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Decoding polymer self-dynamics using a two-step approach
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The self-correlation function and corresponding self-intermediate scattering function in Fourier space are
important quantities for describing the molecular motions of liquids. This work draws attention to a largely
overlooked issue concerning the analysis of these space-time density-density correlation functions of polymers.
We show that the interpretation of non-Gaussian behavior of polymers is generally complicated by intrachain
averaging of distinct self-dynamics of different segments. By the very nature of the mathematics involved, the
averaging process not only conceals critical dynamical information, but also contributes to the observed non-
Gaussian dynamics. To fully expose this issue and provide a thorough benchmark of polymer self-dynamics, we
perform analyses of coarse-grained molecular dynamics simulations of linear and ring polymer melts as well as
several theoretical models using a “two-step” approach, where interchain and intrachain averagings of segmental
self-dynamics are separated. While past investigations primarily focused on the average behavior, our results
indicate that a more nuanced approach to polymer self-dynamics is clearly required.
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I. INTRODUCTION

Brownian motions are an important facet of polymeric
liquid dynamics. According to the classical theory [1,2], a
Brownian motion starting from the origin at time t = 0 is
characterized by a Gaussian spatiotemporal probability den-
sity function (PDF) Gs(r, t ) [3]:

Gs(r, t ) = 1

(4πDt )3/2
exp

(
− r2

4Dt

)
, (1)

where D is the diffusivity and r is the position of the particle.
And the corresponding mean-squared displacement 〈r2(t )〉
(MSD) has a linear time dependence:

〈r2(t )〉 =
∫

r2Gs(r, t ) dr = 6Dt . (2)

It is well known that deviations from this classical example
often occur in polymeric materials [4]. Anomalous, subdiffu-
sive behavior of polymer melts has been widely observed and
extensively studied by experiments [5–9], theories [4,10–13],
and computer simulations [14–18]. While significant atten-
tion has been given to the segmental or center-of-mass (c.m.)
mean-squared displacement in these studies, the underlying
probability density function (self-correlation function), which
contains crucial information about polymer real-space self-
dynamics, has received little scrutiny. In particular, despite
some sporadic discussions, there are no systematic investi-
gations about the non-Gaussian (sub)diffusion behavior of
polymer melts at temperatures far above the glass transition.
The current study attempts to fill in this gap by detailed
analysis of molecular dynamics simulations. Recently, we
presented a comprehensive analysis of spatial correlations of
polymer dynamics in the reciprocal space [19]. The current
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work turns attention to the real-space dynamics, with the focus
on the self-correlation functions. Properly addressing polymer
melt self-dynamics, however, requires attention to a more gen-
eral and largely overlooked issue concerning the computation
of self-correlation and self-intermediate scattering functions
of polymers.

The self-correlation function (self-part of the van Hove
function) [20–22] Gs(r, t ) of a particle system, often in the
context of molecular dynamics simulations, can be computed
as follows:

Gs(r, t ) = 1

Ntotal

Ntotal∑
i=1

〈δ{r − [ri(t + t ′) − ri(t
′)]}〉, (3)

where Ntotal is the total number of particles, ri(t ) is the position
the ith particle at time t , and 〈· · · 〉 stands for proper ensemble
and time averagings. For the sake of simplicity, we set t ′ = 0
from this point onward in our discussions. The corresponding
self-intermediate scattering function Fs(Q, t ) is

Fs(Q, t ) =
∫

Gs(r, t )e−iQ·r dr

= 1

Ntotal

Ntotal∑
i=1

〈exp{iQ · [ri(t ) − ri(0)]}〉, (4)

with Q being the scattering wave vector. Without question,
Eqs. (3) and (4) should be applicable to both atomic and poly-
meric liquids. However, as we shall explain in detail in Sec. II,
the interchain and intrachain averaging processes in Eqs. (3)
and (4) bury important information of polymer self-dynamics.
In particular, the non-Gaussian parameter α2(t ), defined by
the second and fourth moments of Gs(r, t ),

α2(t ) = 3
∫

r4Gs(r, t ) dr

5
[ ∫

r2Gs(r, t ) dr
]2 − 1 = 3〈[ri(t ) − ri(0)]4〉

5〈[ri(t ) − ri(0)]2〉2
− 1,

(5)
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can be strongly affected, producing a somewhat distorted
view of the non-Gaussian displacement at the segmental level.
Concrete arguments and examples supporting the above state-
ments will be supplied in Secs. II and III. To dissect the
self-dynamics defined by Eqs. (3), we perform analyses of
theories and simulations using a “two-step” approach, where
interchain and intrachain averagings of segmental motions
are separated. In doing so, this study provides a thorough
characterization of polymer melt self-dynamics in real space.

To place the results reported herein in the context of other
related studies, two comments are in order. First, the main
objective of our investigation is to analyze the real-space
self-dynamics of polymers at relatively large length scales
and long timescales, and at temperatures well above the glass
transition. Instead of focusing on the α relaxation [23–27],
the current analysis is concerned with the non-Gaussian be-
havior of slow polymer melt dynamics. On the other hand,
an intriguing question is to what a degree the techniques
developed for glassy liquids [28–30] can be applied to study
the heterogeneities in polymer melt dynamics at high tem-
peratures [31,32]. Second, while previous neutron spin-echo
spectroscopy (NSE) experiments and computer simulations
have suggested non-Gaussian self-dynamics in both linear and
ring polymers [33–36], the molecular origin of these obser-
vations is yet to be clarified. In particular, the influences of
entanglement and chain architecture on the functional form
of the self-correlation function Gs(r, t ) have not been sys-
tematically explored. Using a B-spline fitting algorithm based
on squared distance minimization [37], single-molecule fluo-
rescence imaging experiments of entangled F-actin solutions
demonstrated that the probability density function of seg-
mental displacement perpendicular to the tube axis Gs(r⊥, t )
exhibits an exponential tail, which can be further linked to the
anharmonicity of the tube confining potential [8]. Neverthe-
less, a general knowledge about the self-correlation function
of entangled polymers is still not available, despite our recent
analysis of intermediate scattering functions in the reciprocal
space [19].

On the technical side, polymer self-motions on relatively
short time and length scales can be experimentally probed
by quasielastic neutron scattering [38–40]. However, access-
ing melt self-dynamics at longer time and length scales has
remained challenging for inelastic neutron scattering tech-
niques [7,41]. Therefore, this work employs coarse-grained
molecular dynamics simulations to computationally explore
the self-dynamics of linear and ring polymer melts of different
degrees of polymerization, at temperatures well above the
glass transition. As stated above, a key idea of our analysis
is to adopt a two-step approach to polymer self-dynamics.
Specifically, we explicitly consider the self-correlation func-
tion Gs(r, t ) as an intrachain average of the segmental
self-correlation function Gs(r, t ; i), with Gs(r, t ; i) being an
interchain average of the probability density distribution of
displacement of segment i at correlation time t . Such a sep-
aration of intrachain and interchain averagings is critical for
a lucid understanding of non-Gaussian self-dynamics in poly-
mers.

Before diving into the detailed description of our methods
and results, it is helpful to say a few words about the term
“heterogeneity,” which we shall use in this paper. The concept

of heterogeneity is frequently invoked in studies of dynamics
of glassy liquids [42–44]. Here we apply this concept in the
narrow context of a non-Gaussian self-correlation function,
where a heavy tail is observed. This type of non-Gaussian
probability density function implies a broader distribution of
particle displacement, relative to the Gaussian distribution. In
a simplified picture, this amounts to the existence of fast-
and slow-moving particles [30,43,45]. It is in this context
that we shall discuss the heterogeneities of polymer melt
self-dynamics.

II. A TWO-STEP APPROACH TO POLYMER
SELF-DYNAMICS

A. Description of the method

To properly understand the self-dynamics of polymers, it
is helpful to separate the interchain and intrachain averaging
processes in computing the self-correlation function. Let us
consider a polymer melt consisting of M chains, each with N
segments (beads), the self-correlation function Gs(r, t ) for the
entire system can be explicitly written as

Gs(r, t ) = 1

N

1

M

N∑
i=1

M∑
α=1

〈
δ
{
r − [

rα
i (t ) − rα

i (0)
]}〉

= 1

N

N∑
i=1

Gs(r, t ; i), (6)

where rα
i (t ) is the position of segment i of chain α at time t

and Gs(r, t ; i) is the self-correlation of segment i defined as

Gs(r, t ; i) ≡ 1

M

M∑
α=1

〈
δ
{
r − [

rα
i (t ) − rα

i (0)
]}〉

. (7)

It is easy to see that Gs(r, t ) is the intrachain average of
the segment dependent self-correlation function Gs(r, t ; i),
whereas Gs(r, t ; i) is the interchain average of the probability
density distribution of displacement of segment i. This decom-
position of the interchain and intrachain averaging processes
is schematically illustrated in Fig. 1. Obviously, for such a
decomposition to be meaningful, a consistent segment label-
ing scheme for all chains is required. The benefit of explicit
consideration of Gs(r, t ; i) is twofold: on the one hand, it per-
mits investigations of self-dynamics on the individual segment
level; on the other hand, it also affords the opportunity to
explore the heterogeneity of self-dynamics at the chain level.

Similarly, the total segment mean-squared displacement in
the laboratory frame g1(t ) [14] can be decomposed based on
the two-step approach as

g1(t ) =
∫

Gs(r, t )r2 dr

= 1

N

1

M

N∑
i=1

M∑
α=1

〈[
rα

i (t ) − rα
i (0)

]2〉

= 1

N

N∑
i=1

g1(t ; i), (8)
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FIG. 1. Schematic illustration of the interchain and intrachain
averaging processes in computing the average self-correlation func-
tion Gs(r, t ). First, the distribution of displacement 〈δ{r − [rα

i (t ) −
rα

i (0)]}〉 is averaged over M chains for the ith segment. This inter-
chain averaging yields the self-correlation function Gs(r, t ; i). Next,
the self-correlation function Gs(r, t ; i) is averaged over N segments
(intramolecular averaging), producing Gs(r, t ). Note that a consistent
segment labeling scheme is used for all chains.

with

g1(t ; i) ≡
∫

Gs(r, t ; i)r2 dr = 1

M

M∑
α=1

〈[
rα

i (t ) − rα
i (0)

]2〉
.

(9)
g1(t ; i) is the interchain average of mean-squared displace-
ment for segment i and g1(t ) is the intrachain average of
g1(t ; i). Such an idea was touched upon in a previous com-
putational investigation of entangled polymer dynamics [17],
but has not been explored systematically in general.

From the self-correlation function Gs(r, t ; i), the non-
Gaussian parameter α2(t ; i) for each segment i can be
computed as

α2(t ; i) = 3
{

1
M

∑M
α=1

〈[
rα

i (t ) − rα
i (0)

]4〉}
5
{

1
M

∑M
α=1

〈[
rα

i (t ) − rα
i (0)

]2〉}2 − 1

= 3
∫

r4Gs(r, t ; i) dr

5
[ ∫

r2Gs(r, t ; i) dr
]2 − 1. (10)

It is important to realize that the commonly used non-
Gaussian parameter α2(t ) defined by Eq. (5) is not a simple
arithmetic average of α2(t ; i): α2(t ) �= N−1 ∑N

i=1 α2(t ; i). In
fact, it is possible to have α2(t ) > 0 with α2(t ; i) = 0 for each
segment, as in the case for the Rouse model. This simple
mathematical fact implies that the intrachain averaging pro-
cess of self-dynamics may engender non-Gaussian behavior
in the average self-correlation function Gs(r, t ) and the corre-
sponding parameter α2(t ).

The proposed “two-step” approach is a natural way of
thinking about polymer self-dynamics. However, previous
investigations have primarily focused on the average density-
density self-correlations in real [Gs(r, t )] and reciprocal
spaces [Fs(Q, t )], as well as the corresponding g1(t ), and
α2(t ). The new method helps to clarify the molecular origin
of non-Gaussian behavior of polymers, by providing a close
view of self-dynamics at two levels. The self-dynamics at
the segment level is characterized by Gs(r, t ; i), which is the
interchain average of the probability density distribution of

displacement of segment i. As shall be demonstrated, con-
strained molecular motions in polymers (e.g., reptation, as
opposed to free Rouse motions) produce an exponential tail
in Gs(r, t ; i), resulting in non-Gaussian behavior. Addition-
ally, similar to the case of atomic fluids, non-Gaussianity in
Gs(r, t ; i) can also arise from “intermolecular heterogeneities”
in polymer self-dynamics. For long chains, such hetero-
geneities may come from local fluctuations of entanglement
constraints. At the chain level, variations of Gs(r, t ; i) among
different segments can give rise to non-Gaussian behavior as
well. This may be regarded as “intramolecular heterogeneity”
in polymer self-dynamics. Supporting evidence of the above
statements is given in the following subsection and in Sec. III.

B. Application to theoretical models

To see the benefits of the two-step approach, let us first
recall some well-known results of the Rouse model [46].
The model predicts that the mean-squared displacement
g1,linear (t ; i) of segment i of a linear chain, defined by Eq. (9),
is described by the following equation [4]:

g1,linear (t ; i) = 6DGt + 4Nb2

π2

{ ∞∑
p=1

1

p2
cos2

( pπ i

N

)

× [1 − exp(−t p2/τR,linear )]

}
, (11)

where DG is the center-of-mass diffusion coefficient, N is the
number of segments (beads) in a chain, b is the segment size,
and τR,linear is the Rouse relaxation time. In the long-time
limit, the center-of-mass diffusion dominates, and g1(t ; i) is
insensitive to the position of the segment in the chain. On short
timescales (t 	 τR), however, the second term of Eq. (11)
takes over and g1(t ; i) is strongly dependent on segment
position i.

On the other hand, the self-intermediate scattering function
Fs(Q, t ) of the Rouse model is given by

Fs(Q, t ) = 1

N

N∑
i=1

〈exp{iQ · [ri(t ) − ri(0)]}〉

= 1

N

N∑
i=1

Fs(Q, t ; i)

= 1

N

N∑
i=1

exp

[
−1

6
Q2g1,linear (t ; i)

]
, (12)

where Fs(Q, t ; i) ≡ 〈exp{iQ · [ri(t ) − ri(0)]}〉 is the self-
intermediate scattering function for segment i. The dynamic
Gaussian approximation [4] is used for each Fs(Q, t ; i) in
the derivation of the last equality of Eq. (12). While we are
not aware of a strict theoretical justification for invoking the
Gaussian approximation, the validity of this assumption can
be shown numerically by Brownian dynamics simulations. In
other words, the Rouse model yields Gaussian self-dynamics
for each segment i. It is important to recognize that al-
though each self-intermediate scattering function Fs(Q, t ; i)
in Eq. (12) is Gaussian, the corresponding arithmetic average
Fs(Q, t ) is weakly non-Gaussian for a linear chain, due to the
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variation of segment mean-squared displacement g1(t ; i) [47].
Since the Fourier transform of a Gaussian function is still a
Gaussian function, the self-correlation function Gs(r, t ) of the
Rouse model is given by

Gs(r, t ) = 1

N

N∑
i=1

Gs(r, t ; i)

= 1

N

N∑
i=1

(
3

2πg1,linear (t ; i)

)3/2

× exp

(
− 3r2

2g1,linear (t ; i)

)
. (13)

Similarly, while the self-correlation Gs(r, t ; i) of each seg-
ment i takes the form of a Gaussian function, the averaged
self-correlation Gs(r, t ) is non-Gaussian for a linear chain:
the arithmetic average of Gaussian functions with differ-
ent variances is non-Gaussian. In the language of dynamic
heterogeneity [43], which is narrowly defined in the Intro-
duction, we may say that the non-Gaussian behavior of the
Rouse model originates from intrachain heterogeneity of self-
dynamics. We note that the weak non-Gaussian feature of
self-dynamics in the Rouse model is not widely recognized
in the literature. Further discussions of this issue can be found
in Sec. III and Appendix B.

The tube model of Doi and Edwards paints a different
picture for the self-intermediate scattering function of entan-
gled polymers. Specifically, it predicts that the Fs(Q, t ; i) of
each reptating chain segment i is described by the following
equation [4,48]:

Fs(Q, t ; i) =
∞∑

p=1

{
2μ

μ2 + α2
p + μ

cos2

[
2αp

L

(
si − L

2

)]

× exp

(
− 4α2

pt

π2τd

)

+ 2μ

μ2 + β2
p + μ

sin2

[
2βp

L

(
si − L

2

)]

× exp

(
− 4β2

pt

π2τd

)}
, (14)

where μ = 1
2 Q2R2

G, with RG being the radius of gyration,
si is the curvilinear segment index which lies between
0 and the contour length L, τd is the reptation (disen-
gagement) time, and αp and βp are the solutions of the
equations αp tan αp = μ and βp cot βp = −μ. In contrast to
the Rouse model, the tube model envisions intrinsic non-
Gaussian self-correlation for each segment i. The average
self-intermediate scattering function Fs(Q, t ), not surpris-
ingly, is also non-Gaussian [4,19,48,49], which has been
examined in detail in our previous study [19]. The mean-
squared displacement of each segment g1(t ; i) is given
by [4,48]

g1(t ; i) = 2Dt

Z
+ 4Nb2

π2

∞∑
p=1

1

p2

× cos2
( pπsi

L

)
[1 − exp(−t p2/τd )], (15)

with D being the curvilinear diffusion coefficient and Z the
number of entanglements per chain. Eq. (15) has the same
mathematical structure as Eq. (11), although this is not nec-
essarily a profound result [48]. At short time (t 	 τd ), the
second term of Eq. (15) dominates and g1(t ; i) varies strongly
with i. Therefore, unlike the case of the Rouse model, the
non-Gaussian behavior in the tube model has two contributing
factors: the intrinsic non-Gaussian behavior of each segment
and the variation of self-dynamics (mobility) within a chain.

The preceding analyses of the Rouse and tube models
show that the proposed two-step method is an effective and
natural approach to polymer self-dynamics. Nevertheless,
existing computational studies have directed attention only
to the averaged response [e.g., g1(t ), Fs(Q, t ), and α2(t )],
without a proper nuanced consideration at the molecular
level [33,34,50–54]. While polymer α relaxation is not the
focus of the present investigation, the two-step analysis should
be equally applicable to this problem. It is well known that the
so-called chain-end effect plays an important role in the glass
transition phenomenon of polymers [55,56]. The short-time
self-dynamics of polymers (on the timescale of τα), therefore,
should generally depend on the relative position of the seg-
ment within a chain. An illustration of two-step analysis for
the polymer α relaxation problem will be provided towards
the end of this paper.

Having laid down the basic idea of the two-step ap-
proach, we proceed to perform a thorough examination of
the self-dynamics of linear and ring polymer melts, us-
ing coarse-grained molecular dynamics simulations of a
semiflexible bead-spring model with purely repulsive interac-
tions [18,57,58]. The results are analyzed and interpreted with
the two-step method, and compared with several theoretical
models including the Rouse model, the classical tube model,
and the slip-spring model. The main objective of this exercise
is to provide a detailed characterization of the real-space self-
dynamics of polymer melts, through the lens of the segment
dependent self-correlation function Gs(r, t ; i), the correspond-
ing mean-squared displacement g1(t ; i), and the non-Gaussian
parameter α2(t ; i). As indicated in the Introduction, the α

relaxation of polymers is not the focus of the current investi-
gation. The short-time behavior is therefore not shown for the
most part. Nevertheless, to demonstrate the potential applica-
tions of the two-step approach to glassy dynamics, molecular
dynamics simulations of a coarse-grained bead-spring model
with attractive interactions are briefly discussed as an exam-
ple at the end of Sec. III. The details of our computational
investigations, which include both molecular dynamics (MD)
and Brownian dynamics (BD) simulations, are provided in
Appendix A.

To properly compare the behavior of polymers of different
degrees of polymerization (chain length) N , we adopt normal-
ized segment indices in our analysis:

i∗ ≡ i

N
. (16)

In the case of the classical tube theory, i∗ ≡ si/L. Addition-
ally, the segments in a linear chain are labeled sequentially
from one end to another (i = 1, 2, . . . , N), which is the most
natural choice.
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III. RESULTS AND DISCUSSION

This section is organized as follows. The basic phe-
nomenology of real-space self-dynamics of linear and ring
polymers from molecular dynamics simulations will first
be described in terms of the conventional, average self-
correlation function Gs(r, t ), mean-squared displacements
[g1(t ) and g3(t )], and non-Gaussian parameter α2(t ). Next,
the two-step approach is applied to analyze the origin of
the observed non-Gaussian behavior. The third part of this
section presents a comparison of the real-space self-dynamics
from simulations with those from several theoretical models,
including the Rouse model, the classical tube model, and
the slip-spring model. Lastly, application of the two-step ap-
proach to polymer glassy dynamics is briefly discussed.

A. Basic phenomenology of average self-dynamics

Coarse-grained linear and ring polymers of five differ-
ent degrees of polymerization N = 20, 40, 100, 300, and
500 were investigated by molecular dynamics simulations
at ρ = 0.85 σ−3 and T = 1.0. It is worth noting that the
Rouse time follows the scaling relations τR,linear = τ0N2 for
linear chains and τR,ring = τ0N2/4 for rings, where τ0 is the
elementary relaxation time of a Rouse segment. Addition-
ally, the entanglement equilibration time of a linear chain
can be evaluated as τe = τ0N2

e , where the number of beads
between entanglements Ne ≈ 28 for the current model and
τ0 ≈ 2.58τ with τ = σ

√
m/ε being the Lennard-Jones (LJ)

time (see Appendix A for details). Figure 2 shows the general
features of the average self-correlation functions Gs(r, t ) from
the simulations. To guide the interpretation of data, Gaussian
distributions of [3/(2πg1)]3/2 exp[−3r2/(2g1)] are presented
as references for Gs(r, t ) at different correlation times. For the
unentangled linear chains of N = 20 and N = 40, their self-
correlation functions Gs(r, t ) exhibit weak deviations from
the Gaussian reference curves at short times (t � τR) and
become Gaussian only when the correlation time is much
longer than the Rouse relaxation time (e.g., t = 10τR). The
self-correlation functions Gs(r, t ) of the long linear chains of
N = 300 and N = 500, on the other hand, show substantial
deviations from the Gaussian distributions on intermediate
timescales (t ≈ 0.1τR and τR). The entanglement equilibra-
tion time τe of these two systems is on the order of 0.01τR.
Therefore, the strong non-Gaussian behavior occurs when
t  τe. To better illustrate the “fat” exponential-like tail of
the non-Gaussian distribution, the normalized self-correlation
functions are presented in the insets of Fig. 2, where r and
Gs(r, t ) are scaled by

√
g1 and [3/(2πg1)]3/2, respectively. In

contrast to the behavior of the linear chains, the Gs(r, t ) of
ring polymers are largely Gaussian regardless of chain length.
Only very weak deviations are observed in rings of N = 300
and N = 500.

To further quantify the self-dynamics of linear and ring
polymers, we compute the mean-squared displacements [g1(t )
and g3(t )] and non-Gaussian parameters α2(t ) for both the
segment and center of mass. The mean-squared displace-
ment data in Figs. 3(a) and 3(b) show that the ring polymers
move faster than their linear counterparts of the same length
N , which is in line with previous MD simulations [57].

FIG. 2. Spatial correlations of the self-correlation function
Gs(r, t ) for linear (a) and ring (b) polymer melts of different de-
grees of polymerization N . Symbols: MD simulations. Dashed lines:
Gaussian function [3/(2πg1)]3/2 exp[−3r2/(2g1)]. Inset: normal-
ized curves of the Gs(r, t ) with x and y axes being r/

√
g1 and

Gs(r, t )/[3/(2πg1)]3/2, respectively.

Since the behavior of mean-squared displacements of lin-
ear and ring polymers in coarse-grained molecular dynamics
simulations has been described at length by Kremer and
coworkers [14,18,57], we shall not repeat such an analysis.
Overall, good agreement is found between our results and
those of the previous investigations.

The average non-Gaussian parameters α2(t ) associated
with the polymer segments are displayed in Fig. 3(c). All
the ring polymers have nearly zero α2(t ) in the entire ob-
served correlation time range, in accordance with the largely
Gaussian function form of Gs(r, t ) function in Fig. 2(b). In
comparison, the α2(t ) of the linear polymers increases with
chain length: the maximum value of α2(t ) starts from α2(t ) ≈
0.1 in N = 20 and reaches α2(t ) ≈ 0.5 in N = 500. The α2(t )
values of the long linear entangled polymers are comparable
to the one observed in glassy polymers, which is around
α2(t ) = 0.4 [23]. Most interestingly, all the non-Gaussian
parameters α2(t ) of the linear chains approach a maximum
around the Rouse relaxation time τR.

The average non-Gaussian parameters α2(t ) for the center-
of-mass self-motions are presented in Fig. 3(d). Similar to the
results in Fig. 3(c), the center of mass of ring polymer exhibits
essentially Gaussian behavior, with α2(t ) ≈ 0. For the linear
chains, the non-Gaussianity of c.m. motions is insignificant
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FIG. 3. Mean-square displacements (a) g1(t ) (total) and (b) g3(t )
(center of mass). (c) Average non-Gaussian parameter α2(t ) for self-
motions of all the segments. (d) Average non-Gaussian parameter
α2(t ) for the center of mass (c.m.). Solid lines: linear polymers.
Dashed lines: ring polymers. Circles: results from Ref. [59] for the
N = 100 linear chain. Pentagrams: results from Ref. [59] for the
N = 100 ring. Note that the peak associated with the α relaxation
falls outside the time window of panel (c). The peak in α2(t ) for α

relaxation is displayed in Fig. 9.

for the short unentangled melts, but becomes substantial in the
entangled systems. Additionally, the maximum of c.m. α2(t )
appears at correlation times longer than the Rouse relaxation
time τR. In the case of N = 300 and N = 500, the α2(t ) keeps
increasing up to ∼9τR and does not reach a maximum within
our simulation time.

The non-Gaussian behavior observed in the average self-
dynamics [Figs. 3(c) and 3(d)] are consistent with a recent
simulation work [59], where the authors also found sig-
nificantly reduced non-Gaussian parameter α2(t ) in ring
polymers. To reconcile such a result with the previous NSE
experiments on unentangled rings [36], it was suggested [59]
that potential contamination by linear chains might have
played a role in the experimental observation. In Sec. IV
we discuss a few additional issues that could affect the in-
terpretation of the NSE data. A definitive reconciliation of
the experimental and simulation results on the ring polymers
is beyond the scope of this work. Nevertheless, as shall be
shown in the following subsections with the two-step analysis,
the cyclic symmetry of a ring polymer does eliminate an
important contributing factor to the non-Gaussian behavior of
the average self-dynamics.

B. Two-step analysis

Having reviewed the general features of the average self-
dynamics of linear and ring polymers from coarse-grained
molecular dynamics simulations (at temperatures far above
the glass transition), we now turn to the proposed “two-step”
analysis to seek a deeper understanding of the observed non-
Gaussian behavior in linear chains and the largely Gaussian
behavior in rings. Additionally, the appearance of a maximum
in α2(t ) around the Rouse relaxation time τR [Fig. 3(c)] also
begs an explanation. To this end, the segment dependent self-

correlation function Gs(r, t ; i), mean-squared displacement
g1(t ; i), and non-Gaussian parameter α2(t ; i) are computed for
each segment and shown in Figs. 4 and 5. In the preceding
discussion of theoretical models, two sources of non-Gaussian
behavior have been identified from a mathematical point of
view. (A more in-depth analysis of theoretical models will
be given in the next subsection.) On the one hand, the vari-
ation of self-correlation function Gs(r, t ; i) along the chain
can give rise to non-Gaussian behavior of the average self-
correlation function Gs(r, t ), even if the Gs(r, t ; i) of each
segment is completely Gaussian (e.g., α2(t ; i) = 0 as in the
Rouse model). On the other hand, entanglement constraints
are expected to produce non-Gaussian behavior for Gs(r, t ; i)
(e.g., the tube model). A proper understanding of the aver-
age self-correlation Gs(r, t ) thus requires a two-step analysis,
where Gs(r, t ; i) serves as a central quantity.

Figure 4 indicates that both aforementioned factors con-
tribute to the average non-Gaussian behavior of linear chains.
On timescales shorter than the terminal relaxation time (τR

for unentangled polymers and τd for entangled polymers),
the non-Gaussian parameter α2(t ; i) is positive on the seg-
ment level for all the chain lengths. At a given correlation
time, α2(t ; i) increases with increase of chain length (Fig. 4),
consistent with the behavior of the average α2(t ). To illus-
trate the variation of segment displacement along the chain,
the normalized mean-squared displacement g1(t ; i)/g1(t ) is
shown in Fig. 4. Similar to the predictions of Rouse-like equa-
tions [Eqs. (11) and (15)], higher relative mobility is found for
the chain ends. Here four details are worth noting. First, for
each chain length, the maximum of the average non-Gaussian
parameter α2(t ) is larger than that of the segment α2(t ; i). This
implies that the variation of segment self-dynamics Gs(r, t ; i)
along the chain is an important contributor to the average
non-Gaussian behavior. A further numerical demonstration of
the intrachain averaging effect on α2(t ) will be given in Fig. 6
below. Second, the largest ratio of g1(t ; i)/g1(t ) predicted
by Eqs. (11) and (15) is approximately 1.8. However, much
higher values (g1(t ; i)/g1(t ) ≈ 3) are observed in entangled
linear polymers (Fig. 4). This is probably due to a lack of
consideration of both local and contour length fluctuations in
the derivation of Eq. (15). Third, the non-Gaussian parameter
α2(t ; i) increases dramatically beyond the correlation time
of τe in the long chains, suggesting that the entanglement
phenomenon enhances “local heterogeneity” in polymer self-
dynamics. This result can be understood as follows: on the one
hand, the entanglement constraints make the segmental dis-
placements parallel and perpendicular to the primitive paths
drastically different; on the other hand, the spatial fluctuations
of entanglements also broadens the distribution of displace-
ment for a given segment i. Therefore, the self-correlation
function Gs(r, t ; i) becomes strongly non-Gaussian at t > τe

in entangled systems. Lastly, Fig. 4 reveals that the non-
Gaussian parameter for each segment α2(t ; i) does not reach a
maximum at τR for the entangled chains. The appearance of a
maximum in the average α2(t ) around τR (Fig. 3) should thus
be mainly attributed to the intrachain averaging of the segment
self-correlation function Gs(r, t ; i) [Eq. (6)].

In the special case of ring polymers, the intramolecu-
lar averaging process of segment self-correlation Gs(r, t ; i)
[Eq. (6)] no longer contributes to the average non-Gaussian
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FIG. 4. Two-step analysis of self-dynamics for linear chains. (a) Self-correlation functions Gs(r, t ; i) of different segments (i∗ = 0, 0.2, and
0.5) at different degrees of polymerization N (N = 20, 40, 300, and 500). Dashed lines: Gaussian reference curves. (b) Full two-dimensional
temporal maps of g1(t ; i)/g1(t ) and α2(t ; i) for different chain lengths. Note that different color bars are used for different chain lengths.

behavior, due to the cyclic symmetry of the molecule (i.e.,
all the segments are identical). Not surprisingly, g1(t ; i) and
α2(t ; i) of the rings show no dependence on the segment
index i (Fig. 5), indicating g1(t ) = g1(t ; i) and α2(t ) = α2(t ; i)
as expected. In contrast to the behavior of linear chains,
the non-Gaussian parameter for each segment α2(t ; i) (“lo-
cal heterogeneity”) remains small up to N = 500. We note
that the concept of entanglement is controversial and poorly
understood for ring polymers. According to the estimated
entanglement spacing Ne,ring from a previous coarse-grained
molecular dynamics investigation [57], the N = 300 and N =
500 rings in our study should be slightly entangled. However,
the strong non-Gaussian behavior associated with entangle-
ment constraints is not observed. This finding suggests that
the nature of entanglement is different in rings—a conclusion
that has also been reached from analysis of other dynamic
properties [57]. As suggested in Ref. [60], a systematical in-

vestigation of collective dynamics through probability density
functions in both real and reciprocal spaces might be helpful
for understanding the difference between entanglements in
linear and ring polymers. Although cooperative motions of
polymer chains are beyond the scope of the current work, they
can be a fruitful area of research in the future.

C. Comparison with theoretical models

The preceding discussions have briefly touched upon the
predictions of the Rouse and tube models. A more in-depth
analysis of these two models will be given based on the two-
step approach in this subsection. The slip-spring model [61],
which is capable of providing a reasonable description of
the self-dynamics of entangled polymers [17,19], will also
be discussed. The main purpose of the current analysis is
not to critically examine any theories of polymer dynamics,
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FIG. 5. Two-step analysis of self-dynamics for rings. (a) Self-correlation functions Gs(r, t ; i) of different segments (i∗ = 0, 0.2, and 0.5) at
different degrees of polymerization N (N = 20, 40, 300, and 500). Dashed lines: Gaussian reference curves. (b) Full two-dimensional temporal
maps of g1(t ; i)/g1(t ) and α2(t ; i) for different degrees of polymerization N .

but to benchmark the segment dependent self-dynamics [e.g.,
Gs(r, t ; i)] from the coarse-grained MD simulations against
three useful models in the literature.

1. Rouse model

The Rouse model predicts that the self-correlation function
Gs(r, t ) of a linear chain is slightly non-Gaussian due to the
variation of Gs(r, t ; i) with the segment index i. By contrast,
such an effect is completely absent in rings as a result of their
cyclic symmetry. Quantitatively, the g1(t ; i) of a Rouse ring
polymer is [4,62]

g1,ring(t ; i) = 6DGt + 4Nb2

π2

×
∞∑

p:even

1

p2
{1 − exp[−t p2/(4τR,ring)]}. (17)

Unlike Eq. (11), the dependence of g1(t ; i) on i vanishes in
Eq. (17), and the self-correlation function Gs(r, t ) is given by

Gs(r, t ) =
(

3

2πg1,ring(t )

)3/2

exp

(
− 3r2

2g1,ring(t )

)
, (18)

which is strictly Gaussian according to the Rouse model.
Figure 6 shows the predictions of the Rouse model for

linear and ring polymers, obtained from Brownian dynam-
ics simulations. A reduced time t∗ = t/τ0 is used to present
the Brownian dynamics data, where τ0 = ζb2/2kBT , ζ is
the friction coefficient, and b the segment size (see Ap-
pendix A for details). In principle, the same results can
be computed by using the analytical expressions [Eqs. (11)
and (13) for linear chains and Eqs. (18) and (17) for rings].
Nevertheless, we employed BD simulations as a direct check
of the dynamic Gaussian approximation. Not surprisingly,
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FIG. 6. Real-space self-dynamics predicted by the Rouse model
for linear and ring polymers of N = 100. (a, b) Self-correlation
functions of different segments Gs(r, t ; i) for linear (a) and ring
(b) polymers, respectively. (c) Self-correlation functions Gs(r, t ) at
different correlation times. Symbols in panels (a)–(c) represent the
Rouse model. The dashed lines are reference Gaussian functions.
The inset in panel (c) displays the normalized self-correlation func-
tion presented in the same way as Fig. 2. (d) Comparison of the
non-Gaussian parameters of different segments α2(t ; i) and the av-
eraged value of all the beads α2(t ). MD: results from linear and
ring polymers with N = 40. (e) Two-dimensional temporal maps
of g1(t ; i)/g1(t ) and α2(t ; i). The vertical dashed lines indicate the
Rouse relaxation time.

good agreement has been found between the analytical and
numerical solutions. According to the Rouse model, the self-
correlation function Gs(r, t ; i) is Gaussian for every segment
i, regardless of the chain architecture [Figs. 6(a) and 6(b)].
However, the average self-correlation function Gs(r, t ) for all
the segments is slightly non-Gaussian for the linear chain, in

contrast to the behavior of the ring [Fig. 6(c)]. As explained
in Sec. II, the non-Gaussianity of the linear chain comes
from the variation of self-dynamics with the segment index
i: the arithmetic average of Gaussian functions with distinct
variances is non-Gaussian. This issue is further illustrated in
Fig. 6(d), where the results of MD simulations of linear and
ring polymers with N = 40 are also added as a comparison.
As noted in the preceding discussion, α2(t ) is generally not
an arithmetic average of α2(t ; i) of individual segments. For
the Rouse model, the average α2(t ) is nonzero over a wide
range of timescales and displays a peak around τR [Fig. 6(d)],
while the non-Gaussian parameters α2(t ; i) of i∗ = 0 and
0.5 remain zero throughout. This behavior is due to the de-
pendence of mean-squared displacement g1(t ; i) (variance of
Gs(r, t ; i)) on the segment position (index) i, which can be
visualized by presenting g1(t ; i)/g1(t ) as a two-dimensional
map [Fig. 6(e)].

Several useful conclusions can be reached from the
comparison of the MD simulations and the Rouse model
predictions for unentangled polymers [Figs. 3–6]. First, the
Rouse model qualitatively captures the variation of mean-
squared displacement g1(t ; i) along the chain: the chain ends
are much more mobile than the middle portion of the chain
on intermediate timescales. It should be noted, however, that
such a “chain-end effect” on polymer slow dynamics is funda-
mentally different from the one observed on short timescales
for polymer α relaxation (see Sec. III D for details). Sec-
ond, the Rouse model fails to conceive the non-Gaussian
behavior of Gs(r, t ; i). To our knowledge, the peculiar seg-
ment dependence of α2(t ; i) observed in the MD simulations
is not predicted by any existing theories. The previous dis-
cussions of the failure of the Rouse model [33,34] placed
emphasis on the c.m. motions. The current analysis provides
additional information about the non-Gaussian behavior of
unentangled polymer melts. Third, similar to the case of the
Rouse model, intrachain averaging of distinct self-correlation
functions Gs(r, t ; i) is a significant contributing factor to the
overall non-Gaussian behavior. The average α2(t ) from the
MD simulations is not only much higher than the α2(t ; i)
of individual segment i, but also has rather different time
dependence [Fig. 6(d)].

2. Tube model

The segment self-intermediate scattering function
Fs(Q, t ; i) of the tube model [Eq. (14)] was first given
in the seminal 1978 paper of Doi and Edwards [48] and
later reiterated in their classical monograph on polymer
dynamics [4]. Surprisingly, this prediction has not been
thoroughly examined against any molecular simulations.
Computational studies in the past primarily focused on
various average mean-squared displacements [i.e., the
so-called g1(t ), g2(t ), and g3(t )] [14,18], which is merely one
aspect of polymer self-dynamics [63]. An in-depth analysis
of the real-space self-dynamics of the classical tube model is
thus necessary. A discussion of an approximate formula for
the average self-intermediate scattering function Fs(Q, t ) and
the corresponding self-correlation function Gs(r, t ) is given
in Appendix C.
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FIG. 7. Real-space self-dynamics of entangled polymers pre-
dicted by the tube model. (a) Self-correlation functions of different
segments Gs(r, t ; i) according to the tube model. Dashed lines:
Gaussian reference curves. (b) Variation of segment mean-squared
displacement g1(t ; i)/g1(t ) along the chain. (c) Variation of the non-
Gaussian parameter α2(t ; i) along the chain.

Equation (14) can be straightforwardly evaluated by nu-
merically finding the solutions of the equations αp tan αp =
μ and βp cot βp = −μ. The real-space self-correlation func-
tion Gs(r, t ; i) is then computed through Hankel transform
of Fs(Q, t ; i). The mean-squared displacement g1(t ; i) can
obtained from the integral g1(t ; i) = ∫

r2Gs(r, t ; i) dr or di-
rectly from Eq. (15). The non-Gaussian parameter α2(t ; i) for
each segment is evaluated from the self-correlation function
Gs(r, t ; i) using Eq. (10).

Figure 7 presents the results of our calculations, where
the reptation time τd = 3ZτR is used as a time unit, with
Z being the number of entanglements per chain. Regardless
of the segment index i∗, the segment self-correlation func-
tion Gs(r, t ; i) exhibits strong non-Gaussian behavior. In the
middle portion of the chain, where Gs(r, t ; i) ≈ Gs(r, t ), the
self-correlation function resembles a Dirac-δ function at small
distances as a result of tube confinement and develops an
exponential-like tail at large distances. Strictly speaking, the
prediction of the tube model is only valid at long correla-
tion time t  τR—a timescale that is difficult to investigate
with simulations of the coarse-grained bead-spring model.
Nevertheless, the MD simulation results can still be useful
for checking the theoretical predictions in a qualitative way.
Our MD simulations show that the self-correlation function
does not display any significantly enhanced distribution at
r ≈ 0. Although the classical tube model envisions varia-
tions of mean-squared displacement g1(t ; i) along the chain,
Eqs. (14) and (15) do not give quantitatively correct results,
due to the lack of a proper consideration of local and con-
tour length fluctuations in the derivation. The largest ratio
of g1(t ; i)/g1(t ) predicted by Eq. (15) is approximately 1.8,
while the difference can be as large as 3.0 in the molecular
dynamics simulations. Lastly, the “strong” tube confinement
effect in this version of the model leads to large non-Gaussian
parameters α2(t ; i) ≈ 0.7. By contrast, the highest value of
α2(t ; i) is approximately 0.4 in the simulations of the N = 500
chain.

FIG. 8. Simulation results of the slip-spring model for N = 64.
(a) Self-correlation functions of different segments Gs(r, t ; i) accord-
ing to the slip-spring model. (b) Self-correlation function Gs(r, t )
at different correlation times. Dashed lines: Gaussian functions.
(c) Comparison of the non-Gaussian parameters of different seg-
ments α2(t ; i) and the averaged values from all segments along a
polymer chain α2(t ). MD: results for the linear chain of length
N = 500 from the MD simulations. (d, e) Two-dimensional temporal
maps of g1(t ; i)/g1(t ) and α2(t ; i).

3. Slip-spring model

The slip-spring model of Likhtman [61] overcomes several
of the aforementioned artifacts of the original tube model [48],
by using “soft” entanglement confinement and introducing
constraint release. Unlike a few other notable slip-link mod-
els [64–66], the slip-spring model considers fluctuations on
small time and length scales and therefore can be directly
compared with coarse-grained molecular dynamics simula-
tion and neutron spin-echo experiments [19,61]. Our previous
investigation [19] showed that the slip-spring model provides
a reasonable description of the self-dynamics of entangled
polymers in the reciprocal space. In this work, we extend
the analysis to the real space. Note that the entanglement
equilibration time in this slip-spring model is τe ≈ t∗. The
results of the slip-spring simulations are displayed in Fig. 8.
Both the exponential tail in Gs(r, t ) and the maximum α2(t )
values of the slip-spring model are comparable to those of the
linear entangled systems in the MD simulations. The artifi-
cial enhancements of both Gs(r, t ; i) and Gs(r, t ) at r ≈ 0 are
also removed [Figs. 8(a) and 8(b)]. Interestingly, the average
non-Gaussian parameter α2(t ) shows a maximum around τR

while the α2(t ; i) of individual segment reaches a maximum
at a much later correlation time. This observation is in broad
agreement with the MD simulations and can be understood
as a result of the intramolecular averaging process of self-
dynamics. In addition, the constraint release effect on the
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FIG. 9. Application of the two-step analysis to polymer α relaxation (“glassy dynamics”). (a, b) Self-correlation functions of different
segments Gs(r, t ; i) at (a) T = 1.0 and (b) T = 0.48. (c, d) Other dynamical information. First column: spatiotemporal maps of normalized
coherent intermediate scattering function S(Q, t )/S(Q). Second column: variation of segment mean-squared displacement g1(t ; i)/g1(t ) along
the chain. Third column: variation of non-Gaussian parameter α2(t ; i) along the chain. Fourth column: comparison of the non-Gaussian
parameter of different segments and the average non-Gaussian parameter of all the beads. Vertical black dashed line: α relaxation time
determined from the density fluctuations at the first structural peak.

chain ends brings g1(t ; i)/g1(t ) close to the value found in
the MD simulations. Lastly, the soft nature of the entangle-
ment constraints in the slip-spring model also yields more
reasonable values of α2(t ; i) on the segment level. It is worth
noting that similar to the case of unentangled melts [Fig. 6(d)]
the average non-Gaussian parameter α2(t ) behaves rather dif-
ferently than the α2(t ; i) of individual segments in entangled
polymers as well [Fig. 8(c)]. A full understanding of the
non-Gaussian self-dynamics in polymers therefore demands
the knowledge of segment dependent self-correlation function
Gs(r, t ; i), in addition to the commonly computed average
quantity Gs(r, t ).

D. Application to glassy dynamics

Having examined polymer melt self-dynamics from the
viewpoint of two-step analysis, we now briefly discuss the
application of this method to glassy dynamics. In the current
context, glassy dynamics broadly refers to molecular motions
related to polymer α relaxation, which occur on relatively
short timescales and small length scales [67]. The effects of
chain ends (molecular weight) on the polymer glass transi-
tion temperature [55,56] and α relaxation [68–70] have long
been recognized. Since the glassy dynamics of chain ends are
expected to be different from those of the middle segments,
a careful consideration of self-motions at both the individual
segment and chain levels appears necessary.

To pursue this idea, a coarse-grained polymer melt of
chain length N = 25 was investigated at T = 1.0 and 0.48.
The details of the simulation can be found in Appendix A.

To illustrate the overall dynamic features of this system, the
collective density fluctuations S(Q, t )/S(Q) are spatiotem-
porally mapped out [67] over a wide range of correlation
times and wave numbers and presented in Fig. 9 (first col-
umn). The α relaxation time τα is estimated as the time
when S(Q, t )/S(Q) = e−1 at the first structural peak of S(Q).
At high temperature (T = 1.0), the α relaxation, which can
be probed by examining the density fluctuations around the
first structural peak, is relatively fast (τα ≈ 0.5τ ). On the
other hand, the relaxation behavior at the mesoscopic scale
is dominated by hydrodynamic-like fluctuations [67]. When
the temperature is lowered to T = 0.48, the α relaxation
becomes significantly slower (τα ≈ 154τ ) and excess den-
sity correlation develops at the mesoscopic scale. (A detailed
discussion of mesoscopic collective dynamics can be found
in Ref. [67].) To survey the heterogeneity of self-dynamics,
segment dependent self-correlation function Gs(r, t ; i), the rel-
ative segment mean-squared displacement g1(t ; i)/g1(t ), and
non-Gaussian parameter α2(t ; i) are computed and shown as
a function of the normalized segment index i∗ and correlation
time t in Fig. 9. Interestingly, the features revealed by these
analyses are distinctly different from those of Rouse and rep-
tation dynamics. First, while the chain ends are indeed more
mobile than the middle segments, with higher mean-squared
displacements g1(t ; i), such a difference diminishes rapidly as
the segment index moves towards the center. By contrast, the
variation of mean-squared displacement g1(t ; i) is controlled
by Rouse-like dynamics [Eqs. (11) and (15)] and penetrates
much deeper into the “interior” of the chain (e.g., Figs. 4, 6–
8). Second, the self-dynamics of chain ends around τα are
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substantially more non-Gaussian than those of the middle seg-
ments [Figs. 9(a)–9(c), third column]. A completely opposite
trend is observed for slow dynamics (Figs. 4, 7, and 8).

It should be noted that short chains are commonly
used in coarse-grained simulations of polymer glassy dy-
namics [50,71–76], with a typical chain length N in the
neighborhood of 10–20 beads. In these cases, the average self-
correlation Gs(r, t ) as well the non-Gaussian parameter α2(t )
should be strongly influenced by the contributions from the
chain ends [e.g., Fig. 9(c), fourth column]. In principle, this
problem can be alleviated using long chains. However, such a
solution is far from a prevailing practice, nor can it always be
implemented in a straightforward manner for low-temperature
simulations.

Additionally, the difference between the non-Gaussian pa-
rameters of chain ends and middle segments presents some
interesting questions and perhaps also clues about the nature
of heterogeneity in polymer glassy dynamics. A few specu-
lative comments are thus provided below. First, for density
fluctuations on short timescales (e.g., α relaxation), the lo-
cal packing environment must lie at the root of the elevated
non-Gaussian parameter of the chain ends compared to the
middle segments. For slow dynamics, the difference in the
local environment is averaged out and becomes unimportant,
and entanglements appear to be the main driving force of non-
Gaussian self-dynamics (Fig. 3). According to the classical
tube picture [10,48], on timescales shorter than the reptation
time, the central segments are still strongly confined in the
original tube, while the chain ends can move freely to explore
new tube segments, leading to enhanced non-Gaussian behav-
ior at the center of the chain (Figs. 7 and 8). Second, in studies
of glass-forming liquids, the structural relaxation (α relax-
ation) is often characterized by two parameters: fragility [77]
m and stretched exponential (Kohlrausch-Williams-Watts) ex-
ponent β, which are strongly correlated with each other [78].
The non-Gaussian parameter α2(t ) is expected to be closely
connected to the stretched exponential exponent β [24], al-
though its relation to fragility is less clear. Additionally, the
molecular weight dependence of fragility in polymers appears
to be nonuniversal [79]. The result in Fig. 9, taken at the
face value, implies that a decrease of chain end concentration
(i.e., increase of molecular weight) would reduce the overall,
averaged non-Gaussian behavior—a deduction that remains
to be verified. Finally, the analysis given here serves mainly
as an example to illustrate the importance of separating inter-
chain and intrachain averaging of polymer self-dynamics. Our
coarse-grained simulations at two temperatures merely reveal
the tip of the iceberg and further systematic computational
studies are clearly desired.

IV. ADDITIONAL COMMENTS ON THE RING
SIMULATIONS

Our simulations of ring polymer melts have revealed
largely Gaussian self-dynamics for ring polymers, which is
in line with another coarse-grained MD simulation study [59]
but at odds with the NSE experiments [36]. Interestingly,
our analysis indicates that two important contributing fac-
tors to the average non-Gaussian parameter α2(t ) are indeed
suppressed or completely eliminated in ring polymers. On

the one hand, intrachain averaging of distinct segment self-
correlation function Gs(r, t ; i) leads to significantly enhanced
non-Gaussianity in the averaged self-dynamics Gs(r, t ) of
linear chains [e.g., Figs. 6(d) and 8(c)]. But this is not an issue
for rings due to their cyclic symmetry. On the other hand, we
show that polymer entanglement substantially increases the
non-Gaussianity of self-dynamics Gs(r, t ; i) at the individual
segment level (Fig. 4). Such an effect is also suppressed in
rings (Fig. 5), probably as a result of lack of effective entan-
glements [57].

In addition to the potential contamination by linear
chains [59], neutron spin-echo spectroscopy [33–36] mea-
surements of ring polymers may suffer a few other
problems. In these experiments on isotopically labeled,
unentangled polymer melts, coherent scattering domi-
nates the NSE intermediate scattering function (ISF)
and the normalized ISF, S(Q, t )/S(Q), is typically an-
alyzed in accordance to the Rouse model. For exam-
ple, the prediction of the Rouse model for the single-
chain dynamic structure S(Q, t ) of a linear chain is
[4] S(Q, t ) = 1

N

∑
i, j exp{−Q2DGt − 1

6 |i − j|Q2b2 − 2Nb2Q2

3π2∑∞
p=1 cos ( pπ i

N ) cos ( pπ j
N )[1 − exp(−t p2/τR,linear )]}. The first

term in the exponential function, exp(−Q2DGt ), is the con-
tribution of the center-of-mass diffusion, which prevails in
the long-time limit. The second term yields the single-chain
static structure factor in the short-time limit (t = 0): S(Q) =
1
N

∑
i, j exp ( − 1

6 |i − j|Q2b2). The last term is the scatter-
ing contribution from internal motions. Deviations from the
Rouse model predictions were observed in previous NSE mea-
surements of both linear and ring polymers [33,35,36]. The
origin of such a failure was attributed to non-Gaussian c.m.
diffusion, which is not accounted for in the Rouse model.

Our recent spatial correlation analysis [19] of unentangled
and entangled polymers revealed, however, that the failure
of the Rouse model to describe coherent polymer dynamics
stems primarily from its inability to accurately capture col-
lective internal motions. In the short-time limit, the Rouse
model predicts that S(Q, t )/S(Q) ∼ exp[−(Q2ξ 2

t )β/6], with
β ≈ 1.5. ξt is the characteristic length for the spatial decay
of S(Q, t )/S(Q) at a given correlation time [19]. On the other
hand, our simulations and NSE experiments indicate that the
spatial correlation of the normalized single-chain dynamic
structure factor S(Q, t )/S(Q) is only a slightly compressed
Gaussian function with β ≈ 1.1 [19]. Therefore, a remedy
of the Rouse model must go beyond simple introduction
of non-Gaussian displacements of the center of mass [80].
Conversely, estimating non-Gaussian displacements from the
coherent scattering function with the Rouse model formula
would be indirect and inaccurate. In addition, the cumulant ex-
pansion approach [81–83] adopted in the previous NSE work
on ring polymers [36] may involve further complications.
First, it was assumed that the measured coherent intermedi-
ate scattering function was dominated by the center-of-mass
diffusion. But this assumption was difficult to justify for a
wide range of correlation times. Second, the non-Gaussian
behavior generally shows up as a long tail of the intermediate
scattering function [19], which cannot be resolved without
accurate measurements of weak correlations. Third, precise
determination of α2(t ) generally requires measurements at a
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large number of scattering wave numbers [19]. Analysis at
a few Qs is unlikely to yield reliable results. Lastly, since
the non-Gaussian effect is mainly manifest in the tail of the
self-intermediate scattering function (high Q) [19], it is not
obvious if truncating the cumulant expansion at the fourth
order will lead to significant errors for the estimation of α2(t ).
We emphasize that a definitive resolution of the apparent
discrepancy between simulations and experiments is beyond
the scope of this paper. It is still possible that the strong
non-Gaussian c.m. diffusion observed in the NSE experiments
may indeed occur in real ring polymers, due to intermolecular
forces that are not accurately captured in the coarse-grained
simulations.

V. SUMMARY

The unique nature of polymers necessitates a nuanced
treatment of self-dynamics, rather than simply looking at the
averaged correlations, as one typically does for atomic flu-
ids. This work shows that studies of polymer self-dynamics
are different from those of atomic fluids, and calls attention
to the self-correlation functions of individual segments. The
idea of the “two-step” analysis is demonstrated with coarse-
grained molecular dynamics simulations of polymer melts and
several theoretical models. Two key contributing factors to
the non-Gaussian behavior of average self-dynamics at high
temperatures have been identified: one is intrachain averaging
of distinct segment self-correlation function Gs(r, t ; i) and the
other is the entanglement phenomenon. They are responsible
for the enhancement of non-Gaussianity in linear polymers
with increasing chain length, as well as the suppression of
non-Gaussianity in rings. In particular, the entanglement phe-
nomenon enhances the non-Gaussian behavior in two ways:
it exacerbates the difference in self-dynamics between chain
ends and central segments and gives rise to strong non-
Gaussian dynamics on the individual segment level.

Finally, the applicability of the two-step approach to poly-
mer glassy dynamics has also been demonstrated. While
past investigations of polymer self-dynamics have primarily
focused on the average response, a detailed consideration
of segment dependent self-correlation function Gs(r, t ; i) is
clearly necessary from both the mathematical and physi-
cal points of view. Our proposed method should be useful
for not only polymer melts, but also other types of poly-
meric materials, including polymer blends [84], polymer
electrolytes [85,86], and polymer nanocomposites [87–90].
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APPENDIX A: SIMULATION MODELS AND METHODS

1. Molecular dynamics simulations

Molecular dynamics (MD) simulations were performed
with the GPU-accelerated LAMMPS package [91–93]. For
both linear and ring polymers, we consider a widely used
coarse-grained semiflexible bead-spring model [18,57,58].
The nonbonded interactions between beads are described by a
purely repulsive Lennard-Jones (LJ) potential [94]:

ULJ(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] − 4ε
[(

σ
rc

)12 − (
σ
rc

)6]
r < rc

0 r � rc
,

(A1)

where r is the distance between two beads, ε represents the
energy unit, and σ defines the bead size. As is the convention,
LJ reduced units are used in the simulations. The natural
timescale is τ = σ

√
m/ε, with m is the mass unit. The cut-off

distance rc is set at rc = 21/6 σ [14,57,58]. A finitely extensi-
ble nonlinear elastic (FENE) potential is used to connect two
neighboring beads in a polymer:

UFENE(r) = − 1
2 kR2

0 ln[1 − (r/R0)2], (A2)

where R0 = 1.5 σ and k = 30 ε/σ 2. Additionally, a bond-
bending potential is considered:

Ubend(θ ) = kθ (1 + cos θ ), (A3)

where θ is the angle between two successive bonds and kθ =
1.5 ε. The simulations were carried out at temperature of
T = 1.0 and bead number density of ρ = 0.85 σ−3. At these
conditions, the average number of beads between entangle-
ments is Ne ≈ 28 for the semiflexible linear chains [18,95].
As usual, the Rouse time for a polymer with a degree of
polymerization N follows the scaling relation τR,linear = τ0N2

for linear chains and τR,ring = τ0N2/4 for rings, where the
elementary Rouse time τ0 ≈ 2.58 τ for the current model [95].
The entanglement time of linear chain can be estimated as
τe = τ0N2

e . Five different degrees of polymerization, N = 20,
40, 100, 300, and 500, were investigated for both the linear
and ring polymers. The corresponding numbers of molecules
in the simulations were M = 5000, 5000, 2000, 700, and 500,
respectively. The equilibrated configurations of linear and
ring polymers were generated with the previously reported
protocols in the literature [58,96,97]. The production runs
were performed in the NVE ensemble with a weak coupling
to a Langevin thermostat [14] and a damping coefficient of
0.002. A typical time step of t = 0.01 τ was used in the
time integration. A benchmark of the static properties of the
simulated linear and ring polymers with the previous results in
the literature [18,58] is provided in Fig. 10. Additionally, we
note that the dynamic properties of our simulations also agree
well with the previous reports (Fig. 3).

In addition, a slightly different coarse-grained semiflexible
bead-spring model [67,98] was also investigated to demon-
strate the applicability of the two-step approach to polymer
glassy dynamics. In this model, the nonbonded interactions
between beads are described by a Lennard-Jones potential
with rc = 2.5 σ . The bonds along the polymer backbone are
maintained by the FENE potential [Eq. (A2)], with R0 =
1.5 σ and k = 30 ε/σ 2. The bending potential is of the
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FIG. 10. Benchmark of the static properties of the (a) linear and
(b) ring polymers from coarse-grained molecular dynamics simula-
tions with the previous results in the literature [18,57]. Left column:
radius of gyration RG for polymers of different degrees of polymer-
ization N . Right column: single-chain static structure factor S(Q).
Solid lines: current study. Dashed lines: previous reports.

same form as Eq. (A3), but slightly softer than the one used
in the high-temperature melt simulations, with kθ = 0.75 ε.
An unentangled polymer melt composed of M = 8000 linear
chains of length N = 25 was studied at two different temper-
atures T = 1.0 and 0.48. The system was first fully relaxed
at T = 1.0 in the NPT ensemble with P = 0. Subsequently,
the temperature was gradually reduced to T = 0.48 at the
constant pressure with a rate of 10−5 [54]. Before calculations
of dynamic properties, the system at each temperature was
further relaxed under NVT condition for more than 5000 τα ,
where τα is the α relaxation time. The final production runs
were performed in the NVT ensemble. Additional details of
this simulated polymeric system, including both the static and
dynamic properties, can be found in our previous work [67].

2. Brownian dynamics simulations

To complement the MD investigations and obtain deeper
insight into the real-space dynamics of polymers, Brownian
dynamics simulations [99] were performed with the Rouse
model [46] and the slip-spring model [61]. For the Rouse
model, both linear chains and rings were considered. On the
other hand, the slip-spring simulations were confined to linear
chains. The simple Euler method was used for the time inte-
gration in both cases. The reduced time t∗ in both the Rouse
and slip-spring simulations is defined as t∗ = t/τ0, where
τ0 = ζb2/2kBT , with b being the segment size. The Rouse
model BD simulations have been validated by benchmarking
the space-time density correlation functions against the well-
known analytical solutions [4].

Our choice of model parameters for the slip-spring sim-
ulations followed the work of Likhtman [61]. The average
entanglement spacing Ne was 4 and the spring strength Ns was
1/2. The ratio ξs ≡ ζs/ζ of the friction coefficient of the slip

link ζs to that of the chain segment ζ was 0.1. To simplify the
simulation, the noncrossing condition was not implemented
for the slip links. Such a choice makes only a very small dif-
ference in the results [61]. The results presented in this work
are based on the simulations with N = 64 [100]. The details
of the slip-spring model are described in the original paper
of Likhtman [61]. Additionally, reciprocal-space correlation
analysis of the slip-spring model can be found in our previous
study [19].

APPENDIX B: SELF-INTERMEDIATE SCATTERING
FUNCTION OF THE ROUSE MODEL

The self-intermediate scattering function Fs(Q, t )
[Eqs. (11) and (12)] of a linear Rouse chain is well
documented in the literature [4]. The spatial correlation of the
Rouse model Fs(Q, t ), strictly speaking, is non-Gaussian, as
discussed and demonstrated numerically in the main text. An
approximation of Eqs. (11) and (12) is [4,101]

Fs(Q, t ) ≈ exp

(
− 2

π2
Q̃2t̃

)
exp

(
− 2

π3/2
Q̃2t̃1/2

)
, (B1)

with Q̃ = QRG and t̃ = t/τR. The first exponential function
describes the contribution from the center-of-mass diffusion,
which is unimportant for t 	 τR; the second exponential func-
tion comes from internal motions. This formula is obtained by
making the approximation

Fs(Q, t ) ≈ exp

(
−1

6
Q2g1(t )

)
, (B2)

instead of performing an intrachain averaging of the self-
intermediate scattering function Fs(Q, t ; i) of each segment
according to Eq. (12). By the nature of this approximation,
Eq. (B1) gives Gaussian spatial correlations of self-dynamics
at a given correlation time, which is different from the
precise analytical result [Eq. (12)]. Nevertheless, since the
non-Gaussian behavior of unentangled polymers is relatively
weak, the Gaussian formulas [Eqs. (B1) and (B2)] can often
adequately describe their self-dynamics [7,19,41].

APPENDIX C: REAL-SPACE SIGNATURE
OF TUBE CONFINEMENT

Direct microscopic observation of tube confinement in en-
tangled polymers has been a long-sought goal of polymer
physicists. According to the classical tube theory [48,49], the
self-intermediate scattering function of a reptating chain can
be described by a scaled complementary error function on the
timescale τR < t < τd :

Fs(Q, t ) ≈ exp(Q4a2Dt/36)erfc(Q2a
√

Dt/6), (C1)

where a is the tube diameter and D the curvilinear diffu-
sion coefficient. It is helpful to note that the discussion of
the self-intermediate scattering function Fs(Q, t ) in the Doi-
Edwards paper [48] contained several typos [Eqs. (4.44),
(4.45), and (4.46)]. Once these errors are corrected, the final
result [Eq. (C1)] is consistent with that of Fatkullin and Kim-
mich [49], which was derived using a different approach. A
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FIG. 11. (a) Spatial correlations of the average self-intermediate
scattering functions Fs(Q, t ) predicted by the tube model [Eq. (C1)
(red solid line) and a Gaussian function (black dashed line), where
Fs(Q, t ) = exp(−Q∗2/6) with Q∗ = Q(a2Dt )1/4. Here the scattering
wave number Q is normalized by (a2Dt )1/4, which is the charac-
teristic length scale defined by the curvilinear diffusion. Due to the
tube confinement effect, the spatial correlation of Fs(Q, t ) exhibits a
heavy tail in the reciprocal space. (b) Corresponding self-correlation
functions Gs(r, t ), obtained by spatial Fourier transform of Fs(Q, t ).

viable route to arrive at Eq. (C1) is to consider the segment-
dependent self-intermediate scattering function Fs(Q, t ; i) of
the tube model [Eq. (14)] in the limit of μ  1. In this
case, αp ≈ (p − 1/2)π and μ2 + μ ≈ μ2. Additionally, we
will concern ourselves with the behavior of only the mid-
dle segment (si = L/2), where the molecular motion is most
representative of “reptation.” With these approximations, we
have

Fs(Q, t ) ≈
∞∑

p=1

2μ

μ2 + α2
p

exp
( − 4Dtα2

p/L2
)

≈
∫ ∞

1

2μ

μ2 + α2
p

exp
( − 4Dtα2

p/L2) d p

≈ 2μ

π

∫ ∞

0

1

μ2 + α2
p

exp
( − 4Dtα2

p/L2
)

dαp

= exp(Q4a2Dt/36)erfc(Q2a
√

Dt/6). (C2)

Equation (C1) has an interesting and physically intuitive pre-
diction of the signature of tube confinement in self-dynamics:
the spatial correlation of the self-intermediate scattering func-
tion Fs(Q, t ) is a heavy-tailed distribution as a result of the
dynamic localization in real space [Fig. 11(a)] [19]. This
prediction stands in stark contrast to the behavior of the Rouse
model, which is largely Gaussian [19]. In the real space, the
tube confinement gives rise to an enhanced spatial correlation
at small distances [r � (a2Dt )1/4] and an exponential-like
tail at large distances [Fig. 11(b)]. Numerically, the self-
correlation function Gs(r, t ) of the tube model behaves like
a Dirac-δ function near the origin and increases rapidly as r
approaches zero. This prediction is different from that of the
slip-spring model (Fig. 8) and also at odds with the results of
molecular dynamics simulations (Fig. 2). Such a discrepancy
is due to the strict 1D diffusion idea of the original tube model,
where the tube is perceived to be impenetrable [19].

Despite the flawed functional form [Eqs. (14) and (C1)]
of self-dynamics in the classic tube model, a comparison of
theories and simulations (Figs. 2, 6, 8, 11) does seem to
suggest some general features of self-dynamics under en-
tanglement constraints: relative to a Gaussian distribution
of the same second moment (means-squared displacement),
the self-correlation of an entangled polymer is enhanced on
small length scales (small relative to the root-mean-square
displacement at a given correlation time); additionally, the
molecular displacements become more heterogeneous and the
self-correlation function is characterized by an exponential-
like long tail on large length scales.
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