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Gene-influx-driven evolution
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Here we analyze the evolutionary process in the presence of continuous influx of genotypes with submaximum
fitness from the outside to the given habitat with finite resources. We show that strong influx from the outside
allows the low-fitness genotype to win the competition with the higher fitness genotype, and in a finite population,
drive the latter to extinction. We analyze a mathematical model of this phenomenon and obtain the conditions for
the transition from the high-fitness to the low-fitness genotype caused by the influx of the latter. We calculate the
time to extinction of the high-fitness genotype in a finite population with two alleles and find the exact analytical
dynamics of extinction for the case of many genes with epistasis. We solve a related quasispecies model for a
single peak (random) fitness landscape as well as for a symmetric fitness landscape. In the symmetric landscape, a
nonperturbative effect is observed such that even an extremely low influx of the low-fitness genotype drastically
changes the steady state fitness distribution. A similar nonperturbative phenomenon is observed for the allele
fixation time as well. The identified regime of influx-driven evolution appears to be relevant for a broad class of
biological systems and could be central to the evolution of prokaryotes and viruses.
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I. INTRODUCTION

Darwinian evolution is based on competition between in-
dividuals of the same species and/or between species for
common, limiting resources. Under population genetic theory,
the outcome of this competition depends on fitness distribu-
tion and the population size. In popular evolutionary models,
the evolving population either maintains a constant size [1–3],
or population growth saturates with the carrying capacity. In
the absence of mutation, only the fittest genotype survives in
the evolving population. With a nonzero mutation rate, if there
are two fitness peaks exp(r1), exp(r2), and a passable (i.e.,
containing no strongly deleterious mutations) mutational path
between the peaks, with the total transition probability U , then
the population of the peaks is comparable if r1 − r2 ∼ U , and
otherwise, the type with low fitness goes extinct.

Here, we investigate the case when there is an influx of the
low fitness type, which is a common situation in biology, par-
ticularly in the microbial world. A pertinent case, for example,
is a pandemic, such as COVID-19, during which an influx of
viruses from one location to another is common [4,5]

More generally, the phenomena modeled here relates to
gene drive, the natural or engineered process where a certain
suite of alleles is propagated across a population replacing
other alleles [6,7]. Gene drive is a powerful process to ma-
nipulate fates of populations, both in sexually reproducing
organisms, such as insects [8], and in viruses [9].

Recently, related phenomena have been thoroughly inves-
tigated in the context of social evolutionary dynamics [10,11].
Here we explore a distinct form of gene drive where a less
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fit genotype supplants the fittest one due to continuous influx
of the former. To model gene-influx-driven evolution, we first
consider the Moran model for a finite population [1], and then,
the Crow-Kimura model for an infinite population [12–23],
with migration between two habitats [24], an external habi-
tat with a single, fixed genotype, and the main habitat with
many genotypes that are subject to selection and mutation.
We construct and analyze a model for the many genes case
with epistasis. The critical influx of the low-fitness genotype
that is required for the elimination of the high-fitness genotype
is calculated analytically and validated by numerical simula-
tions. We further solve the Crow-Kimura model with invasion
for the case of large genomes, versus two genotype models
with invasion considered in [25].

II. TWO-ALLELE MODEL WITH AN INFLUX OF THE
LOW-FITNESS MUTANT IN A FINITE POPULATION

Consider a finite population with i mutants at the time t
and (N − i) wild-type replicators, so the total population size
is N .

Consider the following random processes.
(a) With the probability h+e−si/N

h+e−si/N+1−i/N there is a growth
of the mutant number by 1. Here the parameter h defines the
influx of the mutants.

(b) With a probability of 1−i/N
h+e−si/N+1−i/N there is a birth of

wild type.
(c) In case there is a birth of a new replicator, there is a

uniform dilution of the system to hold a constant population
size: the mutant number decreases by 1 with a probability i/N
and the wild-type number decreases by 1 with a probability
(N − i)/N .
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FIG. 1. (a) The mean fixation time T versus h, the neutral case
N = 100, s = 0, i = 1. The smooth line is our analytical result by
Eq. (5), and the solid dots are the numerical results. Here s is the
selection coefficient, while h describes the rate of the influx. (b) The
mean fixation time T versus h, the case N = 100, s = 1, i = 1. The
smooth line is our analytical result by Eq. (5), and the solid dots are
the numerical results.

Our Markov model is described via the following transition
probabilities to the ith state:

Pi,i+1 = (h + e−s/N i/N )(1 − i/N )

h + e−s/N i/N + 1 − i/N
= f (x),

Pi,i−1 = (1 − i/N )i/N

h + e−s/N i/N + 1 − i/N
= b(x),

Pii = 1 − f (x) − b(x), (1)

where we denoted x = i/N . The latter expression coincides
with Eq. 3.65 from [1], if we put h = 0.

Then we can calculate the average time to the irradiation
of the wild type. As all the time there is influx of the mutants,
they will be fixed with probability 1. Let us make an ansatz
T (x) = N2, ti, x = i/N .

Then we apply the diffusion approximation [26–28]

N2T (x + 1/N ) f (x) + N2T (x − 1/N )b(x)

− N2[ f (x) + g(x)]T (x)

= 1. (2)

After an expansion via 1/N degrees, we get

T ′′x(1 − x) + (h − xs)(1 − x)T ′ = 1. (3)

We set the conditions

T (1) = 0, T (0) < ∞. (4)

Eventually we derive the following solution:

T (x) =
∫ 1

x
dx

exp[sx]

xh

∫ x

0

exp[−sy]yh−1

(1 − y)
dy. (5)

We performed numerics for 0.01 < h < 10, and then numer-
ics confirmed the O(1/N ) accuracy of our analytical result
(see Fig. 1).

III. THE DRIVEN EVOLUTION IN THE CASE OF
CROW-KIMURA MODEL WITH SINGLE

PEAK FITNESS LANDSCAPE

We consider a model with N genes; two types for
any one. For the N genes we have 2N types. Following
Refs. [5,6], for 2N frequencies Pi we write the following set of

equations:

dPi

dτ
=

(
r j − P

κ
− μ

)
Pj + hδi,0 + μ

N

∑
di j=1

Pj,

P =
(2N −1)∑

j=0

Pj, (6)

where di j is the Hamming distance, the number of point muta-
tions to convert the ith sequence to the jth sequence, and μ is
the total mutation rate per genome, κ is the carrying capacity
in the system, and h is the influx rate. Pi is a total number
of the ith type, and P is the population size. We can rescale
ri, μ, h to get κ = 1. Further we will take κ = 1, then define
P as a population size and Pi as a relative frequency.

A. Driven evolution with influx at the peak

We consider the model by Eq. (6) for the case when

r0 = J, ri = 0, i � 1. (7)

We define as an lth Hamming class as the sequences with
the same number of mutations l from the reference sequence.
There are Nl = N!/(l!(N − l )!)Pi ≈ Nl/ such sequences. In
the steady state all of them have equal relative frequencies Pi.
We define pl = Nl Pi.

Ignoring the back mutations with the accuracy O(1/N ) in
Eq. (11), we derive

p0(J − 1 − P) + h = 0,

pn = pn−1

P + 1
, n > 0. (8)

We get immediately the expression for p0:

p0 = h

(P + 1 − J )
,

∑
l pl

p0
= P + 1

P
. (9)

Eventually, we derive a third-order equation for the total pop-
ulation size:

h

(P + 1 − J )

P + 1

P
= P. (10)

We take the single real solution of Eq. (10). Figure 2(a) illus-
trates the accuracy of our analytical results.

B. Driven evolution in the case
of an alternative peak

Consider now the case when there are two peak sequences:
a sequence with the fitness J1 related to the influx, and another
sequence with a high peak J2; all the other sequences have a
zero fitness. In this situation, two solutions are possible. In the
first case, the population of the second peak is exponentially
smaller compared to the population around the first peak. In
the second case, there are peaks of population distributions
around both sequences, with a ratio of total populations ∼1.

We already gave the solution of the first case in the statics,
Eq. (10). For the first peak with the fitness peak height J1, we
take as P the real value solution of Eq. (9). The population
around the second peak is negligible.

014403-2



GENE-INFLUX-DRIVEN EVOLUTION PHYSICAL REVIEW E 106, 014403 (2022)

J

q

(a) (b)

FIG. 2. (a) The population size of the model P versus the influx
parameter h. The smooth line is our analytical result by Eq. (10),
and the solid dots are the numerical results for J = 3, N = 1000. In
the case of nonzero influx it is not reasonable to consider a finite
population size; the latter is derived from the evolutionary dynamics
with a saturation. We used the simple version of saturation from [24].
(b) The population size around the first peak q1 versus J1. The smooth
line is our analytical result by Eq. (13), and the solid dots are the
numerical results for h = 0.5, J2 = 3, N = 1000. Now the state of
the model is defined by the f.

Consider now the second solution, focusing on the se-
quences near the second peak. We have

PPj = (r j − μ)Pj + μ

N

∑
di j=1

Pj . (11)

We obtain that, for nonzero Pi, P should be the maximal
eigenvalue of the model correspondingto the Crow-Kimura
model with the fitness landscape having peak value J2 and
zero fitness for all other sequences, so [18]

P = J2 − 1. (12)

Equation (9) gives for the population size q1 near the first peak

q1 = h

(P + 1 − J1)

P + 1

P

= h

(J2 − J1)

J2

J2 − 1
. (13)

Then, for the population size q2 near the second peak, we have

q2 = J2 − 1 − q1. (14)

Figure 2(b) illustrates the accuracy of our analytical result for
the population around the first peak. Figure 3(a) illustrates the
accuracy of our analytical result for the population around the
second peak.

C. The dynamics

We are interested in how the population around the high
peak disappears due to the influx of the low-fitness geno-
types. We derived the following equations for the relative
frequencies of the first peak sequence P0 and the second peak
sequence P̂0 in Eq. (6):

dP0

dt
= P0(J1 − 1 − P) + h,

dP̄0

dt
= P̄0(J2 − 1 − P). (15)

For the size of population around the first peak (without the
peak population) q3 and around the second peak (without the

(a) (b)

FIG. 3. The figure illustrates how the population around the high
peak disappears due to the influx of the low fitness genotypes. (a) The
population size around the second peak q2 versus J1. The smooth line
is our analytical result by Eq. (14), and the solid dots are the numer-
ical results for J2 = 3, N = 1000. After the critical value of J1 > Jc

the population of the second peak disappears. (b) The population size
around the second peak P2 versus t . The smooth line is our analytical
result by Eqs. (16) and (17), and the solid dots are the numerical
results for J1 = 2.625, J2 = 3, h = 1, N = 1000.

peak population) q4 we obtain, summing Eq. (6),

dq3

dt
= −q3P + P0,

dq4

dt
= −q4P + P̂0 (16)

Then, we have by the definition

P = p0 + P̄0 + q3 + q4. (17)

Thus we have a system of four nonlinear equations,
Eqs. (15)–(17).

In Fig. 3(b), we compare the analytical dynamics (smooth
line) with the direct numerics (solid dots).

The single peak fitness landscapes are not generally rel-
evant in biology, whereas random fitness landscapes are far
more realistic [29]. However, the key features of evolution
are identical for both these cases, as shown in [15,23] us-
ing the relation of the random fitness evolution model with
the random energy model by Derrida [30]. The steady state
properties of the model with a single peak landscape are
equivalent to the properties of the model with a random fitness
distribution when the gap between the maximum fitness and
the vast majority of sequence fitness values is the same as in
the Crow-Kimura model.

IV. SYMMETRIC FITNESS LANDSCAPE

Consider Eq. (6) for the case when the fitness depends
on the total number of mutations from the reference zeroth
sequence.

ri = f (x), x = 1 − 2di,0/l, (18)

where f (x) has a maximum at x = 1, so the zeroth sequence
has a maximal fitness.

A. The statics in the case of the influx at the peak

We assume that the population concentrates around the
peak (zeroth) sequence. Then, summing Eq. (6), we obtain

P2 = P f (1) + h. (19)
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(a) (b)

FIG. 4. The symmetric fitness landscape around one peak.
(a) The population size of the symmetric fitness landscape case
versus h, f (x) = x2, N = 1000. The smooth line is our analytical
result by Eq. (22), and the solid dots are the numerical results. After
the critical value of J1 > Jc the population of the second peak dis-
appears. (b) The population size of the symmetric fitness landscape
case versus log10(h), f (x) = x2, N = 1000. The solid dots are the
numerical results, and the smooth line is the quadratic fit. There is a
nonperturbative phenomenon via the influx rate h.

While deriving Eq. (19), we assumed that the distribution
around the peak is narrow, which can be proved rigorously,
so we replaced ri by ri0 in the expression of 〈riPi〉.

Taking the large value solution of the latter equation, we
find that even a very small influx can drastically change the
mean fitness. The numeric results strongly support this con-
clusion [Fig. 4(a)]. Instead of the solution

P = max[ f (x) +
√

1 − x2 − 1]|x,
we obtain

P = f (1). (20)

Thus, h = 0 is the singularity point. Figure 4(b) illustrates the
behavior of the model at the limit of very small h.

B. The influx at the low peak and extinction of the population
at high peak

Consider the case of two peaks with the sequences 1 and 2.
There are finite population sizes around both the peaks. Near
the first peak, we have the fitness function f (x),

ri = f (1 − 2d1i/N ),

and near the second peak, the fitness function g(x):

ri = g(1 − 2d2i/N ).

The total population size is defined by the steady state
mean fitness of the corresponding Crow-Kimura model,
which has the corresponding surplus s2,

P = max[g(x) +
√

1 − x2 − 1],

s2 = 〈1 − 2d2i/N〉. (21)

Summing Eq. (6), we obtain

R = max[g(x) +
√

1 − x2 − 1]|x,
q1 + q2 ≡ P = R,

P2 = q1 f (1) + h + q2P, (22)

where q1, q2 are the population sizes around the first and the
second peak, respectively. While deriving the latter equations,

(a) (b)

FIG. 5. There are two peaks, with symmetric fitness landscapes
in their vicinity. The extinction of the high peak population in the
case of the symmetric fitness landscape. (a) The population size
around the second peak of the symmetric fitness landscape versus
h, f (x) = x2, g(x) = 2.5x2, N = 1000. The smooth line is the ana-
lytical result by Eq. (22), and the solid dots are the numerical results.
Beyond the critical value of h > hc, the population of the second peak
goes extinct. (b) The dynamics of q2 for the case when originally
the population is focused at the high peak. The smooth line is our
analytical result by Eq. (23), and the solid dots are the result of
numerics.

we again assume narrow distributions around the peaks (the
width of distribution is ∼√

N).
We calculated q1, q2 from this equation and compared with

the direct numerics see Fig. 5(a).

C. The dynamics

Consider now the dynamics in the case of a symmetric
fitness landscape. Summing via the index i in Eq. (6), we
obtain

dq1/dt = q1[ f (1) − (q1 + q2)] + h,

dq2/dt = q2[g(s(t )] − (q1 + q2)), (23)

where s(t ) = 1 − 2d/N , and d is the mean Hamming distance
for the sequences around the second peak. s(t ) is the surplus
around the second peak. It is identical to the corresponding
surplus of the standard Crow-Kimura model with the fitness
function g(x). The latter has been already calculated in [22]
and the following expression has been derived for its inverse
function T (s):

T (s) = −1

2

∫ 1

s

dξ√
[ f (s) + 1 − f (ξ )]2 − 1 + ξ 2

. (24)

Thus, we derived an analytical expression for the extinction
dynamics of the high peak sequences. Our analytical results
coincide with those of numerical simulations, with the accu-
racy O(1/N ) [see Fig. 5(b)].

V. CONCLUSIONS

In this work, we analyze the phenomenon of driven evo-
lution, when there is a permanent influx of a single genotype
into an evolving population. We explore this phenomenon for
a finite population case, calculating the time to fixation, as
well as in the infinite population case of the many genes model
with epistasis. We investigated several models. Our main goal
was to calculate both the threshold values of the influx, which
are required to eliminate the high peak sequences from the
population, and the dynamics of the process. We analyzed the
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case of a symmetric fitness landscape as well as a single peak
landscape, the latter being mathematically equivalent to the
realistic case of a random fitness landscape [15,23]. In the
smooth fitness case, the driven evolution phenomenon shows
nonperturbative behavior such that even a very small influx of
the low-fitness genotype changes the mean fitness. Our analyt-
ical results have a relative accuracy O(1/N ) (N is the number
of genes in the genome). This nonperturbative phenomenon
is expected to be manifest in complex adaptive systems as
well, when the agents competing for finite resources could
either change their strategies or have a rigid strategy. Such
could be the situation in learning [31] or opinion dynamics
[32].

We further explored a simple evolutionary dynamics model
that includes interaction between different genotypes via
competition for the resources. It can be expected that the
mechanism demonstrated for this model also applies to
more complex, strongly nonlinear evolution phenomena with
adaptation. Close finite population models were previously
analyzed in detail [25] for the birth-death model, close to
the one considered here. Novozhilov and colleagues also ex-
amined the deterministic invasion model in the case of two
genotypes. Our current finite population model is simpler,
and we derive only the mean time to fixation. The main

difference is in the deterministic model. We solve models with
many genotypes, obtaining several phases, including nonper-
turbative phenomena, which is not addressed in the work of
Novozhilov and colleagues [25].

The results of this work will inform management of gene
drive interventions by defining the specific requirements for
the gene influx to eliminate the dominant genotype, which
is crucial for the control of ecological consequences [33].
Among possible applications are control of viral infections
and cancer therapy [34,35], where invasion of genetically
distinct viruses or tumor cells into habitats occupied by a
dominant variant is a key phenomenon. From the biological
perspective, our main finding is that, if there is mutation-
selection balance in a population, even an extremely low but
continued influx of a new variant, not necessarily a high-
fitness one, can drastically change that balance. The relevance
of this finding for biological phenomena of major impact, such
as epidemics, including the ongoing COVID-19 pandemic, is
obvious.
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