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We devise a deep learning solver inspired by physics-informed neural networks (PINNs) to tackle the
polymer self-consistent field theory (SCFT) equations for one-dimensional AB-diblock copolymers. The PINNs
framework comprises two parallel feedforward neural networks that separately represent the segmental partition
functions and self-consistent chemical potential fields. The two networks are coupled through a loss function
incorporating the governing equation, initial and boundary conditions, and the incompressibility constraint.
To avoid the metastable homogeneous solution, the network parameters are initialized based on known self-
consistent fields obtained from the numerical pseudospectral method. For copolymers of length N at a given
volume fraction of A block (f) and the reduced Flory-Huggins interaction parameter (x V), the minimization of
the loss function leads to the converged network parameters that successfully capture the stable lamellar phase.
The periodicity of the lamellar structure is correctly reproduced for the explored sets of [f, x N], irrespective
of the presumed computational domain size for initialization. Moreover, the proposed PINNs are applicable to
the inverse discovery of the interaction parameter and the embedded chemical potential fields for an observed
structure. This capability of solving the inverse SCFT problem demonstrates the potential of using PINNs to
accelerate the exploration of new polymeric materials.
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I. INTRODUCTION

In scientific and engineering problems, the embedded
physical laws are often integrated through suitable govern-
ing equations with inputs representing macroscopic material
properties and microscopic molecular interactions. To name
just a few examples, in viscous fluids the conservation of
both mass and momentum is expressed by the Navier-Stokes
equations [1]. In quantum mechanics, the field solution is
obtained by solving the Schrodinger equation [2]. In ma-
terials science, the phase diagram of polymeric systems is
rigorously characterized using the polymer self-consistent
field theory (SCFT) [3] with the fundamental equations be-
ing in the form of the modified diffusion equation. These
governing equations are typically nonlinear partial differen-
tial equations (PDEs) that require substantial computational
effort to meet a chosen numerical method’s desired resolution
and accuracy. Conventionally, the numerical process solves
the equations subject to the associated conditions forwardly.
The inverse prediction of physical parameters would require
systematic integration of numerical solutions. Researchers are
then motivated to seek for alternative paths to deal with non-
linear PDEs for complex problems with the aid of available
data. Recent developments in GPU computations and machine
learning techniques have significantly improved the efficiency
of data operations in the fields of image recognition [4,5], nat-
ural language processing [6], and time series forecasting [7].
Distinct from the extensive data acquisition in these fields of
study, physics-informed neural networks (PINNs) [8] directly
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incorporate relevant physical laws through nonlinear PDEs in
the learning algorithm, thus significantly reducing the amount
of data needed and the associated cost of data generation. In
this work, we devise a PINN framework as the “deep learning
solver” to tackle the phase separation of one-dimensional AB-
block copolymers based on the polymer SCFT.

The polymer SCFT is a field-theoretic approach that solves
the propagation equation of polymeric chains subjected to
the self-consistent chemical potential field that modulates the
local distribution of segments. In the mean-field fashion, this
field satisfies the minimum of the free energy consisting of
the configurational entropy of the Gaussian chain as well as
the enthalpic interactions between different species described
by the Flory-Huggins theory [9]. A modified diffusion equa-
tion governs such propagation of chains, with the natural size
of the chain determining the “diffusivity” of segments. The
polymer SCFT has successfully predicted the segmental dis-
tributions and morphologies of polymeric systems, including
polymer brushes [10-12] and block copolymer melts [13—15],
etc. Particularly, exploring the self-assembling behavior of
block copolymers has been a popular research topic as the cor-
responding rich morphologies are suitable for various appli-
cations. Several numerical algorithms have been developed to
feasibly solve the related governing equations [15-18]. How-
ever, the expensive computational cost is often unavoidable to
reach the stable block copolymer structure consistent with the
free energy minimum. Recently, machine learning techniques
have been combined with the polymer SCFT to reproduce the
phase diagram of block copolymer systems [19,20]. Making
use of the free energy information from the SCFT-generated
data, the monomer density field of block copolymers in one
dimension has also been predicted [21]. The key ingredient
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in these efforts is the employment of the known free energy
components or the acquired morphologies during neural net-
work (NN) training. In other words, the NN itself does not
play a role as a solver. As an alternative, we look for a more
straightforward, NN-based PDE solver that directly deals with
the governing equations of the polymer SCFT.

The studies of PINNs, a deep learning framework intro-
duced by Raissi et al. for solving PDEs [8], have flourished
these years [22-25]. The framework utilizes a feedforward
neural network (FNN) as a universal approximator [26-28]
to represent the solution of a PDE. The FNN learns the net-
work parameters by minimizing the “loss function” defined
by the mean square errors of the network output subject to
physically consistent constraints with input training data. In
fact, this type of NN-based PDE solver was first proposed in
the 1990s [29,30]. The concept has been applied previously to
several physical problems, including the plasma equilibrium
problem by van Milligen et al. [31], the N-body gravitating
problem by Quito et al. [32], the chemical reactor problem
by Parisi et al. [33], etc. With the current computational
power that GPU offers, PINNs may deal with the involved
partial derivatives efficiently through the use of the mathe-
matical tool, automatic differentiation (AD) [34]. Therefore,
researchers have the flexibility in choosing the depth (num-
ber of hidden layers) of the network and the type of the
activation function without additional analytical or numerical
effort in calculating the partial derivatives. PINNs have been
viably extended to characterize the uncertainty of physical
systems with random inputs or noisy observations [35,36],
decode the governing equations by observation data such as
images [37], and discovery continuum models from molecular
simulations [38].

One recent employment of the NN-based PDE solver
presented by Wei et al. [39] solves the modified diffusion
equation related to the polymer SCFT equations for block
copolymers. The NN solver considered there consists of two
FNNs of single hidden layers. One FNN represents the seg-
mental propagation functions, and the other represents the
chemical potential fields. The network parameters are op-
timized by minimizing the mean square error loss defined
by the conditions enforced directly by the polymer SCFT.
In their implementation, the partial derivatives are handled
explicitly through analytical equations, and the loss function
is minimized by vanilla gradient descent. In this work, the de-
vised PINN framework is flexible toward representing higher
dimensions of parameters. To effectively initialize the network
parameters toward the final solution, we utilize the chemical
potential fields obtained from the numerical SCFT solutions
for a given set of system-specific physical parameters as the
pretraining data. The constructed NN architecture consists
of a variable number of hidden layers. The involved partial
derivatives are performed by AD, and the optimization is
handled by a type of stochastic gradient descent, the ADAM
optimizer [40]. We show that such a data-driven deep learning
framework can represent the SCFT solution for specific poly-
mer morphology (forward problem) and predict the physical
parameter or chemical potential fields that lead to the desired
morphology (inverse problem).

The remaining part of the paper is organized as follows.
In Sec. II, we first review the general formalism and the con-

ventional numerical procedure for solving the polymer SCFT
equations. The PINN framework and the loss functions are
then introduced for two systems of interest, linear homopoly-
mers and AB-block copolymers. In Sec. III, the computational
procedures for PINNs are presented in a step-by-step manner
along with the associated results. The effects of the varied
computational domain size are specifically compared for the
copolymer systems. The application of the proposed PINN
framework to both forward and inverse problems is also dis-
cussed. Finally, our findings are concluded in Sec. I'V.

II. METHOD

A. Numerical self-consistent field theory approach

In the polymer SCFT, the path along the chain is char-
acterized by the variable s that ranges from O to 1. The
configuration of the chain is described by the partial partition
functions of the fraction of segment s at position r, g(r, s) and
g'(r, s). For a polymeric chain of N segments or monomers,
q(r, s) is the forward propagator of the first sN segments and
q'(r, s) is the backward propagator of the remaining (1 — s)N
segments. The chemical potential field for the species B in
space, wg(r), drives the dispersion of segments in order to
meet the overall free energy minimum of the system. Given
wg(r), the two propagators correspond to the solutions of the
modified diffusion equations,

0 N

—q(r.s) = [%vz - wﬂ(r)}q(r, 9), (1)
J . N .
- (r.5) = —[“Tvz - w,s(r)}q’(r, 9 @

with a being the Kuhn length of the polymers. The two equa-
tions satisfy the initial conditions, g(r, 0) = qT(r, 1)=1,and
the proper periodic boundary conditions. Given the system
volume V, the two propagators determine the overall partition
function Q and the volume fraction of the chain (¢g) accord-
ing to the following relations,

Q= / q(r, s)q"(r, s)dr A3)
and
4 T
@p(r) = —/q(r, s)q' (r, s)ds. 4)
0 Jp

In traditional numerical procedures, the set of modified
diffusion equations [Egs. (1) and (2)] are solved iteratively in
order to reach the state of self-consistency. Among the well-
known numerical approaches, the pseudospectral method
efficiently handle the spatial variation in the Fourier space
while maintaining the chain propagation in the s direc-
tion [16,17]. In the standard implementation, the potential
field wg(r) is first initialized. By solving the propagators
q(r, s) and qT(r, s) for the species, the volume fraction ¢g(r)
is then determined. Provided the overall incompressibility of
the system,
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B
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FIG. 1. The one-dimensional systems considered in this work,
(a) free homopolymers and (b) AB-block copolymers. The periodic
box size is H alone in the z direction.

the field is subsequently updated based on the current state of
the system,
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which corresponds to the minimum of the free energy per
chain,

F N {
kB_T = —InQ+ B ;Xﬂyfﬁaﬁ(r)fﬂy(l‘)dr —v
x Z/wﬁ(r)‘Pﬂ(r)dr —/E(l‘)|:1— Zgoﬁ(r)]dr,
P B
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where kg is the Boltzmann constant, T is the temperature,
and y represent different monomer species, xg, is the Flory-
Huggins interaction parameter between B and y, and the
spatially dependent Lagrange multiplier, £(r), is introduced
to enforce the incompressibility throughout the space, and is
physically interpreted as the scaled pressure field. Once the
field is updated, the aforementioned process is repeated until
the convergence is met.

B. Physics-informed neural networks for one-dimensional
self-consistent field theory

Figure 1 shows the one-dimensional systems of polymeric
fluids considered, free homopolymers and AB-block copoly-
mers. The periodic length scale is H and the unit of length
is aN'/? = Ry. In Fig. 1(a), the homopolymers consist of
N segments of the same kind; in Fig. 1(b), the AB-block
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FIG. 2. The architecture of the PINN framework for solving polymer SCFT equations. This framework contains two FNNs, one repre-
senting the partition functions and the other associated with the self-consistent potential fields. o in the hidden nodes represents the nonlinear
activation function. Two networks are coupled by the loss function defined by the SCFT equations. Update of the network parameters is
performed through the gradient descent algorithm generally expressed as @) = @) — nVuJ(®®), where © represents the parameters with
the superscript ¢ being the step index, n represents the learning rate for gradient-based updating algorithms, and J(®) is the total loss function

(see text for definition).
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copolymers are composed of covalently bonded A- and B-type
homopolymers, where the first fN segments of the polymers
are type A, and the remaining (1 — f)N segments are type B.
In the mean-field fashion, the dissimilarity between the two
blocks is parametrized by x N. The homopolymer system can
be viewed as a special case of the block copolymer system
with y N = 0.

The structure of the PINN framework for solving the
polymer SCFT equations is shown in Fig. 2. The partition
functions, ¢(r, s) and q*(r, s), accounting for the first sN seg-
ments and the remaining (1 — s)N segments of an N-segment
polymer, are represented by the upper FNN. The chemical
potential fields, w4 (r) and wg(r), corresponding to the ho-
mopolymers of A type and B type are represented by the
lower one. Two hidden layers are explicitly shown for clarity.
The input nodes of the upper and lower FNNs are composed
of variable vectors (x, y, z, s) and (x, y, z), respectively. For a
given FNN of depth D, there are D — 1 hidden layers and 1
output layer, each of which has Nj, hidden nodes (neurons). In
the jth hidden node of layer k£ with N; input nodes from the
previous layer, the nonlinear activation function, o (21;;1) = 7?
1s apphed to obtain the corresponding output of layer k, where

=), w ]l”lk L4 b" denotes the linear transformation of
the output from layer k — 1. Here, w¥ ;i and b’; are the weight
and bias of the neuron in layer k with 1 < j < Nyand1 < i <
N;. In the last output layer, the FNN solution is expressed as
the linear combination of activations from the previous layer,
u =) ;v;o;, where v; is the weight and u represents the NN
output of ¢, g7, wy, or wg. These two deep FNNs are coupled
by the loss function J(®),

= JppE(©) + J1c(©) + Jpc(©) +Jc(®),  (8)

where ® is a set of trainable parameters containing all the
weights and biases from both FNNs, and the terms in Eq. (8)
correspond to the scaled mean-square errors of the SCFT
equations and imposed conditions in the following discussion.
The scaling constants («;, B; and y;) are introduced to balance
the back-propagated gradients [41].

For the one-dimensional system defined in the (z, s) space,
the two modified differential equations for partition functions
are written in terms of operators,

J(®)

N 0 1
Diq(z,s) = [5 — gvz + wﬁ(z)}q(z, s) 9)
and
Drg'(z,5) = [—i — lvz +w (z)}f(z s) (10)
) as 6 B s )

respectively, where 8 = A for s < f and § = B for s > f.
The loss term for the PDE, Jppg(®), accounts for the total
residual or remainder of the PDE operators, and the data
points {(z/, s\)}, are obtained from uniformly selecting N,
points in the z-s domain:

o 1 12 O 1 N . 2

JppE(®)=—-— [qu( Zr r)] +t5 5 [quT(er’ Slr)]
2 N,& 2 N, =

= 7<mlq<z, ) + %qf)zq*(z, 9. (11)

where (. ..) denotes the expected or mean value. On the other
hand, the residuals for the two initial conditions are written as

Big(z.0) = q(z,0) — 1 (12)
and
Byg'(z, 1) =¢q'(z, 1) — 1. (13)

The data points {(z,, 0), (z,, 1)} , are sampled uniformly in
[0, H] and the loss term is deﬁned as the corresponding mean-
square residuals,
_Bi,a 2, Bra s 2 14
Jic(®) = 7([3161(& 01 + ?<[qu (z, D). (14)
The residuals for the periodic boundary conditions are ex-
pressed as

Bsq(z.5) = q(0,5) — q(H. s). (15)
Bug(z,5) = %q(o, 5) — (%q(H, 5), (16)
Bsq'(z.5) = q'(0.5) —q'(H. s), (17)
Beq'(z, 5) = iq 0,s)— iq (H.s). (18)

Similarly, the loss function is the sum of the mean-square
residuals

Bs 4

= ([Bag(z, 9)P)

Jpc(®) = %q&q(z, 1) +

Bs A Bs A
+ 5 {1Bsq’ @ 9)F) + F{1Bsd @ 9)F). - (19)
The corresponding data points {(z, si,.)}~* are obtained by
uniformly sampling from s € [0, 1] with z being at the bound-
aries. Finally, the self-consistency of the chemical potential
field is imposed in the PINN in terms of the constraint opera-
tors,

C1 = waz) — xNop(z) — £(2) (20)
and
G, = wp(z) — xNoa(z) — £(2), (21)

where the volume fractions for the species A and B, ¢4 and
@p, respectively, are defined as

H [/ .
a(z) = / q(z, 5)q'(z, s)ds (22)
Oars Jo
and
H 1
op(z) = / q(z.5)q" (2, s)ds. (23)
Oars Jy

Qa+p is the overall partition function written as

Oavp = /q(z, Ddz, (24)

and the Lagrange multiplier in Egs. (20) and (21) satisfies

£(2) = [wa(z) + wZB(z) - XN]. 25)
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The corresponding loss term is
V1A Y2 A
Je(©) = Z{C})+ FE3). (26)

As all the data points are sampled randomly, the involved inte-
grals are efficiently evaluated by Monte Carlo (MC) method.
The computation for the overall partition function [Eq. (24)]
utilizes the same dataset from the initial conditions. The data
{zﬁ_}f.vz”l are selected to evaluate the volume fractions ¢4 (z) and
op(z) [Egs. (22) and (23)]. For a given position z, separate
sample points {sé}&] are then chosen to perform the MC
Integration.

Unless otherwise noted, the considered PINNs consist
of two FNNs with five hidden layers, each of which has
100 neurons with a hyperbolic tangent being the activation
function. The loss functions are minimized by the ADAM op-
timizer [40], and the iteration is terminated once a prescribed
maximum number of iterations is reached with a sufficiently
small total loss. Distinct from traditional regression and clas-
sification problems where collecting and labeling new data is
time-consuming, the generation of sample points in PINNs
is straightforward with only minimal computational costs as
these data points are arbitrarily selected from the domain of
interest. The numbers of sample points are chosen as N, =
5000, N;c = Np. = 200, N,, ranges from 40 to 50, and N
ranges from 100 to 250. Two types of sampling schemes
are considered during training. In the first method, the same
dataset is used for the entire training process, where one
“epoch” means that the model has seen all the training data
points once. The second scheme generates a new dataset for
each iteration where the network parameters are updated. We
denote “fixed sampling” and “resampling” for the former and
latter sampling schemes.

III. RESULTS AND DISCUSSION

This section presents the resulting morphologies of ho-
mopolymers and AB-block copolymers obtained from the
PINN framework. The homopolymer system is chosen as a
benchmark example for the NN-based SCFT solver when
xN = 0. For the copolymer system, we emphasize the impor-
tance of appropriate pretraining for the network parameters
and the effect of varying the periodic domain. It is anticipated
that a featureless distribution function should be obtained
for homopolymers, and the ordered lamellar patterns should
appear for AB-clock copolymers if the Flory-Huggins inter-
action parameter is significant.

A. Homopolymers

Since only a single species is present, the equations for the
incompressibility condition and the volume fraction [Egs. (20)
to (25)] are modified as

H 1
w(z) = —/ q(z.5)q' (z, 5)ds, (27)
0 Jo
0= /q(z, 1)dz, (28)
and
Ci=9p@ -1 (29)
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FIG. 3. Results of free homopolymers obtained from the PINN

framework: (a) volume fraction distribution and (b) self-consistent
field.

The fixed sampling scheme is implemented for training and
J(®) is minimized with the hyperparameters (or scaling con-
stants) o1 = oy = 1, By = B = 1000, B3 = B4 = Bs = s =
200, and y; = 200. The results after 50 000 epochs of training
are shown in Fig. 3. In this benchmark test, clearly the uniform
volume fraction distribution and the constant potential field
for the free homopolymers are consistent with the expected
state of a polymer melt.

B. AB-block copolymers

For AB-block copolymers, Egs. (8) to (26) are taken into
account in the PINN framework. The equilibrium morphology
corresponding to the global free energy minimum of block
copolymers is determined by the parameter set [f, x N]. In
standard numerical iterations, the mean-field approximation
employed in Eq. (6) gradually updates the partition functions
towards the global free energy minimum. Nevertheless, the
solution of the metastable disordered phase (local free energy
minimum) where the volume fractions of A-block and B-
block are respectively f and (1 — f) throughout also satisfies
all the imposed conditions in the loss function for the PINN
framework. As a result, random initialization of the PINN
parameters easily leads to the trivial solution of a disordered
phase, irrespective of the parameter set [f, xN]. In other
words, naively imposing the constraints does not efficiently
“teach” the PINNS to adjust the parameters to meet the global
free energy minimum. To overcome this issue, we initialize
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FIG. 4. Illustration of the pretraining procedure for the network parameters. (a) The lower FNN is fit with the numerical self-consistent
fields obtained from the pseudospectral method. (b) The PINNs are trained with only the parameters from the upper FNN being updated.

the network parameters by pretraining techniques (scheme
shown in Fig. 4) delineated as follows:

1. Forward prediction

a. Training with known fields. We utilize the self-
consistent fields obtained numerically from the pseudospec-
tral method [16,17] as the training data. For equal-block
copolymers with f = 0.5, the onset of phase separation from
a disordered phase to a lamella structure occurs at x N =~ 11,
corresponding to the lamella phase with a characteristic peri-
odic length scale of 1.35R, [9]. To allow the PINNs to learn
the periodicity of the morphology more easily, we first fix the
computational domain as 1.35Rj. The reference system for
pretraining is selected as [f, xN] = [0.5, 21]. As presented in
Fig. 5, the numerical self-consistent fields in Fig. 5(a) display
periodic patterns that drive the dispersion of monomers [solid
curves in Fig. 5(b)]. Therefore, a locally higher potential field
for a given species generates a correspondingly higher energy
barrier to overcome, leading to a lower volume fraction dis-
tribution for that species. In order for the network parameters
to evolve according to the expected spatial variation in the
potential fields, we first train the lower FNN for w, and wg
with the numerical self-consistent fields by minimizing the
mean-square error between the FNN output fields and the
numerical fields [see Fig. 4(a) for the fitting schematic]. Once
the mean-square error is sufficiently small (typically less than
1073), we start the training of PINNs by only updating the
parameters of the upper FNN for the partition functions ¢
and ¢' [see Fig. 4(b) for the FNN enclosed in a dashed line].
In other words, the correct fields are treated as input when
solving the modified diffusion equations. As the domain size
is fixed as one period of the lamellar pattern, the periodic
boundary conditions [Egs. (15) to (18)] are simplified to the
following Neumann form:

N 9
Bqq(z,5) = a—zq(z, s), z€ IR (30)

and

d
0z
where €2 represents the boundary points at z = 0 and H. The

loss function for the boundary conditions [Eq. (19)] is then
replaced by

Byq'(z,5) = —q'(z,5), z€0%, (31)

Jpc(®) = %mq(z, 1) + %qéqu(z, $)IP). (32)

The resampling scheme is implemented to improve the
generality of network parameters. The loss function J(®) is
minimized with o) = ap = 3.2, By = B, =830, B7 = Bs =
400, and y; =y, = 265. We define the predicted error as
the mean-square error between the volume fraction profiles
obtained from the pseudospectral method and the PINN pre-
diction. In Fig. 5, the numerically obtained self-consistent
fields in Fig. 5(a) are presented along with the predicted
volume fraction distributions after one million iterations in
Fig. 5(b) with the prediction error as small as O(10~*). As can
be seen here, the predicted volume fractions are visually in-
distinguishable from the pseudospectral solutions, suggesting
that the PINNs can learn the correct copolymer morphology
provided the correct self-consistent fields. The loss plot in
Fig. 5(c) demonstrates how each loss term is optimized during
the iteration process. It is shown that all the loss terms decay
fairly quickly within the first 200 000 iterations.

b. Initialization with pretrained parameters. The pre-
trained parameters obtained from [0.5,21] are used to initialize
the full PINN framework (see Fig. 2) for other sets of [ f, x N]
to prevent the network parameters from being trapped in the
trivial solution. In Fig. 6, we choose [f, xN] = [0.5, 18],
[0.5,25], [0.4, 18], and [0.4,21] for comparison. As first
seen from the pseudospectral results (solid lines), when the
interaction parameter is increased at a fixed overall frac-
tion [comparing Figs. 6(a) with 6(b) and 6(c) with 6(d)],
the volume fraction profiles show broader plateaus with
sharper interfaces between the AB lamellae. The sharper AB
transition is accompanied by visible local variations in the
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FIG. 5. Results for AB-block copolymers at [f, xN] =

[0.5, 21]: (a) Input self-consistent fields, (b) volume fractions (A in red and B

in green) obtained from the PINN prediction (circular markers) and the pseudospectral method (solid lines), and (c) loss plot for the PINN

training.

self-consistent fields which balance the pressure field, £(z).
On the other hand, as the volume ratio changes at the fixed AB
interaction [comparing Fig. 6(a) with Fig. 6(c)], the fraction
of the dominant lamellar region occupied by a given species
adjusts following the mass conservation.

Once the network parameters are initialized, the two FNNs
are optimized with different learning rates (n,, n,), where
ng is the learning rate of the FNN for partition functions,
and 7, is the learning rate of the FNN for self-consistent
fields, respectively. A piecewise learning rate scheduler is
also employed to decrease the learning rate gradually during
optimization. We separately vary x N and f to compare the
learning performance of the PINNs. When x N is increased at
f=0.5, [ng, ny] is initially set to be [10~*, 1073] to allow
the lower FNN for the fields to more quickly adapt to the new

parameters while the upper FNN may resolve the partition
functions more robustly. In contrast, as f is changed, part
of the sample points originally used to represent phase A is
now shifted to represent phase B. Therefore, we choose the
initial learning rate for the fields to be one order of magnitude
smaller than that for the partition functions, i.e., [y, nw] =
[1073, 107#], so that the network parameters for the chemical
potential fields may be slowly adjusted to the new values and
the partition functions may be updated accordingly. The PINN
results in Fig. 6 are presented in terms of circular symbols. As
in the pretraining process, the loss function is minimized by
the same set of hyperparameters, and the results are obtained
from 20000 epochs of full-batch, fixed sampling training.
From the close agreement between the PINN predictions and
the pseudospectral solutions, it is suggested that initialization
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FIG. 6. Volume fraction distributions (¢) and self-consistent fields (w) of AB-block copolymers in a fixed periodic domain for [f, x N]
equal to (a) [0.5, 18], (b) [0.5,25], (c) [0.4, 18], and (d) [0.4,21]. The PINNs are initialized with pretrained parameters for the system
of [f, xN] = [0.5, 21] followed by a full-batch, fixed-sampling training. The PINN predictions (circular markers) are compared with the

pseudospectral solutions (solid lines) for phases A (red) and B (green).

with pretrained network parameters is feasible in predicting
the lamellar microstructure of diblock copolymers described
by the SCFT equations in a fixed periodic domain.

c. Prediction with varied domain size. In reality, as the
parameter set of [f, x/N] varies, the characteristic length

scale of one period of the thermodynamically stable lamellar
morphology changes accordingly to accommodate the varia-
tions in polymer fractions and interspecies affinity. Therefore,
we allow the computational domain size to vary in accor-
dance with the variation of [f, xN] to resolve the periodic
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FIG. 7. Volume fraction distributions (¢) and self-consistent fields (w) of AB-block copolymers in a varied periodic domain for [f, xN]
equal to (a) [0.5, 18], (b) [0.5, 25], (c) [0.4, 18], and (d) [0.4, 21]. The PINNSs are again initialized with pretrained parameters for the system
of [f, xN] = [0.5, 21] followed by a full-batch, fixed sampling training. The PINN predictions (circular markers) are compared with the

pseudospectral solutions (solid lines) for phases A (red) and B (green).

microstructure corresponding to the global free energy mini-
mum described by the polymer SCFT. In Fig. 7, the results for
the same parameter sets as in Fig. 6 are compared. In general,
the main characteristics of the volume fraction distributions
and the self-consistent fields presented here are similar to
those in Fig. 6. However, it is observed that the thermody-

namically stable lamellar structure exhibits more well-defined
A-rich or B-rich phases with clearer plateaus in ¢4(z) and
¢p(z). Consistent with the morphological changes, the corre-
sponding variations in wy(z) and wg(z) are more substantial.
The PINN results are obtained from 200000 epochs of
full-batch, fixed sampling training for the same parameter sets
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FIG. 8. The variations of free energy vs epoch for [f, xN] equal to (a) [0.5, 21], (b) [0.5, 18], (c) [0.4, 21], and (d) [0.4, 18]. The free
energy of the reference disordered state: é—‘; = xNf(1 — f)isequal to (a) 5.25, (b) 4.5, (c) 5.04, and (d) 4.32.

as in Fig. 6, with the periodicity for each case been determined
from the pseudospectral solutions of the SCFT equations.
While there are some noticeable discrepancies between the
pseudospectral results and the PINN predictions, the overall
generality of the network parameters for varied periodicity
is satisfactory. This suggests that pretrained parameters for
one set of [f, xN] are sufficient to properly initialize the
PINNs for a different set of [f, xN], even if the periodic
spatial domain is altered. As the thermodynamically stable
phase should be associated with a minimized free energy,
we monitor the variation of the free energy calculated using
Eq. (7) during training. Starting from the pretrained system
parameter state in Sec. IIIB 1 a, the free energy variations
for [f, xN]1 = [0.5, 21], [0.5, 18], [0.4, 21], and [0.4, 18] are
separately compared in Fig. 8. When [f, xN] and the asso-
ciated domain size are varied, the free energy immediately
drops as the network parameters originally optimized for a
smaller domain size suddenly are required to conform with
the target physical state. The temporarily decreased energy
does not correspond to the thermodynamically stable state,
as the loss function is not yet minimized. During the training
process, this disturbed free energy gradually reaches a new
plateau value smaller than the reference one for the disordered
state, ]i—l; = xNf(1 — f). This result indicates that the ther-
modynamic consistency is also captured during the update of
the PINN parameters.

2. Inverse prediction

The examples discussed so far demonstrate the forward
representation of SCFT solutions using PINNs. Nevertheless,

one unique feature of the PINN framework is its capability to
solve the inverse problem [8]. Once the PINNSs fully represent
the PDE with embedded physical laws through the trained net-
work parameters, the inverse discovery of physical parameters
or spatial fields inferred by the observations can be realized.
This would be distinct from traditional numerical approaches
where predictions of solutions for given parameter sets can
only be achieved in a trial-and-error manner. Two scenarios
that exemplify potential applications using our devised PINNs
framework are considered in this section.

a. Discovery of interaction parameter. In general, a PDE
can be expressed as 3—‘; + O[u(z, s); A1 =0, where O is a
nonlinear operator, X is a characteristic parameter, and u rep-
resents the hidden solution. In our case, u can be ¢, qT, wa,
or wg. By treating A as a trainable parameter, it is possible to
make the PINNs predict the value of A that best describes a
given set of observable data {(z}, s',), u,}*™* by minimizing
the loss function with an additional loss term Jp,, (®):

Nbuata

LS (e o)) — ]

M Data . —

JData(®) = (33)

Exploiting this concept, we treat the characteristic Flory-
Huggins parameter x N as a trainable parameter and perform
the training process with given chemical-potential fields as
the training data. The objective is to obtain x N and volume
fraction distributions simultaneously provided the designed
self-consistent fields. Starting from the procedure of training
with known fields (Sec. III B 1 a), we minimize the loss func-
tion J(®) with ® containing the network parameters of the
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FIG. 9. Predicted results with known self-consistent fields for
[f, xN]1 =[0.5, 15] as the training data. (a) Volume fraction distri-
butions, where the PINN predictions with the resampling scheme
(circular markers) are compared with the pseudospectral solutions
(solid lines) for A (red) and B (green). (b) Convergence of the PINN-
predicted Flory-Huggins interaction parameter (solid line) compared
with the actual value (dashed line).

upper FNN for the partition functions as well as y N. Treating
the pseudospectral fields obtained for [f, x N] = [0.5, 15] as
the training data in Jpa, (®), both the volume fraction distri-
butions and the interaction parameter are successfully found
in Fig. 9. The result suggests that the PINNs indeed “see” the
parameter space in a self-consistent manner, and the correct
interaction parameter is embedded in the chemical potential
fields.

b. Discovery of intrinsic self-consistent fields. A more
stringent test would be to consider the observed volume frac-
tion distributions as known data and inversely predict the
corresponding self-consistent fields. The training data are thus
the desired copolymer volume fractions sampled at different
locations, {zb, (¢} p, ¥ p)}ir;. In the previous example with
the data loss being defined according to Eq. (33), minimiz-
ing the data loss is done straightforwardly in terms of the
actual output of the FNN. By contrast, in this case the data
loss term is calculated by the mean-square error between the
training data {¢} », @} »}"; and the overall PINN predictions

{@a(zh), pp(zh)}",. The data loss term for this problem is

defined as
_V3im 1Z9PY)
Ip(©) = (PP} + (Ps) (34)
with
P =¢a2) — ¢ p(2) (35)
and
Py = ¢p(2) — ¢} p(2). (36)

The training data correspond to the integral of the FNN
outputs, and the objective is to obtain the whole parameter
set of the FNN for fields instead of just a single parameter.
Therefore, this inverse problem is inherently more compli-
cated. We again consider the system of [f, x N] = [0.5, 15] to
demonstrate the proposed inverse scheme. The pseudospectral
volume fraction distributions are chosen as the “observable”
training data. To efficiently acquire the desired training data
of volume fractions from arbitrarily chosen spatial points, an
extra FNN is separately introduced to fit the target volume
fraction distributions by minimizing the mean-square error
between its output and the pseudospectral solutions. To further
ensure that the PINNs learn from the desired volume fraction

@),

o
©00°

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Z/Ro

FIG. 10. Results for the inverse discovery of self-consistent mor-
phologies with known volume fraction distributions for [f, xN] =
[0.5, 15] as the training data. (a) The PINN predictions for the vol-
ume fractions using the resampling scheme (circular markers) are
compared with pseudospectral solutions (solid lines) for A (red) and
B (green). (b) The corresponding results for the self-consistent fields
are presented.
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distributions, we constantly resample data points along the
z axis to determine @4(z) and @g(z) in Jo(®) and Jp(®) for
each iteration. In Fig. 10, the distributions and fields predicted
by the PINNs with y3 = y4 = 500 are compared with the
pseudospectral results. It can be seen that PINNs roughly cap-
ture the main characteristics of the self-consistent fields even
though the networks only indirectly learn from the integral of
the upper FNN for the partition functions.

Before ending this section, a few remarks regarding the
inverse prediction are given. First, although xN is selected
as the parameter to be discovered, in principle, other system-
specific parameters can be individually or simultaneously
trained in this manner provided a properly initialized PINN
framework. For the discovery of self-consistent fields, it is
anticipated that a given morphology such as one observed
or designed experimentally can be used as the input data
for PINNs to estimate the corresponding intrinsic potential
fields. We have tested our framework by assigning an arbi-
trary volume fraction profile as the PINN input. Suppose the
input morphology is inconsistent with the governing equa-
tion and/or the imposed constraints. In that case, either the
resulting ws and wp show random profiles or the value of the
loss does not decay. Therefore, if the predicted fields show
irregular patterns without a well-defined periodicity or if the
training loss fails to be minimized, the input volume fraction
distribution may not be a solution to the specified SCFT
equations. This inconsistency between the input data and the
governing equations may also indicate that modifications to
the governing equations should be taken action to describe the
system of interest more adequately.

IV. CONCLUSIONS

In this work, the one-dimensional polymer SCFT equa-
tions were solved using the PINN framework, where the
hidden solutions for PINNs include the segmental parti-
tion functions and self-consistent fields. Both the systems
of linear homopolymers and AB-block copolymers were ex-
amined. We obtained the universal uniform volume fraction
distribution in the test system of linear homopolymers. For
AB-block copolymers of given [f, x N] sets associated with
the phase separation condition, the expected lamellar struc-
tures were forwardly predicted if the network parameters were
first properly initialized through the pretraining procedure
with correct self-consistent fields. We have shown that the
pretraining procedure is feasible for fixed and varied com-
putational domains. The capability of the inverse prediction
using PINNs was demonstrated by two examples, where the
predictions were performed on the basis of known or observ-
able data. In the first example, given the known self-consistent
fields, the reduced interaction parameter was predicted in
conjunction with the lamellar volume fraction distributions.
Provided the observed or desirable AB-block distribu-
tions, the key characteristics of the embedded chemical-
potential fields in the system were captured in the second
example.

The pretraining of network parameters employed here
exemplifies the effectiveness of a good initialization.

Given the available numerical solutions for polymer SCFT
problems, such an initialization process can significantly re-
duce the convergence time. Our results also suggest that the
accessible solution for one set of [f, xN] can be practical
to initialize the PINNs for systems of different parameter
space. For cases where correct results are intractable to ob-
tain beforehand, one may employ other techniques, including
generating preliminary results by first solving the low-fidelity
inverse problem with a small number of iterations [22]. When
there are multiple free energy minimums associated with
metastable solutions, the usage of adaptive activation func-
tions and the inclusion of L2 regularization in the loss function
may also help in avoiding spurious convergence to a local
minimum [42]. With the versatility of combining with other
strategies or training algorithms, once the necessary physical
constraints are appropriately integrated into the loss function,
the devised deep learning SCFT solver may be generalized to
study the phase separation or microstructures of other block
copolymer systems in multiple dimensions [13—15], polymer
brushes [10-12], or more complicated polyelectrolyte systems
such as polyampholytes [43,44].

The capacity to deal with inverse problems makes PINNs
advantageous as PDE solvers. In contrast to numerical tech-
niques that solve SCFT equations for known parameters and
the prediction for hidden parameters can only be done in
a trial-and-error manner, the inverse discovery of embedded
physical parameters or potential fields presented here sug-
gests that PINNs can be a powerful tool in material screening
and the deduction of new governing equations. As elabo-
rated in the section of discovery of self-consistent fields, our
implementation shows that the thermodynamic consistency
between the microstructure and potential fields is automati-
cally encoded once the NN parameters are well-trained for
the prescribed PDEs. Consequently, the PINN framework
may also be iteratively trained to seek the most suitable
physical constants or to determine which terms in the gov-
erning equations to keep for particular applications. Other
PDEs for predicting the phase separation and the evolution
of morphologies include the Cahn-Hilliard equation in the
phase-field modeling [45—-47]. Recent attempts have shown
that machine learning algorithms can accelerate the pre-
diction of microstructures described by the Cahn-Hilliard
equation [48,49]. We, therefore, envision that the presented
physics-informed framework may also be employed in the
phase-field predictions by including the relevant residual
terms that regularize the NN parameters to conform with the
governing equations.
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