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The T-cell arm of the adaptive immune system provides the host protection against unknown pathogens by
discriminating between host and foreign material. This discriminatory capability is achieved by the creation of
a repertoire of cells each carrying a T-cell receptor (TCR) specific to non-self-antigens displayed as peptides
bound to the major histocompatibility complex (pMHC). The understanding of the dynamics of the adaptive
immune system at a repertoire level is complex, due to both the nuanced interaction of a TCR-pMHC pair
and to the number of different possible TCR-pMHC pairings, making computationally exact solutions currently
unfeasible. To gain some insight into this problem, we study an affinity-based model for TCR-pMHC binding in
which a crystal structure is used to generate a distance-based contact map that weights the pairwise amino
acid interactions. We find that the TCR-pMHC binding energy distribution strongly depends both on the
number of contacts and the repeat structure allowed by the topology of the contact map of choice; this in
turn influences T-cell recognition probability during negative selection, with higher variances leading to higher
survival probabilities. In addition, we quantify the degree to which neoantigens with mutations in sites with
higher contacts are recognized at a higher rate.
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I. INTRODUCTION

One of the major components of the human immune sys-
tem consists of a large repertoire of T lymphocytes (or T
cells). Each T cell carries a particular T-cell receptor (TCR)
capable of binding to a specific antigen in the form of a
peptide (p) displayed by major histocompatibility complex
(MHC) molecules (pMHC) on the surface of host cells [1–4].
The activation of the T-cell response depends on the strength
[5], and possibly kinetics [6], of this TCR-pMHC binding
[7,8]. A typical repertoire of a healthy individual consists of
∼107 distinct clonotypes, each with a unique TCR [9]. A
growing body of research has been focused on understanding
the systems-level interactions between the T-cell repertoire
and its recognition of peptide landscapes indicating foreign
or cancer threats.

A critical feature of a properly functioning immune system
is its ability to discriminate healthy cells of the host from those

*Present address: Department of Biomedical Engineering, Texas
A&M University, College Station, Texas 77843, USA.

infected by pathogens, reacting to the latter ones while toler-
ating the former ones. In order to achieve the aforementioned
discrimination, T cells must survive a rigorous selection pro-
cess in the thymus before being released into the bloodstream.
The first step in this process, called positive selection, ensures
that TCRs in thymocytes (developing T cells) can adequately
interface with pMHCs. Positive selection occurs in the thymic
cortex, where cortical epithelial cells present self-peptides
to thymocytes. As long as a thymocyte is able to interface
with some presented pMHC, it receives a survival signal and
migrates inward to the thymic medulla. This step ensures that
the thymocyte has a properly functioning TCR, a rare event
as only about 7–35% [10] of thymocytes survive this step. In
the inner medulla, they encounter thymic medullary epithelial
cells. Here, surviving immature T cells are again presented
with a diverse collection of ∼104 self-peptides [11,12] repre-
senting a variety of organ types. T cells binding too strongly
to any self-peptide die off in a process known as negative
selection [13,14].

As already pointed out, a key ingredient in the aforemen-
tioned process as well as in any subsequent recognition of
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a foreign antigen by a T cell is the molecular interaction of
the TCR and the pMHC molecules. Crystal structures of TCR
bound to pMHC show that the interface of the TCR-pMHC
interaction is complex, with TCR complementarity determin-
ing regions 1 and 2 (CDR1 and CDR2, respectively) primarily
binding to the MHC molecule, whereas the CDR3 com-
plex mainly contacts the peptide in the MHC’s cleft [15,16].
The CDR3 complex is comprised of two loops, CDR3α and
CDR3β. Baker et al. showed that these loops can exhibit spa-
tial and molecular flexibility during the TCR-pMHC binding
process [17]; moreover, the same TCR can bind to different
pMHCs [18], for example to a pMHC with a point-mutated
peptide [16]. This can involve subtle changes in the CDR3
complexes’ spatial conformation. It is clear then that the intri-
cacies of the TCR binding to the pMHC as a dynamic process
remain as yet to be fully understood.

In lieu of a complete first-principles understanding, several
groups have pioneered the idea of employing relatively simple
models so as to get a sense of how negative selection affects
the T-cell repertoire. In the original set of models, TCRs and
peptides were represented as strings of amino acids (AAs)
which interacted in a manner that did not incorporate any
structural information. In one such set of models, each AA in
the pMHC binding pocket interacted with, and only with, the
complementary AA in the TCR CDR3 complex. This interac-
tion was described by either one or a set of 20 × 20 matrices
[19–23]. These works indeed have provided a framework for
describing how selection shapes the discrimination ability of
the T-cell repertoire, and have been applied to understanding
HIV control [24] and for assessing the detectability of cancer
neoantigens [22]. In a more recent study, Chen et al. [25]
introduced nonuniform interaction profiles that translated into
some AAs in the TCRs having a more pronounced effect in
pMHC recognition, but did not consider how these nonunifor-
mities could vary between TCRs, as shown by existing crystal
structures.

In this paper, we introduce the idea of a crystal-structure-
dependent contact map that weights the binding energies
based on the distance separating the residues on the AAs. A
contact map can be thought of as a specific template for a
class of TCR interface with the pMHC (TCR-pMHC) inter-
actions, which then will yield an actual binding energy once
we specify the specific AA strings on the two molecules. To
focus attention on the role of the contact map, we use a simple
random energy model which assigns a fixed random energy
to each of the possible AA pairs. Our model, described in
detail below, can be thought of a more realistic version of
the the random interaction between cell receptor and epitope
(RICE) model [22], in which contact map effects were simply
assumed to decorrelate pair energies at different sites along a
uniform binding surface.

The paper is structured as follows. In Sec. II, we present the
model description along with how crystal-structure-dependent
contact maps are created and also discuss the choice of energy
matrix in the model. In Sec. III, we analyze how the variance
of the TCR-pMHC binding energy PDF is impacted by the
choice of contact map, including the roles of the total number
of contacts and the topology of the contact map. We then
present two applications of the model that are affected by the
choice of contact map: in Sec. IV, we focus on the negative-
selection recognition probability, and in Sec. V, we discuss

the point-mutant recognition probability by T cells that have
survived negative selection. We present our closing remarks
in Sec. VI.

II. CONTACT MAP BASED RANDOM ENERGY MODEL

Our goal is to analyze a model of negative selection in
which the TCR-pMHC interaction exhibits antigen specificity
of T cells dependent both on the AA occurrence and on
the spatial conformation of TCR and pMHC, while retaining
enough simplicity so that it can be studied analytically and
with feasible computations. We represent a TCR t via its
CDR3 loops in the form of a sequence of kt AAs, t = {t (i)}kt

i=1,

and a pMHC q as a sequence of kq AAs, q = {q( j)}kq

j=1. A
symmetric energy coefficient matrix of size 20 × 20, E =
(Enm), has entries Enm that represent the pairwise binding
coefficients between AAs n and m. The binding energy con-
tributions are then assumed to be the product of a contact
map W = (Wi j ), containing the weights Wi j for the interac-
tion between t and q in a given structure, and the coefficient
corresponding to the amino acid interaction. In detail,

U (t, q) = Uc +
∑
i, j

Wi j · Et (i)q( j), (1)

where Uc represents the contribution of the TCR’s CDR1
and CDR2 complexes interacting with the MHC molecule, as
discussed in [19–21,24].

This form of the binding energy in (1) explicitly separates
the effects on the CDR3-pMHC interaction due to spatial con-
figuration from the effects due to the rest of the pair-dependent
factors, assigning the former ones to W and coarsely account-
ing for the latter ones in E. The particular choices for the
contact map W will depend on the specific TCR-pMHC being
used as a template. Also, this formulation does not presuppose
any specific choice for E. We discuss in detail specific choices
of E and W in the sections below.

We highlight that in Eq. (1), the crystal-structure spe-
cific values Wi j dictate which AAs are effectively in contact.
In [25], a similar equation for TCR-pMHC binding affinity
weights energy coefficients with factors f (ci ). However, this
formulation limits TCR AA in position i to only interact with
its corresponding pMHC AA, and can weight energy coeffi-
cients using different interpretations of f (ci ) to accommodate
the average number of contacts of position i found on an
ensemble of crystal structures, but this then abrogates any
capability to account for different interaction pairs for these
different contacts.

A. Contact maps

Crystal structures of TCRs bound to pMHCs show a variety
of spatial configurations. Each one of these can be thought of
as defining a binding template which can be used to determine
the energy of a set of possible pairs. In general, we expect
there to be a small number of possible templates, as a specific
template would presumably be valid for a subset of all pairs;
even then, we must necessarily ignore the small structural
changes seen between the same TCR-pMHC systems that
differ, e.g., by a single AA mutation [16,26–28]. We expect,
based on a recent computational study [29], that this approach
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FIG. 1. The TCR-pMHC interface and contact maps. (a) The CDR3-pMHC interface in the crystal structure of the 2B4 TCR binding to
the MCC/I-Ek complex (PDB ID 3QIB); with the antigen MCC highlighted in green, the CDR3α loop in purple, and the CDR3β loop in
orange. (b) Eight contact maps estimated from four crystal structures, contact maps of the CDR3α-pMHC (CDR3β-pMHC) interfaces in the
top (bottom) row; 3QIB, 3QIU, and 3QIW are MHC class-II restricted, whereas 5C0A is MHC class-I restricted.

will be reasonable if we stick to a fixed MHC allele, as struc-
tures with different alleles can look very different. We will see
this directly in Fig. 1 below. In the calculations reported in this
paper, we typically restrict ourselves to one template.

To derive a contact map from a crystal structure, we
utilize the associative memory, water mediated, structure,
and energy model (AWSEM) [30], developed in the con-
text of protein folding. We use the position of Cβ (Cα in
the case of glycine) atoms to characterize the position of
the residues of the AAs in both the TCRs and pMHCs,
and to use AWSEM’s negative-sigmoid switching function
as the screening weight Wi j in computing the interaction
energy,

Wi j (ri j ) = 1
2 {1 − tanh [η · (ri j − rmax)]}. (2)

Here, ri j is the distance separating the residues at positions i
and j, rmax acts like a cutoff and is the inflection point of Wi j

after which the function vanishes rapidly for ri j > rmax, and
η controls how rapidly this vanishing occurs. We use crystal
structures [see Fig. 1(a)] of TCR bound to pMHC deposited
in the Protein Data Bank (PDB) to determine a list of AAs
in the TCR t and in the pMHC q, and to calculate each dis-
tance ri j , i = 1, . . . , kt , j = 1, . . . , kq. We then compute the
corresponding weights Wi j from (2) and construct the contact
map W = (Wi j ). Given that both CDR3α and CDR3β loops
of the TCR interface with the peptide, we construct a separate
contact map for each of these CDR3-loop-pMHC interactions.

To show how the proposed screening weight given by
(2) derives from different TCR-pMHC crystal structures, we
choose rmax = 9.5 Å and η = 1 Å−1 and focus on four test
cases. For the first three test cases, we use data from Newell
et al. [16] who present three TCR-pMHC crystal structures:
first, of the 2B4 TCR bound to the moth cytochrome c pep-
tide presented by MHC molecule I-Ek (MCC/I-Ek) complex
(PDB ID 3QIB); second, of the 226 TCR bound to MCC/I-Ek

complex (PDB ID 3QIU); and third, of the 226 TCR bound to
the MCC peptide with a glutamate in the p5 position (MCC-

p5E/I-Ek) complex (PDB ID 3QIW). For the fourth case,
we follow Cole et al. [26] who studied the 1E6 TCR bound
to human leukocyte antigen (HLA)-A02 carrying a MVWG-
PDPLYV peptide of the Bacteroides fragilis/thetaiotaomicron
human pathogen (MVW peptide) (PDB ID 5C0A). For sim-
plicity, we will refer to specific crystal structures by their
PDB ID’s, unless further details need to be more precisely
mentioned about the TCR or the pMHC. Note that 3QIB and
3QIU represent different TCRs bound to the same pMHC
complex, whereas 3QIU and 3QIW represent the same TCR
bound to two pMHCs that differ by a single AA mutation in
the peptide sequence. In addition, 3QIB, 3QIU, and 3QIW
share the same mouse MHC class-II restriction and indeed
the same I-Ek MHC-II allele, whereas the 5C0A TCR-pMHC
system is presented on the human HLA A∗02 MHC class-I
allele.

As defined here, contact maps are sensitive to the choice
of distance cutoff. Clearly, the number of contacts in a contact
map for a given crystal structure increases with increasing rmax

values. The contact map of the 3QIB’s CDR3α-pMHC inter-
face is plotted at four different rmax values, from 6.5 to 9.5 Å
in 1 Å increments, while keeping η = 1 Å−1 fixed (see Fig. S1
in the Supplemental Material (SM) [31]). The contact profile
gradually forms with an ever-increasing number of contacts
from about 5 AA pairs in contact at rmax = 6.5 Å, to about
22 AA pairs in contact at rmax = 9.5 Å. For the remainder of
this paper, all contact maps are calculated with rmax = 9.5 Å
and η = 1 Å−1.

The contact maps in Fig. 1(b) correspond to CDR3α-
pMHC interfaces (top row) and CDR3β-pMHC interfaces
(bottom row) from crystal structures 3QIB, 3QIU, 3QIW, and
5C0A. The contact profiles of CDR3α-pMHC are different
from the CDR3β-pMHC contact profiles, as these parts of the
TCR contact different residues on the displayed peptide. The
contact maps consistently represent the physical proximity of
a particular CDR3 loop to a specific portion of the pMHC, as
can be seen in 3QIB’s crystal structure shown in Fig. 1(a),
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wherein the CDR3α loops primarily contact AAs 2–8 and
the CDR3β loops primarily contact AAs 7–12. The detailed
differences among the first three contact maps do capture
slight changes in position-dependent interfacing, even when
comparing contact maps for the same TCR bound to two
pMHCs diverging by peptide single-AA mutation. Different
weights of, for example, position pairs (i, j) = (4, 4), (4, 8),
(6, 4), and (7, 6) are observed when comparing contact maps
of 3QIU and 3QIW in Fig. 1(b) [coordinates in AA pairs are
labeled as (i, j) for t (i) and q( j)]. But, clearly, from a more
coarse-grained perspective, these three can be considered to
fall within one template. Conversely, the fourth map is very
different, as should be expected because it is based on a
different MHC molecule. Our conclusion is that we can use
a single map for a class of possible pairings and thereby learn
about a significant set of contributors to the T-cell repertoire.
We include more contact maps from other crystal structures in
the SM [31] to further support our findings (Figs. S2–S4). In
general, the TCR-MHC pairing (i.e., independent of the spe-
cific peptide) has the most influence on contact map topology,
with mutations or even completely altered antigens giving rise
to rather small changes to the contact map topology as long as
the TCR-MHC pairing remained the same (SM [31], Figs. S2
and S4). A slightly more significant change in topology is ob-
served when different TCRs bind to the same MHC-restricted
molecule even when presenting the same antigen (SM [31],
Fig. S3).

As mentioned in Sec. I, the CDR3 complexes have a nu-
anced interaction with the pMHC. One factor that may impact
this interaction is the size of AA residues, where larger-sized
aromatic AAs can protrude further from the peptide chain
into the other complexes in the TCR-pMHC interface and
hence have a higher proclivity to contacting smaller AAs.
Contact maps can be used to investigate this issue; however,
in analyzing the small sample of crystal structures discussed
in this manuscript, we found no conclusive evidence as to a
unique role for AA size. A more extensive analysis incorpo-
rating more TCR-pMHC crystal structures is needed to make
a definitive claim; this analysis is beyond the scope of this
paper and will be reported upon in future work.

In the remainder of this paper, we will explore the segment
of the repertoire that depends on one template and its corre-
sponding contact map, and determine how the features of that
map affect repertoire properties.

B. Energy matrix

As discussed above, we propose, for the recognition of an
antigen by a T cell, an affinity-based criterion in which the
TCR-pMHC binding energy U (t, q) given in (1) equates to
recognition (evasion) if U (t, q) is above (below) a particular
energy threshold Un. Thus, we need to specify a symmetric
energy coefficient matrix E = (Enm). The first example of
matrix choice was one based primarily on hydrophobicity, as
developed by Miyazawa and Jerningan (MJ) [32] and used
in studies of thymic selection [19,25]. More recent efforts
have focused on developing immune-specific energy matrices
[33]. A recent study [29] used machine learning to derive the
optimal matrix separating strong from weak binders within
a single contact map template; this optimization approach

would lead to a different such matrix for each assumed
template. Here, our interest is in the role of the contact
map and so we have opted for the expedient choice of a
random model where all matrix elements are chosen to be
independent, mean-zero, unit-variance normally distributed
random variables, Emn ∼ N (μ = 0, σ 2 = 1). Note the as-
sumption that the n-m interaction coefficient has the same
value independently of the AAs’ location in the TCR or the
pMHC sequences. Thus, our model is distinct from the RICE
approach [22], which assumed that the spatial location of the
amino acid directly affected the energy coefficient.

The position independence of Emn ignores structural in-
formation such as the specific AA orientation, or to some
extent the size of the residue. That this will be sufficient is
at the moment uncertain, but we note that such approaches
have proven useful in protein folding and related molecular
biophysics computations (see [32]).

III. DISTRIBUTION OF TCR-pMHC BINDING ENERGY

The TCR-pMHC binding energy U (t, q) is the indicator
of the affinity between a T cell and an antigen. When assum-
ing the pairwise AAs’ interaction energies to be independent
Gaussian random variables, U (t, q) in (1) becomes a weighted
sum of these variables with weights given by the contact
map W . Hence, U (t, q) is also a normally distributed random
variable, and since its mean is automatically zero, knowledge
of the variance σ 2

tq of its PDF allows us to fully characterize
how U (t, q) varies as we vary the particular realization of
E. The contact map dependence of U (t, q) has a twofold
impact on the variance of its PDF when compared to the
case of the addition of equal variance random variables (as
in the RICE approach from [22]). On one hand, the total
number of nonvanishing contacts Wi j given by the contact
map directly determines the number of random energies Ei j

contributing to U (t, q), thus increasing σ 2
tq as the number of

nonvanishing Wi j’s increases. On the other hand, the particular
repeat structure of AAs in the TCR sequence and in the pMHC
sequence also influences σ 2

tq, as a particular pair of AAs that
appears multiple times in the energy summation gives rise to a
variance increase. In this section, we explore how the variance
of the PDF of U (t, q) depends on the two aforementioned
factors.

Before proceeding, we must discuss various statistical en-
sembles of interest here. So far, we have focused on varying
the coefficient matrix, thus generating ensemble values for
each specific t, q. However, we imagine that the biophysical
problem is defined by a fixed E, which may be chosen (as
done here) in a random fashion but, as mentioned above, may
be learned from the data as done in other work [29]. Thus, we
are actually interested in the distribution of binding energies
as we vary either the peptide (fixing the TCR), the TCR
(fixing the peptide), or both, as these are what is necessary
to determine the effects of negative selection. To see how to
determine these distributions, we return to the basic equation,

U (t, q) =
kt∑
i

kq∑
j

Wi j · Et (i)q( j), (3)
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where we have limited ourselves to one class of MHC
molecule and hence Uc becomes an irrelevant constant. Also,
we will assume for the purpose of our analysis that Wi j is
either 0 or 1; this is true for all but a very small number of
possible pairs. Finally, we will assume to take the distribu-
tion over AA to be uniform, although it might be useful in
future work to use the known AA distribution in the human
proteome. With these number of assumptions, the mean value
of U (t, q) sampled over the peptide sequence and/or TCR se-
quence constrained to have no repeats is just the sample mean
of drawing a number of values from a mean-zero, variance
σ 2 Gaussian distribution. This number is very much peaked
around zero. Similarly, the mean value of U 2 will be strongly
peaked around the variance times the contact number Nc.
Perhaps not surprisingly, these are the same answers we get
when averaging over E; in other words, as long as we average
over sufficient numbers of sequence choices, the results for all
choices of coefficient matrices are the same; see the SM [31]
(Sec. S8) for a more complete discussion.

Let us now extend this analysis to the more general case.
We introduce the following notation: A pair repeat structure is
denoted as Cp = (lr1

1 , lr2
2 , . . . , lrN

N ), with
∑

ri · li = NC , where
li denotes the number of times an amino acid pair is repeated
in different contacts and ri denotes how many such li repe-
titions there are. For example, for a total of 20 contacts, if
there are three contacts with the same AA pair and two sets
of two contacts with the same AA pair, this would be denoted
as Cp = (3, 22, 113). An extension of the previous argument
allows us to determine the most likely value of the mean
energy and its variance, averaged over all possible peptide and
TCR sequences that do not change the class. The mean is still
zero and the variance now becomes

Var(Cp) = σ 2
∑

ril
2
i . (4)

Again, this is exactly the same as the result obtained when
averaging over energy coefficient matrices. A more precise
version of this correspondence is presented in the SM [31]
(Secs. S5 and S6). If one wants to find the total variance,
we have to average over different choices of C weighted by
their respective probabilities of occurrence given the assumed
uniform distribution of residue choice.

We note that while a string model may also contain pair
repeats, the structural topology of the contact map matters
significantly and influences the likelihood of repeated amino
acids. In a string model, the likelihood of repeated AA pairs is
determined by the length of the TCR and pMHC sequences
and by the underlying AA distribution. In the contact map
dependent model, repeated AA pairs are much more likely.
First, there are in general more contacts than can be accom-
modated by a string model. But also, for a given peptide AA
contacting many TCR AAs, there is an increased likelihood
that a repeated AA pair will occur once choices are made for
the interacting TCR AAs. Therefore, the overall probability of
obtaining certain repeat structures is directly dependent on the
contact map topology. This is most evident when comparing
extreme cases, say comparing a diagonal contact map and
a contact map with one row of nonvanishing contacts. The
latter has much higher proclivity to show repeated AA pairs.

All these amount to the repeat structures emerging from the
number of contacts and topology of the contact map of choice.

A. Variance scales with the number of contacts

It is clear from the previous analysis that the variance in
the binding energy distribution increases with NC , the total
number of contacts. It is easy to see from the above that there
are bounds on the total variance,

σ 2NC � VarU � σ 2N2
C . (5)

The lower bound comes from the case where all pairs are
distinct, whereas the upper bound arises from assuming that
all contacts are the same AA pair, i.e., C = (NC ). From the
size of the AA alphabet |A|, the total number of AA pairs
(irrespective of ordering) is M = (|A| + 1

2 ). Now, we have just
seen that the precise value of the variance depends on the
exact repeat structure of the peptide (q) and TCR (t) AA
sequences, together with the contact map. In the case where
we wish to obtain the variance of the PDF obtained by varying
both t and q, we can obtain a useful approximation of this
variance by ignoring the exact configuration of W and instead
simply counting the number of times each of the M AA pairs
is selected with equal probability, where there are Nc total
opportunities. In this case, the number of times each AA pair
is realized follows a multinomial distribution, and the variance
can be calculated from the second moment of this distribution
as

Var[U (t, q)|W ] ≈ 1

M
N2

C +
(

1 − 1

M

)
NC . (6)

See the SM [31] (Secs. S5 and S6) for a detailed derivation.
In Fig. 2(a), the variances computed by simulation for the
CDR3α-pMHC interfaces of 3QIB, 3QIU, 3QIW, and 5C0A
[top row of Fig. 1(b)] are presented along with the predicted
variance from (6). As we can see, this approximation captures
the basic dependence on the total number of contacts. In the
SM [31] (Fig. S5), we provide further evidence for this result
by considering the effects of varying the cutoff used in the
definition of the contact matrix.

B. Variance depends on the repeat structures of the TCR
and pMHC AA sequences

If we are looking for the distribution of energies for a fixed
TCR sequence, there is no simple formula that can encompass
the dependence of the variance on the exact TCR sequence
and on the exact contact map. As already mentioned, we have
to find the variance for different possible repeat structures and
then weight them appropriately by their occurrence probabil-
ity. Specifically,

σ 2
t =

NR∑
n=1

pnσ
2
n , (7)

where NR is the total number of different possible structures.
We would like to work out a specific and relatively simple

example to illustrate how this works. To simplify the analysis,
we focus on the 3QIB CDR3α-pMHC contact map W α

3QIB in
Fig. 1(b) (top left) and assume that the TCR is a constant
sequence of a single repeated AA t = (t1, t1, t1 . . . ). Note that
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FIG. 2. The variance of the TCR-pMHC binding energy distribution depends on the total number of contacts and on the repeat structure
allowed by the topology in the contact map. (a) Binding energy U (t, q) variance scaling with the number of contacts, |NC |; calculated variances
with their variance (vertical error bars) were plotted as a function of total contacts |NC | in the contact map. Horizontal error bars represent
the range of threshold used for determining each contact map (lower estimates corresponding to counting contacts >0.9, and upper estimates
corresponding to including contacts >0.1). (b) The binding energy PDFs and corresponding simulated standard deviations (σr , σ1, etc.) for
pMHC repertoires of randomly chosen AA sequences (blue) and with all TCRs constrained to the same repeated AAs motif; repertoires
constrained to each of the four most likely pMHC repeat motifs are shown with different colors and are labeled in decreasing order of
likelihood. In the simulations, σ 2 = 1.

this makes labeling of repeat motifs dependent on the pMHC’s
primary sequence only. In W α

3QIB, only 7 AAs in t and 7 AAs
in q make significant contacts, so the effective lengths are
kt = kq = 7.

We will break down the problem of computing the terms
in this sum as follows: We will first focus on the probable
configurations of the peptide by itself and consider how the
different sites are chosen. Drawn from a |A| = 20 AA al-
phabet, there are N = 15 different repeat configurations of
length 7; when randomly generating AA sequences, the four
most likely repeat configurations Cq,1 = (2, 15), Cq,2 = (17),
Cq,3 = (22, 13), and Cq,4 = (3, 14) [in the section above, C is
the repeat structure of the TCR-pMHC pairing, whereas Cq,n

(n = 1, . . . , N) here indicate the repeat structure only of the
pMHC] cover about pc = 96.66% of the AA sequence space.
A complete breakdown of these probabilities can be found
in the SM [31], Table S2. We thus truncate the sum in (7)
to the pairings that can be obtained from these leading order
structures.

Now, each peptide configuration can give rise to a set of
different possible pairing structures, depending on the spe-
cific nonvanishing elements of the contact matrix. These then
need to be averaged together (with proper weighting). This
somewhat complicated calculation is presented in the SM
[31] (Sec. S6) and is carried out by using the self-averaging
property to allow for computing the average over different
realizations of the energy coefficient matrix; no rounding to
0 or 1 for the values Wi j is made in this calculation and
the results to follow. Finally, we obtain σt (pc) = 9.7833σ

and, extrapolating this value to approximate the full analytical
value in (7), we get

σt ≈
√

1

pc
· σt (pc) = 9.95σ.

This estimation has relative error of 0.6% as compared to the
simulated value of the standard deviation; see the blue plot in
Fig. 2(b). The simulated PDFs related to the four most likely
repeat structures are also shown in Fig. 2(b).

It is worth noting that in (7), the contributions of higher
values of variances are dominated by the even faster vanishing
of the corresponding probabilities. For reference, the stan-
dard deviation for this contact map ranges from σ2 = 9.0761
for Cq,2 = (17) to σ15 = 21.4090 for Cq,15 = (7); whereas
the probabilities are p2 = 30.52% and p15 = 1.56 × 10−6%,
respectively.

IV. NEGATIVE-SELECTION
RECOGNITION PROBABILITY

Negative selection trains the naïve T-cell repertoire to avoid
host cells by eliminating T cells that bind too strongly to
any of the self-peptides. We now wish to consider the effects
on the postselection repertoire due to incorporating crystal-
structure motivated contact maps into the negative-selection
process.

We focus on determining the negative selection recognition
probability as a function of the energy survival threshold Un.
For a T cell to survive negative selection, it must not bind
strongly, i.e., U < Un, to any of the self-selecting pMHCs
it encounters during selection. This is described by the
probability that the maximum of the TCR-pMHC binding
energies, max{U (t, qi )}Nq

i=1, resulting from a T cell t undergo-

ing negative selection against a repertoire, Q = {qi}Nq

i=1 of Nq

self-pMHCs, is below the threshold Un [22]. This recognition
probability is thus a monotonically decreasing function that
gradually transitions from 1 to 0 with ever increasing values of
Un. For a fixed TCR, the scale of the transition correlates with
a typical value of σ 2

t . Averaging this over different TCRs will
give rise to a width that strongly correlates with the number of
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FIG. 3. Negative-selection recognition probability as a function
of the survival energy threshold for T cells auditioning for negative
selection. All curves involving the use of contact maps are generated
from simulations sharing the same parameters apart from the contact
maps. The prediction of the RICE model (brown), the identity matrix
giving a diagonal contact map case (black), and the limiting case
where all AAs in the CDR3 loop interact with all AAs in the pMHC
(yellow) are included for comparison. Plots are averaged over the
different random energy matrices in use, and shaded areas indicate
the corresponding standard error of the mean.

contacts, as suggested by the phenomenological relationship
given above and verified in the SM [31].

We simulate negative selection for various CDR3-pMHC
interfaces (contact maps), using fixed randomly generated
TCR and pMHC repertoires and 16 zero-mean, unit-variance
randomly generated energy matrices E. In Fig. 3, we show
the recognition probability averaged over energy matrices E
for seven different simulations, four of them using contact
maps 3QIB, 3QIU, 3QIW, and 5C0A; along with a 7 × 7
identity-matrix contact map case, as well as the original RICE
model, and a 7 × 7 contact map with all unit entries case
simulating the scenario where all AAs in t are interacting
with all AAs in q. At a given Un, the recognition probability
is higher for those contact maps with higher σ 2 [see, also,
Fig. 2(a)], giving a higher probability for a pair of t and q to
bind strongly enough and thus for t to face deletion. Here, the
independence of RICE energy terms eliminates any possibility
of the effects due to repeated AA pairs, which therefore yields
a minimal variance estimate for a given number of contacts.
The comparatively greater variance of the diagonal contact
model is the result of possible repeated interaction terms. This
leads to higher negative selection recognition probability for
the diagonal contact map case and makes it closer to an actual
contact map dependent calculation. Interestingly, the data in
the figure show directly that similar to what we argued earlier,
the recognition probability curve for a single realization is
quite accurately given by the average over energy matrices.

V. RECOGNITION PROBABILITY OF POINT-MUTATED
ANTIGENS BY NEGATIVELY SELECTED T CELLS

One of the motivations to model negative selection is to un-
derstand how the rejection of T cells that detect self-peptides
negatively impacts the chances that T cells can detect tumor

neo-antigens; after all, these neo-antigens are typically just
one mutated amino acid away from a self-peptide sequence.
We therefore turn to the probability that a T cell (t) that has
survived negative selection is able to recognize an antigen
(q̃) whose primary sequence differs by only one AA from a
self-peptide (q) included in the negative-selecting repertoire
(Q). We call such antigen a point mutant. In general, this
probability for a fixed T cell is defined via

D̃t (Nq) = P [U (t, q̃) � Un| max{U (t,Q)} < Un], (8)

where we have averaged over all possible point mutants with
nontrivial contacts. Here, Q denotes the selecting repertoire of
Nq peptides, one of which is q. Prior modeling (cf. [22]) has
demonstrated the utility of considering two analytic approxi-
mations for the selection and recognition process. Since q̃ is
closely related to q, we approximate the recognition of q̃ based
on selection trained to only avoid q, q̃’s most closely related
peptide, corresponding to the Nq = 1 case. Similarly, since
a randomly generated peptide not participating in selection
shares little overlap with any self-peptides, we approximate
the postselection recognition of a random peptide by the
unconditional recognition probability, corresponding to the
Nq = 0 case. In the limiting case where t has not undergone
negative selection (Nq = 0), Eq. (8) reduces to the recognition
probability of a randomly generated antigen. The case corre-
sponding to t negatively trained only on q (Nq = 1), where the
point-mutant position has k contacts, results in the expression

Dt (1) = 1 − FR(UN )−1

[ ∫
R

FR−k (Un − x)Fk (x) fk (x)dx

+
∫
R

∫
[x,∞)

FR−k (Un − x̃) fk (x̃) fk (x)dx̃dx

]
, (9)

where Fk (x) and fk (x) denote the distribution function and
density function of mean-zero normal random variables with
variance σ 2k (see the SM [31], Sec. S7, for a full derivation).
We expect that for relatively small Nq, it is unlikely that any of
the peptides in the training set will be close enough to q or q̃
to help distinguish the two binding energies; hence, p̃1 should
be a reasonable approximation to Dt . This agreement should
decrease as Nq increases. The accuracy of this approximation
is explored in the SM [31], Fig. S9.

More generally, we ran a set of simulations with varying
sizes Nq = {102, 103, 104} to assess the detection of q̃ by a
T cell trained to evade q. We used the CDR3α-pMHC inter-
face of 3QIB [top left of Fig. 1(b)] as the contact map for
the simulations, for simplicity. Figure 4(a) shows the simu-
lated point-mutant recognition probabilities as a function of
T-cell negative-selection survival probability at three different
sizes of the selecting repertoire. At lower (higher) values of
negative-selection survival probability, i.e., when the negative
selection is more (less) stringent during T-cell maturation, a
mature T cell’s sense of an antigen resembling self-antigens
is relatively more strict (lenient); this means that the mature T
cell is less (more) tolerant to changes in the peptide sequence.
Therefore, recognition of the point mutant is more (less) easily
triggered by deviations caused by single AA mutations; this
results in higher (lower) point-mutant recognition probability
at lower (higher) T-cell negative-selection survival probability.
(See the SM [31], Sec. S7, for a more detailed explanation.)
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FIG. 4. Recognition probability of point-mutated peptides by T cells that have undergone negative selection. (a) The point-mutant
recognition probability from simulations plotted for T cells that have received negative selection against self-peptide repertoires of three
different sizes, Nq = {102, 103, 104}. (b) The point-mutant recognition probability from simulations that changed the site of the mutated AA;
for the CDR3α-pMHC interface of 3QIB [top left panel of Fig. 1(b)] in use, pMHC-AAs in high-contact sites are in contact with 5 TCR-AAs,
whereas pMHC-AAs in sparse-contact sites are in contact with only 1 TCR-AA; and when picking random sites to mutate, the number of
peptide-AAs that a given TCR-AA can contact ranges from 1 to 5.

Next, we compare the results at different Nq. This is a bit
tricky because fixing the negative-selection probability leads
to different thresholds Un at different training set sizes. This
accounts for a large part, but not all, of the difference in
the curves seen in Fig. 4(a); see the SM [31], Fig S9. By
increasing the size of the negative-selecting repertoire Nq, a
mature T cell’s sense for self-antigen resemblance broadens;
thus leading to higher tolerance (less detectability) for point
mutants at higher Nq values.

Another feature impacting point-mutant recognition prob-
ability that stems from incorporating contact maps into the
model pertains to the site in the pMHC sequence of the mu-
tated AA. As can be seen in the contact maps in Fig. 1(b),
some pMHC AAs make more significant contacts with TCR
AAs than other pMHC AAs. In the case of the 3QIB’s
CDR3α-pMHC contact map [top left of Fig. 1(b)], the
number of nonvanishing contacts for a particular pMHC AA
ranges from 1 (sparse-contact site) to 5 (high-contact site),
with an averaged 3.06 TCR AAs in contact by the 7 pMHC
AAs with nonvanishing contacts. Accordingly, a point mu-
tant q̃ with its mutation occurring in a sparse-contact site
(high-contact site) bears higher (lower) resemblance with the
nonmutant q for a T cell. This effect clearly should impact the
point-mutant recognition probability, with high-contact site
point mutants having higher recognition probability than their
sparse-contact counterparts, and point mutants with randomly
chosen mutation sites having recognition probability some-
where in between the aforementioned two. We investigated
this idea by running three simulations as explained in the para-
graph above, but with the additional constraint that in each
round of simulations, the mutated site was as follows: one,
always a high-contact site; two, always a sparse-contact site;
and three, randomly chosen. The negative-selection repertoire
was fixed at Nq = 104. The point-mutant recognition proba-

bility of these simulations is shown in Fig. 4(b) and exhibits
agreement with the expected behavior.

The aforementioned RICE framework cannot adequately
distinguish high-contact sites from sparse ones on either the
TCR or pMHC amino acid sequences. RICE’s prediction for
neo-epitope recognition probability therefore represents fixed
estimates for a typical “one-contact” mutation. On the other
hand, the approach in this paper enables a quantitative esti-
mate of this obvious dependence. This aligns with previous
strategies calling for mutations to target TCR-facing peptide
amino acids; see, for example, [34,35].

In [36], Karapetyan et al. showed that amino acids in the
peptide that face the TCR are less tolerant to substitution,
resulting in a drastic decrease in T-cell binding, activation, and
killing when the TCR-facing amino acids are swapped; other
amino acids in the peptide were more tolerant to substitutions.
Also, Wilson et al. [37] found that for the Plasmodium berghei
peptide (SYIPSAEKI), four peptide amino acid positions
(S1, I3, S5, and E7) outside of the known TCR-contacting
position (K8) moderately decreased T-cell re-stimulation in
vitro when swapped with alanine. In addition, the T-cell re-
stimulation response was modest for alanine substitution in
all positions but K8 when testing with three different adjuvant
or delivery systems, suggesting that only K8 hinders cross
reactivity when replaced by alanine. Taken together, these
two papers highlight a more influential role of TCR-facing
(potentially high-contacting) peptide amino acids over other
peptide amino acids.

VI. CONCLUSIONS

In this manuscript, we considered the role of a nontrivial
contact map acting as a template for the explicit interac-
tions between the TCR and pMHC AA sequences. This
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approach is a compromise between making an arbitrary rule
as to how these sequences interact (for example, assuming
only diagonal coupling as done in previous models) or us-
ing a measured crystal structure for each considered pair, an
obvious impossibility for anything resembling a large reper-
toire undergoing negative selection. The formulation isolates
contributions from spatial conformation of CDR3 loops and
pMHC complexes into these contact maps, while the remain-
ing features are encapsulated in energy coefficient matrices.
The above model takes into account the spatial proximity of
TCR-peptide amino acid pairs through the contact map and
implicitly contains information regarding amino acid sizes. It
does not encode other AA pair-specific structural information,
for example, orientation. The RICE model makes the alternate
assumption, namely, that additional structural details make
each pair energy completely independent of each other, even
for the exact same AAs. This makes a very big difference in
the variance calculations, as has been seen in the selection
curves. Also, if every contacting pair has a different energy,
we could not possibly learn useful energy matrix models from
existing datasets of strong binders. We therefore have chosen
to proceed with the simpler assumption, recognizing that this
may need to be modified in the future.

Although all the analysis here was done using randomly
generated energy matrices, serving as a baseline “toy” model,
the methodology is not restricted to such a choice and other
energy matrices, such as the hydrophobicity-driven MJ matrix
[32,38], or data-driven matrices [29] can be used instead.
Herein, we compared negative-selection recognition proba-
bilities of the contact map dependent model with that of the
RICE model; in [22], there is a more in-depth comparison
of the RICE model with an approach that uses MJ energy
coefficients. Since our focus here is on the role of structural
information, we restricted our analysis to models with the
simplest approach to the energy matrix, namely, assuming it
is composed of Gaussian random variables. Future efforts will
combine our analysis here with more realistic energy matrices,
as determined, e.g., by the machine learning methods in our
recent paper [29].

We observed that the inclusion of contact maps gave rise
to several features impacting the variance of the TCR-pMHC
binding energy: a density-related one, as the number of non-
vanishing contacts correlates with increased variance, and a
topology-related one, in which the repeat structure of the
AAs in CDR3-loops’ and in pMHC-complexes’ sequences
also skews the variance, with additional repeats correlating
with increased variance. These changes in variance also affect
negative-selection recognition probabilities, with larger vari-

ances driving higher recognition probabilities. The proposed
generalization is therefore useful for characterizing the dis-
tributional behavior of TCR systems with a relatively fixed
contact structure. Given that even at fixed MHC allele, there
are likely to be several distinct spatial conformations that can
give rise to effective binding, a full treatment of the repertoire
should include finding the set of templates that give rise to
the largest possible binding for the sequences under consider-
ation. This extension will be reported elsewhere.

Another influence of the topology of the contact map man-
ifest in the recognition probability of point-mutated antigens
by T cells that have been negatively selected. Here, some
pMHC-AAs have a higher number of nonvanishing contacts
with TCR-AAs, that upon mutation make the antigen to be
perceived more like foreign by the T cells than when mutating
pMHC-AAs with fewer nonvanishing contacts. This results
in higher recognition probability of high-contact site point
mutants. Conversely, this notion can provide at least some
information about which mutations in a previously detected
peptide could prevent the detection of an evolved virus by
memory T cells generated in an earlier infection. Data to this
effect are now becoming available in the context of COVID-
19-specific T cells in never infected individuals resulting from
prior responses to other endemic coronaviruses [39].

As seen here, the problem of dissecting the generation and
functioning of the postselection T-cell repertoire is incredi-
bly complex, even utilizing a number of vastly simplifying
assumptions. The full problem requires attention to biases in
the generation of the naïve repertoire [40], inclusion of a set of
different MHC alleles for different individuals, a better handle
on the statistical properties of the negative-selection training
set, and, of course, the full range of molecular biophysics
effects that contribute to binding energy and on-off kinetics.
These cannot all be included in any useful theoretical model.
By isolating and improving our understanding of the effects
of specific contact geometries, we hope to build intuition for
how different aspects of this complex system contribute to
different functional aspects of the full T-cell arm of adaptive
immunity.
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