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Self-sustaining oscillation of two axonemal microtubules based on a stochastic
bonding model between microtubules and dynein
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The motility of cilia and flagella plays important physiological roles, and there has been a great deal of research
on the mechanisms underlying the motility of molecular motors. Although recent molecular structural analyses
have revealed the components of the ciliary axoneme, the mechanisms involved in the regulation of dynein
activity are still unknown, and how multiple dyneins coordinate their movements remains unclear. In particular,
the mode of binding for axonemal dynein has not been elucidated. In this study, we constructed a thermodynamic
stochastic model of microtubule-dynein coupling and reproduced the experiments of Aoyama and Kamiya on
the minimal component of axonemal microtubule-dynein. We then identified the binding mode of axonemal
dynein and clarified the relationship between dynein activity distribution and axonemal movement. Based on
our numerical results, the slip-bond mechanism agrees quantitatively with the experimental results in terms of
amplitude, frequency, and propagation velocity, implying that axial microtubule-dynein coupling may follow a
slip-bond mechanism. Moreover, the frequency and propagation velocity decayed in proportion to the fourth
power of microtubule length, and the critical load of the trigger for the oscillation agreed well with Euler’s
critical load.

DOI: 10.1103/PhysRevE.106.014402

I. INTRODUCTION

Cilia and flagella are motile cell organelles that have been
conserved throughout evolution from ancient organisms, and
play active roles in reproduction and development [1–3]. Fluid
flow produced by ciliary and flagellar movements has been
shown to play roles in airway clearance [4], left-right body
asymmetry [2,3,5], and cell movements, such as those of sper-
matozoa [6,7]. The motility of cilia, which plays an important
physiological role, is determined by the axonemal proteins
within the cilia, and there has been a great deal of research on
the mechanisms underlying the motility of molecular motors.

Recent molecular structural analyses have identified the
components of the ciliary axoneme [8–10]. Typical eukaryotic
cilia and flagella have nine doublet microtubules with a cen-
tral pair of microtubules, the so-called “9+2” structure. The
source of ciliary movement is the driving force of a molecu-
lar motor called dynein [8]. Dyneins are minus end-directed
motors that use conformation-dependent changes associated
with adenosine triphosphate (ATP) hydrolysis to attach to
and walk along microtubules [8]. Axonemal dyneins are or-
ganized in two rows, the outer and inner dynein arms, which
repeat periodically along with the doublet. The repeat unit
is 96 nm in length in each doublet and the unit possesses
four to seven dynein arms [10]. For the cilia as a whole
to achieve bending motion, multiple dyneins must cooperate
spatiotemporally, and it is thought that bending is achieved,
for example, by a cross-sectional asymmetric distribution of
dynein activity [9].
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Several theoretical and computational studies have been
conducted to clarify the mechanics of the ciliary or flag-
ellar axoneme [11–15]. Brokaw [11] developed a sliding
filament model, in which bending activation was controlled
locally by the curvature of the flagellum. While Brokaw’s
model used the resistive force theory to describe fluid motion,
Eloy and Lauga [13] adopted the more detailed hydrody-
namic slender body theory to determine the energetically
optimal ciliary waveform depending on the ciliary bending
stiffness. Three-dimensional computational models have also
been developed to describe the detailed three-dimensional
structure of the nodal axonemes, and the relationship be-
tween the spatiotemporal distribution of the circumferential
and longitudinal dynein activity and the ciliary waveform has
been elucidated [12,15]. However, these previous theoretical
models described dynein activity control as an artificially con-
trolled boundary condition, and thus have not yet reproduced
self-sustaining ciliary bending movements.

To clarify the mechanism of autonomous oscillation of
cilia and flagella, various mathematical models have been
proposed [11,16–29]. Camalet and Jülicher [18] expressed
the internal active force density in the two-filament model
by Fourier mode and introduced the perturbation parameter
under linearized small-deformation, clarifying the critical per-
turbation parameter with self-organized beating via the Hopf
bifurcation. They also showed that the wave propagation can
be induced by dynamic instability, and the resulting patterns
of motion do not depend on the microscopic mechanism of
the instability but only the filament rigidity and hydrodynamic
friction [19]. It has also been suggested that self-sustained
oscillations may be caused by a steady active force rather than
cyclic active stress [17,24]. Bayly and Dutcher [17] showed
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that a steady active force distributed in the axial direction
led to dynamic structural instability and oscillation, called
flutter motion. Collesano et al. [22] developed a two-clamp
filament model driven by dynein motors and investigated the
static geometry and active dynamics of the system. When the
two filaments were equal in length, they observed a transition
similar to Euler buckling, resulting in a planar shape. When
the length ratio was further increased, they observed that
after a second-order bifurcation, the system spontaneously
took a nonplanar shape with broken chiral symmetry and
transitioned back to a planar shape. Ling et al. [24] showed
that two Hopf bifurcations exist under steady force, and a
three-dimensional spinning oscillation and a two-dimensional
planar beat can be formed. By analyzing the energy of the
waves, Foster et al. [23] found that the torque generated by
dynein is proportional to the microtubule sliding velocity. It
has been suggested that the sliding friction of microtubules
in the axoneme is much greater than the viscous resistance of
the fluid surrounding the cilia. Mondal et al. [25] reported that
the initiation of autonomous oscillations due to mechanical in-
stability is due to relative strain-softening and shear-thinning
caused by active stress acting on the microtubules. Han and
Peskin [27] developed a three-dimensional axoneme model,
which obeyed the geometric constraint of dyneins in circum-
ferential and longitudinal directions. The dynein motors in
their model were connected to each other through the structure
of the cilia, and had an unstable symmetric steady state where
the cilia were straight and all motors were under equal tension.
It has been reported that the instability of this steady state
leads to the emergence of globally stable limit cycle oscil-
lations, which become ciliary motions. However, the above
dynein regulation models are continuum-scale models and
do not relate to dynein adhesion modes. Recent analytical
studies [20,21,26,28,29] successfully reproduced asymmetric
waveform of Chlamydomonas flagellum, synchronal beating
of two adjacent flagella, etc. In these studies, flagellar motion
was modeled by a coarse-grained two filaments representing
two opposite microtubule pairs (pairs 3-4 and 8-9, for ex-
ample). Flagellar beating was determined by a tug of war
between two opposite internal active forces, and dynein ac-
tivity was controlled by sliding velocity (or time derivative
of curvature) rather than the curvature itself. Although these
modeling reproduced experimental results, the timescale of
dynein association and dissociation is about the flagellar beat
frequency, and it is not yet possible to resolve adhesion and
detachment at the molecular level. A gap still remains between
the analysis of microscopic molecular movements and macro-
scopic flagellar movements.

Microscopically, microtubule-dynein adhesion has been
analyzed by laser trapping [30–32] and fluorescence reso-
nance energy transfer [33], and the binding dynamics are
being elucidated at the molecular level. One of the theoret-
ical models supporting these studies is the thermodynamic
probability model proposed by Bell [34]. The Bell model
represents protein-mediated adhesion as a stochastic process
and, depending on the internal parameters, it is possible
to describe qualitative differences in adhesion modes, such
as slip bonds, which easily dissociate under strong exter-
nal forces, and catch bonds, which become stronger under
applied forces. For cytoplasmic dynein and microtubules,

tensile testing by laser trapping was carried out [31,32], and
the results showed that dynein responded as a slip bond under
forward tension [31]. However, another group reported that
dynein has properties of catch bonds when subjected to high
loads [32]. Nair et al. [35] theoretically developed a thresh-
old force deformation model of cytoplasmic dynein motors,
wherein catch bonding set in beyond a critical applied load
force. They showed that catch bonding behavior manifests
the mean transport velocity of a cellular cargo can increase
with increase in opposing load force. Several sliding filament
models of stochastic dynein movement have been developed
theoretically [36–38]. Brokaw [11] has introduced a model of
superadhesive elasticity between the attached dynein and the
A-doublet, which allows movement perpendicular to the A-
doublet, and developed a sliding filament model with adhesive
forces that distort the attached dynein. This additional strain
influenced the kinetics of dynein attachment and detachment.
Similar to Aoyama and Kamiya’s experiments [39], the active
slide was shown to operate only where bending propagation
occurs from the base to the tip. Despite the model agrees
the experimental results, the adhesion mechanism of dynein
remains unresolved, since there have been different reports on
the adhesion mode of cytoplasmic dynein [31–33,35,37,38],
and there is no consensus regarding the binding dynamics of
axonemal dynein.

Determination of the mode of adhesion of axonemal
dynein may open up new avenues for dynein regulation. In
particular, it is necessary to clarify the relationships among the
distribution of dynein activity, the state of adhesion, and the
mode of axonemal movement. Aoyama and Kamiya [39] ex-
amined the behavior of frayed axonemes of Chlamydomonas,
and reported that a pair of doublet microtubules frequently
displayed association and dissociation cycles in the presence
of ATP. This experimental system is the smallest axonemal
dynein-microtubule constituent unit, and the relationship be-
tween axonemal dynein binding and axonemal movement is
expected to be clarified by reproducing the experiments of
Aoyama and Kamiya [39]. In this study, we developed a
numerical model of the dynein-microtubule adhesion mode
based on the Bell model to reproduce the experiments of
Aoyama and Kamiya [39]. We used this model to identify
the adhesion mode of axonemal dynein and to elucidate
the mechanical mechanism by which autonomous axonemal
movement is achieved.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

A. Problem setting

To mimic the experiments of Aoyama and Kamiya [39],
we considered a system with two doublet microtubules and
dynein, and excluded other microtubule-modifying proteins
(e.g., nexin, radial spokes) from the system. Two microtubules
are located on an infinite plane wall at z = 0, as shown in
Fig. 1(a). Nine doublet microtubules are assumed to be evenly
distributed in the ciliary circumferential direction, and the
two microtubules are placed at a distance of �x = 2π×acilia

9 �
70 nm in the (x, z) plane, where acilia (= 100 nm [40]) is the
radius of a cilium. The initial shape of the two microtubules
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FIG. 1. Problem setting: (a) To mimic the experiment of Aoyama and Kamiya [39], two microtubules (MTs) are aligned in the (x, z)
plane with the MT-MT distance of �x = 1.0 × 10−2L (∼70 nm). Initial shapes of the MTs are taken from the image of Ref. [39], and the
infinite plane wall is set at z = 0 using the Blakelet [42]. (b) Dynein sliding force is acting between the two MTs. Stochastic association and
dissociation of the dynein head with microtubules is represented by the Bell model [34], and the sliding force and torque due to sliding friction
of dynein are expressed as the combined force of tangential and normal forces on the nodes, which satisfies the force free conditions.

was taken from the image of Aoyama and Kamiya [39], and
we assumed the reference shape corresponded to the initial
shape.

A thermodynamic stochastic model was applied to deter-
mine the binding of dynein to microtubules and to describe
the activation of dynein. When dynein-microtubule adhesion
is determined to be on, the surface frictional forces associated
with the walking of the dynein head are expressed as the
sliding forces and torques acting between the two neighboring
microtubules [cf. Fig. 1(b)].

The surrounding fluid is assumed to be an incompressible
Newtonian fluid. Due to the small size of cilia (typically
10 μm), the inertia effect of the fluid motion can be neglected.
We then assume the flow is governed by the Stokes equation,
which is described as a boundary integral equation. In the
following sections, we present details of the governing equa-
tions and our numerical methodology.

B. Fluid mechanics

In eukaryotes, cilia have a slender structure with a radius
of 100 nm compared to a length of 5 to 10 μm [40]. Doublet
microtubules, which constitute the axoneme, have an even
smaller radius of about 10 nm, and the flow field created by
microtubules is described by the slender body theory [41]. The
doublet microtubule is approximated by a curved rod and the
arclength coordinate of the centerline is defined as s ∈ (0, L),
where L is the arclength of the microtubule. The flow field
at point x is located on the lth microtubule, xl (s, t ), is given

by [6,40]

∂xl (s, t )

∂t
= − 1

8πμ
�(s) · f (s) − 1

8πμ

∫
self

×[J(s, s′) · f (s′) + K(s, s′) · f (s′)]ds′

− 1

8πμ

∫
other

[J(s, s′) + W (s, s′)] · f (s′)ds′,

(1)

where f is the force density per unit length. The first integral
in the right-hand side of the equation is defined on lth micro-
tubules, i.e., the self-term, and the last term is the velocity
generated by other microtubules. J is the Green’s function
including the Blakelet [42] to describe an infinite plane wall
at z = 0, as given by

Ji j (s, s′) = J0
i j (s, s′) − J0

i j (s, sIM) + 2h2JD
i j (s, sIM)

− 2hJSD
i j (s, sIM), (2)

where sIM is a mirror image of the source point s′. J0 is the
free-space Green’s function:

J0
i j = δi j

r
+ rir j

r3
, (3)

JD is the Green’s function of a source doublet,

JD
i j = (1 − 2δ jz )

(
δi j

R3
− 3RiRj

R5

)
, (4)
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JSD is the Green’s function of a Stokes doublet,

JSD
i j = (1 − 2δ jz )

(
δi jR3 − δizR j + δ jzRi

R3
− 3RiRjRz

R5

)
, (5)

r = |r|, r = xl (s) − x(s′), R = xl − x(sIM), and h is the height
of the source point s′ from the wall. � and K are the local
operators of the slender body theory, which are given by [41]

�i j (s) = c[δi j + ti(s)t j (s)] + 2[δi j − ti(s)t j (s)], (6)

and

Ki j (s, s′) = −δi j + ti(s)t j (s)

|s − s′| , (7)

where c = − ln(ε2e), t is the unit tangential vector to the
centerline of each microtubule, ε = aMT/L, and aMT is
the microtubule radius. We assume the length and radius
of the microtubule are L = 7 μm and aMT = 12.5 nm [15],
respectively, and the slenderness value ε is then set to ε =
1.79 × 10−3 in the present study. The slender body kernel W
is also given by [41]

Wi j (s, s′) = (εL)2

2

(
δi j

r3
− 3

rir j

r5

)
. (8)

C. Microtubule model

Next, we explain the solid mechanics of the microtubule
model [43–45]. Each microtubule is assumed to be a thin
curved rod, and the transverse shear stresses in the cross-
section are neglected, i.e., the microtubule is modeled as an
isotropic Eulerian rod. The microtubule is discretized at N
nodes, and the elastic force at the αth node is described by
a linear sum of the extensional and bending force:

Fe
α = Fext

α + Fbend
α . (9)

Note that the Greek indices represent the discrete node num-
ber, while the alphabetical indices, e.g., Eq. (2), represent the
components of each tensor and vector. The extensional force
Fext between the nodes α and β is given by

Fext
α = kext(|rαβ | − r0

αβ )
rαβ

|rαβ | , Fext
β = −Fext

α , (10)

where rαβ = xα − xβ , xα is the material point of the node α,
r0
αβ is the reference length, and kext is the elastic coefficient.

The bending force is also given by

Fbend
α = −kbend ∂ (θα − θ0

α )

∂s
n′, Fbend

α+1 = Fbend
α−1 = −1

2
Fbend

α ,

(11)
where kbend is the bending coefficient, θα = cos(tα+1 · tα−1),
θ0
α is the reference angle. n′ is the s derivative of the normal

vector and coincides with the tangent vector, where |n′| = 1.
The s-differential of θ is discretized by an unevenly spaced
central differential:

∂θα

∂s
� θα+1 − θα−1

|xα+1 − xα| + |xα − xα−1| . (12)

The bending coefficient kbend is a coefficient that specifies the
angular change of a discrete node, and does not correspond to
the bending rigidity Eb in continuum mechanics. Quasi-static
cantilever beam bending tests were carried out beforehand,

and the bending coefficient kbend was adjusted so that the
relationship between strain and distributed load was consistent
with Hooke’s law. When the number of nodes is N = 98 and
the relationship between kbend and Eb is set to kbendL/Eb = 45,
the error from the theoretical solution in continuum mechanics
is less than 0.4%. We then decided to use the value of kbend

to kbendL/Eb = 45. Once the elastic force Fe
α is given, it is

converted to force density by a central differential.
To keep the length of the microtubule constant, kext in

Eq. (10) must be sufficiently large. With a large extensional
force, the time step �t must be sufficiently small to track
the microtubule motion, and a large amount of computation
time is required. Instead of using large kext, we applied the
constraint of the forced displacement method as in previous
studies [7,46]. The direction of the forced displacement is
set to be tangential and the norm of the forced displacement
is minimized by the Lagrange multiplier method [14,46].
Numerical iterations are carried out until the error of the
length is less than a threshold value. In this case, the force
in Eq. (10) contributes to acceleration of the iterative process.
By applying the constraint, we confirmed that the change in
length due to deformation was less than 1% with reasonable
computational time.

D. Driving force generated by ATP hydrolysis of dynein

Morphological changes in dynein due to ATP hydrolysis
and the surface frictional force are represented as the force
acting on the adjacent microtubules when dynein-microtubule
adhesion is determined to be on. As shown in Fig. 1(b), the
dynein forces and torques are modeled as forces tangential
and normal to the microtubule centerline, respectively [47].
Assuming dynein activation between nodes α and β of adja-
cent microtubules, the dynein force densities are expressed as
follows [47]:

f dyn
α = − F dyn

|xα+1 − xα−1| tα, f dyn
β = − f dyn

α , (13)

and

f dyn
α±1 = ±| f dyn

α |nα, f dyn
β±1 = ±| f dyn

α |nα, (14)

where F dyn is the force magnitude generated per dynein and
nα is the unit normal vector. We treat F dyn as a param-
eter while satisfying the force-free condition, as shown in
Eqs. (13) and (14).

Recent laser trapping experiments measured the adhesive
forces between dynein and microtubules [31], and a linear
spring adhesive force was added to the model:

Fad
α = Gad

(|rαβ | − rdyn
0

) rαβ

|rαβ | , Fad
β = −Fad

α , (15)

where rdyn
0 is the natural length of the dynein, and Gad is the

adhesive constant.

E. Microtubule-dynein thermodynamic stochastic
bonding model

To determine the adhesion and detachment of dynein, we
used the Bell model [34] and Monte Carlo method. In the
Bell model, the probabilities of adhesion and detachment for
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a single dynein molecule at a given time step �t are expressed
as Pon and Poff, respectively:

Pon = 1.0 − exp(−kon�t ) (16)

and

Poff = 1.0 − exp(−koff�t ). (17)

The frequency of adhesion and detachment, kon and koff, are
given by

kon = k0
on exp

|Fad
α |(χβ − 1

2 |rαβ |)
kbT

(18)

and

koff = k0
off exp

χβ |Fad
α |

kbT
, (19)

where k0
on and k0

off are coefficients that determine the frequency
of adhesion and detachment, respectively, kb is the Boltzmann
constant, and T is the temperature. χβ is reactive compli-
ance, which determines the adhesion distance of dynein, and
positive and negative χβ can be used to describe qualitative
differences between slip bonds, where the bond collapses
when a large force is applied, and catch bonds, where the bond
is strengthened by the force.

We assume that there are four outer dyneins in a periodic
structure of 96 nm in the longitudinal direction of the mi-
crotubule [10]; assuming a microtubule length of L = 7 μm,
each node represents three dynein bonds when the micro-
tubule is discretized at 98 nodes. For each of the three dynein
molecules at node α, a random number N1 with 0 < N1 < 1 is
given according to the Monte Carlo method, and if Pon > N1,
the number of adherent dynein molecules nα is incremented.
For adhered dynein molecules, a random number N2 with
0 < N2 < 1 is given, and if Poff > N2, the number of adhered
dynein nα is decremented. The number of bonding dynein
nα is changed in 0 � nα � 3, and the sliding and adhesive
forces are determined according to nα . In the Bell model, the
dynein kinetics are determined by the strain of microtubules,
i.e., the distance between adjacent microtubules. For example,
the probability of dissociation rate increases with the distance
in the slip-bond mode. This mechanism is similar to the cur-
vature (or sliding) control models proposed in some previous
studies [16,18,48], and the Bell model is considered to be a
type of geometric clutch model.

F. Numerical procedure

Initially, the two microtubules are located on the infinite
plane wall with distance �x = 70 nm. The initial shape is
taken from the image of Aoyama and Kamiya [39], and the
reference shape is assumed to be the same as the initial shape.
The effects of the reference shape are discussed in the Ap-
pendix. Each microtubule is discretized by N = 98 nodes.
According to Eqs. (9), (10), and (11), the elastic force is
computed in each time step. The adhesion between the micro-
tubule and dynein is then determined using the Bell model and
Monte Carlo method, and the dynein driving force is calcu-
lated according to nα . Assuming force balance among elastic,
driving, and fluid drag forces, the fluid drag force is expressed

TABLE I. Numerical constant used in the calculation.

Parameters Value Reference

Microtubule length L (μm) 7.0 [39,40]
Microtubule radius aMT (nm) 12.5 [15]
Bending stiffness Eb (N.m2) 2 × 10−22 [11,49]
Thermal energy kbT (J) 4.11 × 10−21

Natural length of dynein rdyn
0 (nm) 70 [31]

Adhesive constant Gad (μN.m−1) 1 [31]
Dissociation frequency k0

off (s−1) 310 [33]
Adhesion frequency k0

on (s−1) 160 [33]

as the sum of the elastic and driving forces and is substi-
tuted into Eq. (1). To compute Eq. (1), we use a Gaussian
numerical integration scheme as in our previous study [6,40].
Once the velocity is given, the nodal point xα is updated
according to the no-slip boundary condition, dxα/dt = v(xα ),
which is solved using a second-order Runge-Kutta method.
The time step �t is set to �t = 1.6 × 10−7 s. We numerically
confirmed the time convergence using a smaller �t value;
the results did not change markedly when using �t = 8.0 ×
10−8 s.

G. Parameter setting

Recent studies on the axoneme structure revealed coef-
ficients related to axonemal molecules, such as the dynein
driving force, binding frequency, and bending rigidity of mi-
crotubules. The results are summarized in Table I. The values
of k0

on and k0
off are functions of ATP concentration, and are

estimated to be 160 s−1 and 310 s−1 [33], respectively, under
conditions of high ATP concentration. The effect of ATP con-
centration on the k0

on/k0
off ratio is discussed in the Appendix.

The remaining unknown quantity is χβ , which determines the
adhesion distance of dynein and is treated as an unknown
parameter in this study. In the original Bell model, χβ is
considered to be related to the adhesion distance. In this study,
we treat χβ in the range of 10−10 to 10−7 meter. We also
implement the mode change of slip bonds and catch bonds by
positive and negative χβ and analyze the microtubule motion
in each mode.

To discuss the dynamics of microtubule motion, we in-
troduced the sperm number (Sp) [13,14], a dimensionless
number that expresses the ratio of viscous stress in oscillatory
motions to bending elasticity, and is often used in situations
dealing with sperm flagella and ciliary movements. The ratio
of the unsteady viscous force to the bending elastic force in the
motion of a thin rod can be expressed as Sp, which is useful for
comparison with previous studies. In this study, Sp is defined
as follows:

Sp = L
(
μk0

off/Eb
) 1

4 , (20)

where L is the length of the microtubule, μ is the fluid vis-
cosity, k0

off is the detachment frequency, and Eb is the bending
stiffness. The effect of bending stiffness on Sp is 1/4 power,
whereas the length is proportional. Assuming that the viscos-
ity of the surrounding fluid is in the range of 10−3 to 100

Pa s, the Sp estimated by the value in Table I is of the order
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FIG. 2. Periodic oscillation of microtubules. The colors indicate the number of activated dyneins per computational node. Arrows are the
motion of the left microtubule.

of 1 (about 1.4 to 7.8). In the present study, therefore, Sp is
parameterized as 5.5 to 10.

III. RESULTS AND DISCUSSION

A. Self-sustaining oscillation of the axonemal microtubule

We first investigated the motions of the microtubules as slip
bonds. The force generated by a single molecule of dynein
was set to F dyn = 2 pN, and the reactive compliance χβ was
set to 140 nm, respectively. Sp was also defined as Sp = 7.8.

Periodic oscillations were observed in the order of adhe-
sion of dynein from the base of the microtubule, propagation
of dynein activation to the tip of the microtubule, and diver-
gence at the tip, as shown in Fig. 2. When the number of
activated dynein molecules increased, the dynein sliding force
acted as a compression force, causing the left microtubule,
connected to the dynein tail, to buckle [cf. Fig. 2(e)]. After
dissociation at the tip, the shape of the microtubule recovered
to the reference shape via elastic force, and the activation
occurred again at the root and the buckling repeated.

As shown in Eq. (15), a greater bond distance led to
greater bonding force, but under slip bonds, a large bond-
ing force caused a high probability of dissociation. Thus, a
greater distance between the microtubules led to more dynein-
microtubule dissociation, whereas the probability of bonding
increased when they were closer to each other. This distance-
controlled activation induced a stable periodic motion.

Self-sustaining oscillations of the microtubule were also
observed in the experiment reported by Aoyama and
Kamiya [39]. For more quantitative discussion, we next in-
vestigated the effects of the parameters χβ and F dyn on
axoneme motion.

B. Three microtubule motions dependent on χβ and Fdyn

We observed three microtubule motions with changes
in χβ and F dyn: a quasistatic steady deformation mode
[cf. Fig. 3(a)], an unstable mode with high-order buck-
ling [cf. Fig. 3(b)], and a periodic oscillation mode. These
mode changes under slip-bond conditions are summarized in
Fig. 3(c). With large χβ values, the microtubule showed steady
deformation regardless of F dyn. With slip bonds, higher values
of χβ increased the probability of dissociation and reduced
the driving force acting on the microtubules. Conversely, un-
der small χβ values, the bonding probability increased and
the compressive force acting on the microtubules became
stronger, especially with large F dyn values. The periodic os-
cillation mode occurred under intermediate values of both χβ

and F dyn.
We observed the same three motions under catch-bond

conditions (cf. Fig. 4). With catch bonds, large |χβ | values
increased the probability of dynein-microtubule bonding, of-
ten resulting in the unstable mode with high-order buckling.
As in the case of slip bonds, the periodic oscillation mode
was achieved only at appropriate χβ and F dyn values, whereas
steady-state deformation was observed only under small F dyn

value. Although the stable oscillation region was smaller and
less robust than that of slip bonds, the oscillation mode could
be reproduced by catch bonds. Notably, when χβ = 0 (i.e.,
in the case of an ideal bond), the microtubules showed only
steady deformation.

These results imply that oscillation can occur with both
slip bonds and catch bonds. Thus, given the difficulty of iden-
tifying the adhesion mode between axonemal microtubules
and dynein from the qualitative experimental results of the
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FIG. 3. Three different modes depending on the reactive com-
pliance χβ and dynein force F dyn: (a) Steady deformation without
oscillation, (b) unstable deformation with high-order buckling, and
periodic oscillation modes as shown in Fig. 2. (c) Phase diagram
of the slip-bond model in the parameter space of (χβ , F dyn). Green
square, blue circle, and red diamond indicate the steady deformation,
periodic oscillation, and unsteady buckling modes, respectively.

oscillation mode, we next performed a quantitative compar-
ison of the experimental results of adhesion distance and
amplitude.

FIG. 4. Phase diagram of the catch-bond model. Green square,
blue circle, and red diamond indicate the steady deformation, peri-
odic oscillation, and unsteady buckling modes, respectively.

FIG. 5. Maximum adhesion distance with (a) the slip-bond and
(b) the catch-bond.

C. Possible adhesion distance and amplitude
under different bonding modes

For the oscillatory movements of axonemal microtubules
observed in the former experiment, the amplitude was ap-
proximately 2 μm [39]. Here, we analyze the amplitudes and
bonding distances obtained under slip-bond and catch-bond
conditions.

The ensemble average of the bond distance at any given
time t is defined as

dad =
∑N

α nα|rαβ |∑N
α nα

. (21)

We then take the maximum value of the average bond distance
during computation to consider the possible bond distances
for slip bonds and catch bonds. As shown in Fig. 5(a), for
slip bonds, the maximum bonding distance was the same
regardless of F dyn. Its maximum value was about 400 nm and
decreased monotonically with χβ . This trend arose because a
large χβ value led to a high probability of dissociation.

For catch bonds, however, the maximum bonding distance
increased with the magnitude of χβ [cf. Fig. 5(b)]. For catch
bonds, large |χβ | values increased the probability of bond-
ing and hence the adhesive bond strength. The high bond
strength caused a backward loop in which the dissociation
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FIG. 6. Average amplitude of the oscillation mode with (a) the
slip-bod and (b) the catch-bond.

frequency became increasingly smaller, so that the maximum
bond distance exceeded 1 μm even in the oscillation mode.
The maximum adhesion distance may be estimated to be a few
times the dynein length (a few hundred nanometers at most),
so micrometer adhesion distances are considered to be too
large. In fact, no such long-distance adhesion was observed
in the experiments.

We also investigated the amplitude of the oscillation, de-
fined as the maximum distance between the microtubules; the
spatiotemporal maximum amplitude is shown in Fig. 6. For
both slip bonds and catch bonds, the maximum amplitude in-
creased with the dynein force F dyn. There was little difference
in the effect of slip-bond and catch-bond conditions on the
amplitude, and both models were in quantitative agreement
with previous experimental results (around 2 μm [39]).

Both the slip-bond and catch-bond models reproduced
oscillatory motion, but the slip-bond model had a large sta-
ble oscillatory region, whereas the catch-bond model had a
relatively small region (cf. Figs. 3 and 4). In addition, the
adhesive distance in the oscillation mode was larger for catch
bonds. Based on the quantitative comparison of the adhesion
distances and the robustness of the oscillation mode, axone-
mal microtubule-dynein coupling likely follows a slip-bond

FIG. 7. Effect of the sperm number Sp on (a) the propagation
speed and (b) the oscillation frequency.

mechanism. However, further quantitative comparison with
experimental results is required before this can be determined
conclusively.

D. Effect of sperm number on the oscillation dynamics

The previous sections focused on microtubule deforma-
tions and bond distances. Here, we consider time-varying
dynamics. We first investigated the propagation speed of
dynein activation from the root to the tip. χβ and F dyn were set
to 140 nm and 2 pN, respectively. The results are summarized
by Sp and are shown in Fig. 7(a). As Sp is a dimensionless
number that is dependent on microtubule stiffness, length,
fluid viscosity, and dissociation frequency, the results can be
discussed for systems with different values of each. The prop-
agation speed decayed approximately proportional to Sp−4.
As Sp is proportional to 1/4 of the viscosity or dissociation
frequency, this result indicates that the propagation veloc-
ity decreases inversely with these parameters, and likewise
decays with the fourth power of microtubule length. The
propagation velocity shown in the experiment of [39] was
about 400 μm/s, which confirmed the quantitative agreement
of the propagation velocity with slip bonds (in the case of
catch bonds, the propagation velocity was at most 280 to
300 μm/s).
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FIG. 8. Relationship between the total sliding force and the force
produced by a single dynein head. Filled symbols indicate the oscil-
lation mode, whereas the open symbol is the steady mode.

We then investigated the oscillation frequency with varying
Sp. For the oscillation frequency, as well as for the prop-
agation velocity, the decay was proportional to the fourth
power of Sp [cf. Fig. 7(b)]. In a previous experiment, the
frequency was about 9 Hz [39], in good agreement with the
present results, where the frequency of the catch bond reached
a maximum of about 4 Hz. Using the slip-bond model, the
experimental results can be quantitatively reproduced both in
terms of deformation and dynamic motion. In addition, these
results imply that the most important parameter describing
microtubule dynamics is microtubule length, and that, given
the same driving force, the velocity of motion decays in pro-
portion to the fourth power of the length.

E. Force required for the oscillation mode

When two doublet microtubules are associated for a certain
length, dynein generates sliding force, resulting in a large
bending moment at the base. For homogeneous and isotropic
straight rods, Euler’s critical load, the load that causes the
column to buckle and fail, is given by

F Euler = π2Eb/L2. (22)

Then, the force required to bend over a length of 1 μm may
be about 2 nN. To compare the critical load in this simulation
with the Eulerian load, the total sliding force acting on the
microtubule is determined using the following equation:

F total = max
t∈T

∑
nα (t )F dyn, (23)

where T is the period.
The total force for slip bonds is shown in Figure 8. Regard-

less of the value of χβ , when F total exceeded 1 nN, buckling
dissociation occurred at the root under all conditions and the
periodic oscillation mode was observed. This result is quanti-
tatively in agreement with the Eulerian critical load, indicating
that the oscillation mode is triggered by root buckling due to
compressive loading.

Aoyama and Kamiya [39] also discussed the critical load
for root buckling. They estimated that a compressive force of
2.3 nN was required for the bend, which would require 400 to
2000 dynein heads over a length of 2 to 10 μm. Our results
support their buckling model and provide a theory for self-
sustaining oscillatory motion in two-microtubule systems.

IV. CONCLUSION

In this study, we developed a model for stochastic bonding
between microtubules and dynein, and simulated the motion
of two axonemal microtubules, mimicking the experiment of
Aoyama and Kamiya [39].

Both slip-bond and catch-bond models reproduced the
oscillation mode; however, the slip-bond model was in quan-
titative agreement with the experimental results in terms
of amplitude, frequency, and propagation velocity, implying
that axial microtubule-dynein coupling may follow a slip-
bond mechanism. Moreover, the frequency and propagation
velocity decayed in proportion to the fourth power of the
microtubule length, and the critical load of the trigger for the
oscillation mode agreed well with Euler’s critical load. These
results provide a theoretical understanding of the previously
reported microtubule vibration and help to clarify the as-yet
undetermined mechanism of dynein activity regulation.
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APPENDIX

1. Effect of microtubule reference shape

Here, we show the effect of the microtubule reference
shape. In the main text, the reference shape was set as curved,
which corresponds to the initial shape. The effect of the refer-
ence shape on the motion was investigated by calculating the
case where the reference shape was a straight line while keep-
ing the initial shape. The oscillation mode was also observed
when the reference shape was changed to straight. Table II
shows a comparison of the results for the slip-bond model,
F dyn = 2 pN, χβ = 140 nm, Sp = 7.8, k0

on/k0
off = 0.516. There

were no marked changes in most of the analyses, implying that
motion was not highly dependent on the reference geometry.

TABLE II. Effect of the reference shape: Curved rod versus
straight rod.

Parameters Curve Straight

Max amplitude Amax (μm) 2.7 2.52
Possible adhesive distance dad

max (nm) 289 286
Total sliding force F total (nN) 1.26 1.37
Propagation velocity (μm s−1) 154.6 154.6
Oscillation frequency (Hz) 3 3
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2. Effect of ATP concentration

In this study, the frequencies of adhesion and detachment
k0

on and k0
off were defined as variables dependent on ATP

concentration, as described in Sec. II. Imamula et al. [33]
demonstrated the response of dynein attachment and detach-
ment frequency to varying ATP concentration via fluorescence
resonance energy transfer. The adhesion frequency was al-
most constant regardless of the ATP concentration, whereas
the detachment frequency showed a rapid decay at low con-
centrations. Aoyama and Kamiya [39] also reported that
microtubules showed almost stationary adhesion mode under
conditions of low ATP, and it is possible that the change
in adhesion dynamics by the change of ATP concentration
leads to a change in macroscopic microtubule motion. In the
main text, a high ATP concentration was assumed and the

k0
on/k0

off ratio was set to 0.516. Here, a low ATP concentra-
tion is assumed and the ratio was reset to k0

on/k0
off = 10 to

examine the effect of ATP concentration. With the parameters
of F dyn = 2 pN, χβ = 140 nm (slip-bond model), no mode
change from oscillatory to steady-state adhesion was observed
even when the detachment frequency was changed by a factor
of 20. Conversely, mode change could be achieved by F dyn

and χβ , as shown in Fig. 3. F dyn and χβ control the prob-
ability as exponential functions, whereas k0

on and k0
off affect

it as coefficients of the exponential function. These results
indicate that the sensitivity of F dyn and χβ to ATP is more
important than the attachment and detachment frequency. A
decrease in ATP concentration may lead to an increase in
χβ or a decrease in F dyn. Further investigations are therefore
required.
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