
quency of chain dissociation hbreak (T ). A chain is considered
to be dissociated if at the end of the simulation there exists at
least one bond with a length �5ro (here we set ro = 1). Other
multiples of ro, e.g., 4ro or 6ro, work just as well, i.e., the dis-
sociation criterion is not a sensitive parameter. However, since
the activation length d is found to be around 4ro (cf. below), it
is reasonable to use a factor multiplying ro which is (slightly)
larger than 4. Figure 9(a) shows hbreak (T ) vs temperature
T for N = 10 (a = 1, D = 0.6, fp = 0, and ζ = 0.1). Each
simulation run encompasses 2×106 time steps with the length
0.0025. hbreak (T ) is computed from 10 independent runs at the
same temperature. Figure 9(b) shows the temperature Tbreak

at which chain rupture occurs [inflection point of the fit to
hbreak (T )] for N between 2 and 100. The error bars indicate
the width of the step.

There are two main results: (1) Tbreak ≈ 0.1 when fp = 0,
i.e., D/Tbreak ≈ 10 (note that in these units kB = 1). This result
is not altered significantly by changing a or ζ as indicated.
(2) Increasing fp from 0 to 0.1 lowers Tbreak significantly.
The same reduction of Tbreak in comparison to the standard
case (D = a = 1) is obtained if fp = 0 but D ≈ 0.6. This
means that in the present case the “activation length” d ≈ 4
(or 4ro), which follows via D − fpd = D′ with D = 1, fp =
0.1 and D′ = 0.6. Overall this is a crude argument, but it
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FIG. 9. (a) Frequency of chain break hbreak (T ) vs temperature T for N = 10 (a = 1, D = 0.6, fp = 0, and ζ = 0.1). (b) Chain rupture
temperature Tbreak for N between 2 and 100 for different parameter values. The letters g, m, b, r, and b stand for the colors of the dots (green,
magenta, blue, red, and black) distinguishing the indicated parameter sets. Horizontal lines are a guide for the eye.

shows that the “activation length” is on the order of per-
haps several equilibrium bond lengths and not, for instance,
tied to the chain length. The same conclusion was reached
by other means in a recent paper studying the fracture of
vitrimers [44].

We want to close this digression with a short comment on
the above ratio D/Tbreak ≈ 10. The temperature at which the

chains dissociate does depend on the details of the partition
functions in the two sides of the reaction as well as on the
reaction path. Since our chain is merely a simple model, one
should not expect find this ratio for real polymers. However,
quite generally it is observed that the thermal energy kBTbreak

is considerable less than what one expects from the mere
depths of the bond potentials.
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