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Effects of time-varying habitat connectivity on metacommunity persistence

Subhendu Bhandary,1 Debabrata Biswas ,2 Tanmoy Banerjee ,3,* and Partha Sharathi Dutta 1,†

1Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
2Department of Physics, Bankura University, Bankura 722155, West Bengal, India

3Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713104, West Bengal, India

(Received 11 March 2022; accepted 5 July 2022; published 25 July 2022)

Network structure or connectivity patterns are critical in determining collective dynamics among interacting
species in ecosystems. Conventional research on species persistence in spatial populations has focused on static
network structure, though most real network structures change in time, forming time-varying networks. This
raises the question, in metacommunities, how does the pattern of synchrony vary with temporal evolution in the
network structure. The synchronous dynamics among species are known to reduce metacommunity persistence.
Here we consider a time-varying metacommunity small-world network consisting of a chaotic three-species
food chain oscillator in each patch or node. The rate of change in the network connectivity is determined by the
natural frequency or its subharmonics of the constituent oscillator to allow sufficient time for the evolution of
species in between successive rewirings. We find that over a range of coupling strengths and rewiring periods,
even higher rewiring probabilities drive a network from asynchrony towards synchrony. Moreover, in networks
with a small rewiring period, an increase in average degree (more connected networks) pushes the asynchronous
dynamics to synchrony. On the other hand, in networks with a low average degree, a higher rewiring period drives
the synchronous dynamics to asynchrony resulting in increased species persistence. Our results also follow the
calculation of synchronization time and are robust across other ecosystem models. Overall, our study opens the
possibility of developing temporal connectivity strategies to increase species persistence in ecological networks.
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I. INTRODUCTION

Synchronization among populations of the same species
is a widely observed collective phenomenon in the studies
of ecological networks [1,2]. Synchrony in the dynamics of
populations creates interdependence in their abundance, and
simultaneous low abundance can lead to simultaneous ex-
tinction. Thus, synchrony increases the risk of network-wise
extinction and correspondingly reduces species persistence.
Population synchrony can be driven by several factors, includ-
ing dispersal network structures or connectivity patterns [2,3].
Even though species connectivity via dispersal has attracted
much attention due to its both positive and negative effects on
the persistence and stability of spatially separated populations
[4–7], how temporal changes in the connectivity can influence
species persistence have received much less attention. Specifi-
cally, how temporal changes in species connectivity influences
nonlinear dynamics of a metacommunity is still unclear [8].

Leibold et al. [9] has defined a metacommunity as “a set
of local communities that are linked by dispersal of mul-
tiple potentially interacting species.” Connectivity between
spatially separated habitat patches is an integral component
of metacommunity ecology [2,10–12]. Taylor et al. [13]
described “connectivity” among habitat patches as “the de-
gree to which the landscape facilitates or impedes movement
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among resource patches.” Over time, many approaches have
led to alternative definitions of population connectivity, e.g.,
structural, genetic, and functional connectivity [14]. Though
population connectivity can be defined in various ways under
diverse ecological circumstances, they share a common char-
acteristic that corresponds to spatial linkages or dependencies
between populations or individuals. Many studies have shown
that population connectivity via dispersal is as important to
population viability as distribution of resources [15]; however,
connectivity patterns in fragmented landscapes are in general
ignored. Landscapes, where species movements occur, can
vary temporally through distribution and quality of habitat
over time [16]. As a result, species dynamics can vary along
the complex spectrum of “static” to “dynamic” environments
[17,18]. Metacommunity dynamics in static environments
have mostly focused on static networks, where links offer
a permanent connectivity pattern between habitat patches
[2,19]. However, habitats are disturbance-driven in dynamic
landscapes, and links between them are best described to form
“temporal” networks, where connectivity may change across
different timescales [20]. For example, the marsh fritillary
butterfly Euphydryas aurinia in Finland, inhabiting dynamic
landscapes, exhibits patch networks that vary over time [21].

In a temporal patch network, the links or connectance
between species habitat patches varies over time [8,22,23].
More specifically, a temporal patch network is a “sequence
of separate networks” on the same set of patches or nodes,
where each such snapshot is characterized by an adjacency
matrix (i.e., a square matrix representing the structure of
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a finite graph or network) for a particular time duration
[24]. Therefore, temporal connectivity can also be recognized
with a “transient” feature. For dynamic environments, Zei-
gler and Fagan [16] describe that structure of connectivity
should be seen as time-varying (transient) rather than static,
due to changes in biotic and abiotic conditions influencing
metacommunity dynamics. Temporal connectivity patterns
are also known to create a short window during which tem-
poral opportunities for movement between particular patches
increase depending on a species’ generation time or life his-
tory. Nonetheless, to understand metacommunity dynamics
governed by the changes in the species interaction patterns
due to their life history or anthropogenic factors, temporal
networks could provide a useful framework [25–27].

For static network structures, it is known that an in-
creased dispersal strength inevitably induces a higher degree
of synchrony and ultimately reduces metapopulation persis-
tence [1,28]. Koelle and Vandermeer [4] have shown that
by adopting a metacommunity framework, this pattern of
persistence can be altered, resulting in dispersal-induced
desynchronization. Exploring the nature of synchronization or
desynchronization dynamics under the framework of temporal
networks has led to exciting observations in generic networks
of nonlinear units [29–31]. The basin stability measure [32]
has been used to determine the stability of the synchronous
state in temporal networks [33]. Masuda et al. [34] describes
that synchronization is more challenging to achieve in tem-
poral networks than in the corresponding aggregate networks.
Surprisingly, most of the studies deal with networks whose
structure changes faster than the characteristic timescale of
their individual units. In this fast-changing network structure,
the dynamics of the system may be considered as static in
terms of synchronization stability under the adiabatic approx-
imation [33,35–37]. However, in ecological networks, change
in network structure occurs at a much slower rate than a
species life cycle [38,39], which can be best predicted by the
dominant period or the corresponding harmonics of oscilla-
tions of individual nodes.

Motivated by the above arguments, in this paper we study
the synchronous-asynchronous dynamics of an ecological
time-varying network whose time rate of change (or the
rewiring frequency) is comparable with the natural frequency
or its subharmonics of the constituent nodes. We consider the
small-world network topology [40] as the core network struc-
ture, and the uncoupled dynamics of the nodes are governed
by the chaotic Hastings-Powell model of the three-species
food chain [41]. Here we employ the wavelet transform
method to identify each node’s dominant period of oscillation
and its harmonics, and the network is rewired following those
periods. Moreover, appropriate coupling strengths are chosen
based on the master stability function approach [42]. Im-
portantly, for suitable coupling strength, average degree, and
rewiring period, we find that an increase in the rewiring prob-
ability drives the network from asynchronous to synchronous
state; however, further increase of rewiring probability even-
tually leads to asynchronous dynamics. We also find that
temporal networks with a higher average degree and small
rewiring period can propel the asynchronous dynamics to a
synchronous one and, therefore, reduce species persistence.
Our results are supported by measures from master stabil-

ity function [42] and the basin stability [32]. We further
corroborate our results using the concept of clustering fre-
quency and the transient time of synchronization. Finally,
we demonstrate the generality of our study through an-
other temporal network, where the species dynamics in each
node are governed by the Blasius-Huppert-Stone food web
model [1]. One of the reasons for choosing Hastings-Powell
and Blasius-Huppert-Stone models is that they are the most
widely studied ecological models and exhibit chaotic dy-
namics representative of complex ecological phenomena. The
Hastings-Powell model [41] is the first continuous food web
model which produces chaotic oscillations in the absence of
seasonal perturbations. Blasius-Huppert-Stone model [1] is
another ecological model which also exhibits chaotic oscil-
lations and where theoretical concepts have been employed to
model ecological events from empirical data successfully.

II. MODELS AND METHODS

A. A metacommunity model

We study the dynamics of a metacommunity model
consisting of N spatially separated patches connected by dis-
persal that follows a time-varying network topology. In each
patch, the uncoupled dynamics are governed by a chaotic
three-species food chain model [41]: With a basal resource
population (x), an intermediate consumer population (y), and a
top predator population (z). Within the patch, dynamics of the
food chain are characterized by the logistic growth function
and the type II functional response. Further, diffusive dispersal
connects the interacting patches, which forms a time-varying
network described by the following set of differential equa-
tions:

dxi

dt
= xi(1 − xi ) − a1xiyi

1 + b1xi
, (1a)

dyi

dt
= a1xiyi

1 + b1xi
− a2yizi

1 + b2yi
− d1yi + ε1

N∑
j=1

Li jy j, (1b)

dzi

dt
= a2yizi

1 + b2yi
− d2zi + ε2

N∑
j=1

Li jz j, (1c)

where i(= 1, 2, . . . , N ) describes the node or patch index.
Here the consumer y depends on the resource x for its survival,
and the predator z at the top level depends on the consumer y.
The system parameters of the uncoupled model (when ε1 = 0
and ε2 = 0) are a1, a2, b1, b2, d1, and d2. Unless stated,
throughout this paper we consider the parameter values of
the uncoupled model as a1 = 5, a2 = 0.1, b1 = 3, b2 = 2,
d1 = 0.4, and d2 = 0.01 [41].

The diffusive dispersal connects the patches with dispersal
rates ε1 and ε2 for the consumer (x) and the top predator (y),
respectively. For simplicity, in this study we have assumed
ε1 = ε2 = ε. Here both species immigration and emigration
are described by the Laplacian matrix (Li j) obtained from the
adjacency matrix (Ai j) of the considered network. In particu-
lar, elements of the adjacency matrix are defined as Ai j = 1,
if patches i and j are connected via dispersal, and otherwise
Ai j = 0. The diagonal elements of the Laplacian matrix are
the sum of columns (or rows) of the adjacency matrix with the
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FIG. 1. Schematic representation of a time-varying network
composed of a “sequence of separate networks.” Each panel rep-
resents a snapshot that follows a small-world network topology
associated with a rewiring probability (p). After a fixed period (e.g.,
T ), there is a change in the network structure, keeping the rewiring
probability unaltered. A chaotic dynamical system governs the un-
coupled dynamics in each node

negative sign, representing the emigration from the ith patch
to other connected patches. In other words, the diagonal ele-
ments of the Laplacian matrix is the degree of each ith patch
with the negative sign, Lii = −∑N

j=1 Li j (for each i) = − the
degree of ith node, and Li j = Ai j when i �= j.

B. Temporal network with each snapshot following
a small-world network topology

Various network structures can be considered depend-
ing on the connectivity pattern between spatially separated
patches, such as regular, small-world, and random networks,
in the metacommunity model (1). These network structures
are widely used in ecology and other fields to study the collec-
tive dynamics of coupled oscillators [2,43–46]. Each of these
network structures can be generated by the Watts-Strogatz
algorithm [47] for different values of a rewiring probability
(p). For example, a network is regular if p = 0 and completely
random when p = 1, and follows a small-world structure if
0 < p < 1.

Traditional research on ecological networks has consid-
ered small-world and random network structures under the
framework of static networks [2,43]. In a static network,
the connectivity structure is invariant over time. However, in
a temporal network, the connectivity evolves involving two
key mechanisms: When and how the connectivity changes.
Here we study the collective dynamics of the metacommunity
model (1) that follows a temporal network structure and is
composed of a chaotic oscillator at each patch. For the sake
of completeness and comparison, we also study the system’s
dynamics for static network structure. Figure 1 demonstrates
a schematic representation of our modeling framework. The
initial network is chosen after rewiring a regular network with
the probability (p). The patch connectivity is rewired at each
fixed period (T ), keeping the rewiring probability unaltered.
Although we allow connectivity to evolve between patches at
a fixed time interval T , the average degree in the network
remains unaltered. Hence, for a time-varying network, the
Laplacian matrix (Li j) in model (1) intermittently varies at
each period T ; otherwise, in the intermediate time, it remains
unaltered. The following section discusses the choice of the
rewiring period (T ).

C. Wavelet analysis of a chaotic time series

Unlike most studies on temporal networks, here we do
not consider changes in the network structure at every inte-
gration step size. We rewire the network structure at a rate
with a period T , which is determined by the characteristic
time of the nodal oscillators. To determine T , we employ the
wavelet transform to a chaotic time series of the uncoupled
Hastings-Powell model. The chaotic time series consisting of
multicycles [see Figs. 2(a)–2(c)] is analyzed through wavelet
transform, which determines the localized variations within
time series [48]. From Figs. 2(e) and 2(f), the dominant pe-
riod and associated subharmonics of the chaotic time series
can be found. From a practical point of view, the dominant
period is comparable to the life cycle of a species; keeping
this in mind, we rewire the networks at a subharmonic of
the dominant period assuming that a species may change its
dispersal networks structure a few times in a life cycle. Later
in this paper, we show the importance of choosing the rewiring
period (T ).

D. Linear stability analysis of synchronized solutions

The interaction or coupling strength plays a crucial role
in governing the collective dynamics of a system of coupled
oscillators. It is known that in the weak coupling regime,
decreasing the coupling strength may weaken synchrony [2].
Therefore, it is essential to know the suitable coupling range
where the synchronous solution is stable. To determine the
appropriate coupling range for the model (1), here we follow
the master stability function (MSF) approach [42]. Below, we
briefly describe the MSF approach for temporal networks.

Consider a coupled system of identical oscillators writ-
ten as Ẋi = F (Xi ), i = 1, 2, . . . , N , Xi ∈ Rd , F : Rd → Rd ,
where Xi represents the d-dimensional vector which describes
the dynamics at the ith node. At each isolated node of the
network, the dynamics are governed by the function F (Xi ). If
each node interacts with its neighbors, then the dynamics of
the ith node can be written as

Ẋi = F (Xi ) + ε

j=N∑
j=1

Ai j (t )[H (Xj ) − H (Xi )],

= F (Xi ) + ε

j=N∑
j=1

Li j (t )H (Xj ), i = 1, . . . , N,

(2)

where ε represents the coupling strength, Li j is the Laplacian
matrix, and H :Rd → Rd defines the coupling function repre-
senting the interaction between different nodes. The row sum
of the Laplacian matrix equals zero, and hence the existence
of solution of (2) of the type X1 = X2 = X3 = · · · = XN = X0

with X0 ∈ Rd such that Ẋ0 = F (X0) is always guaranteed and
X0 is the corresponding synchronous solution. The subspace
in the state space of (2) where the solution of the isolated
oscillator F and the solution of all the oscillators evolve
synchronously is called synchronization manifold. Further,
we calculate the local asymptotic stability of the oscillators
along the synchronization manifold in the presence of small
perturbations. The variational equation of (2) is given by

ξ̇ = [IN ⊗ DF + εL(t ) ⊗ DH]ξ, (3)
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FIG. 2. Wavelet analysis of a chaotic time series of the model (1) in the absence of coupling. Chaotic time series of (a) the resource, (b) the
consumer, and (c) the top predator; corresponding (d) phase portrait of the chaotic attractor, (e) wavelet power spectra, and (f) wavelet global
spectrum. Model parameters are a1 = 5, a2 = 0.1, b1 = 3, b2 = 2, d1 = 0.4, and d2 = 0.01.

where ξ = (X1 − X0, X2 − X0, X3 − X0, . . . , XN − X0)T is the
perturbation vector, IN is the N × N identity matrix, ⊗ rep-
resents the Kronecker product, and DF and DH are the
Jacobian function of F and H , respectively, evaluated on the
synchronous solution (X0). If the Laplacian matrices L(t ) and
L(t ′) commute for any t and t ′, then we can find an orthogonal
matrix Q such that QT L(t )Q is diagonal for all t , where QT

stands for the transpose of Q. The Laplacian matrix need
not be necessarily commutative. A framework for studies of
synchronization of identical oscillators without constraints on
commutativity of the Laplacian matrix has been discussed in
[49]. Using the block diagonalization form of (3) we obtain N
independent d dimensional equation:

δ̇i = [DF + ελi(t )DH]δi, i = 1, . . . , N, (4)

where (δ1, δ2, . . . , δN )T = (QT ⊗ Id )ξ , and λi are eigenvalues
of L. The synchronous solution is stable, if all perturbation
modes transverse to the synchronization manifold decaying
asymptotically to zero. Decoupled variation equations (4) dif-
fer in λi(t ), and other terms are equal. To study the stability
of the synchronous state it is enough to study the maximum
Lyapunov exponent of (4), which is a function of α:

ζ̇ = [DF + αDH]ζ . (5)

Here α is the function of the eigenvalues λi and coupling
strength ε, also known as the MSF and denoted by �(α). The
synchronous solution is stable if the MSF �(α) is negative for
all transverse modes (i � 2). Further, there are mainly three
cases possible for �(α) < 0: (1) no such α exists: �(α) has
no crossing point; (2) α1 < ελi: �(α) has one crossing point;
and (3) α1 < ελi < α2: �(α) has two crossing points [50].

Structural evolution in complex temporal networks has
been studied more often via different rewiring techniques,
such as slow switching (rewiring links after longer periods)

and fast switching (more frequent rewiring). The condition for
a stable synchronous state varies for slow and fast switching.
Let a network switches among M different configurations
(snapshots) L1, L2, . . . , LM after certain rewiring time period
T , then the necessary condition for achieving stable sync state
is [51]

M∑
k=1

1

M
�(ελik

k ) < 0.

If the network switches at a fast scale yielding M arbitrary
sequential structures, then the condition of stable sync state is
as follows:

�(
1

M

M∑
k=1

ελ
ik
k ) < 0.

For a fast switching instance, stability of the synchronous
state in a network with time-varying topology can be ob-
tained by calculating the MSF for the static time-averaged
network. Hence, when network structure evolves via fast
switching, calculating the MSF from the time average of
matrix L̄ = 1

M

∑M
k=1 Lk is sufficient [35]. Thus the type of

switching scheme favorable for synchronization can be an-
ticipated from the MSF approach pertaining to the switching
variants. Thereafter, a concave (convex) MSF shape indicates
that the network supports synchronization dynamics under a
fast (slow) switching [51].

E. Basin stability

The basin stability (BS) is a nonlocal and nonlinear mea-
sure of stability related to the basin volume of multistable
systems, including higher-dimensional complex networks
[32]. The BS measure is known to complement the linear
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stability analysis. To determine the BS of the considered
system (1), we numerically simulate it for different initial
conditions (I), chosen uniformly from the region [0, 1] ×
[0, 0.5] × [7.5, 11.5] (which has been chosen from the exis-
tence region of the chaotic attractor depicted in Fig. 2). If Is is
the number of initial conditions that arrives at the synchronous
state, then we define the BS = Is

I . Whether an initial condition
is converging to a synchronous state or not has been deter-
mined by an order parameter, the synchrony measure (σm)
evaluated for a large enough time t̂ . The synchrony measure
(σm) is defined as [45,52]

σm =
√√√√1 −

〈∑N
i=1[Xi(t ) − X (t )]2∑N

i=1 Xi(t )2

〉
,

where X (t ) = 1
N

∑N
i=1 Xi(t ), and 〈· · · 〉 denotes the average

over the time period t̂ . The synchrony measure σm varies
between 0 and 1. In particular, σm = 1 denotes complete
synchronization (perfect synchrony), σm = 0 denotes no syn-
chrony, and 0 < σm < 1 marks partial synchrony.

The BS can change depending on the coupling strength and
structural properties of a network. For each set of parameters,
using 104 initial conditions, we compute the BS in static
and time-varying networks. In each case, after removing the
transients, we use the measure σm to identify whether the
metacommunity is synchronized or not.

F. Cluster identification

Cluster analysis [2,3] is used to study the coherence dy-
namics between a pair of patches (i, j) of the metacommunity
model (1). Specifically, we calculate the linear correlation
coefficient (ρi j) to compare the dynamics between a pair of
patches (i, j). Here, by considering the top predator popula-
tions (z) from patches i and j, the pairwise linear correlation
coefficient (ρi j) is computed as

ρi j = 〈ziz j〉 − 〈zi〉〈z j〉√
〈z2

i 〉 − 〈zi〉2
√

〈z2
j 〉 − 〈z j〉2

,

where 〈· · · 〉 denotes the average over the time interval [t, t +
t̂], and t̂ denotes a long enough fixed time-period. The ith and
jth patches form a cluster whenever ρi j ≈ 1. By calculating
ρi j for all pairs of patches, the number of clusters in each
simulation of the time-varying network (with N nodes) can
be identified. Here the 1-cluster denotes global (perfect) syn-
chrony, whereas the N cluster denotes complete asynchrony.
Also, the time-varying network might exhibit n clusters,
where 1 � n � N . Using these, we compute the frequency of
the n cluster, where the frequency at time t is defined as

Frequency ofn-cluster solution = No. of � n clusters

No. of simulations
.

This will be useful, in particular, to understand the inter-
mediate solutions (number of clusters between 2 and N − 1)
other than complete synchrony and asynchrony. The degree of
metacommunity persistence can be understood from the clus-
ter identification. Note that the linear correlation coefficient
ρi j is different from the synchrony measure σm, in the sense

that the synchrony measure characterizes the coherent behav-
ior among all the interacting patches, whereas the correlation
coefficient characterizes the coherent behavior between two
patches (i and j).

G. Synchronization time

For a fixed rewiring period (T ), the rewiring probability
(p) and the coupling strength (ε) simultaneously affect the
coherence dynamics of a temporal network. The effect of
variables p and ε on the occurrence of complete synchrony
can be determined by calculating the synchronization time
[33]. The time to reach the synchronous state in a complex
network is known as the synchronization time (St ). Indeed,
the synchronization time divides the network dynamics into
transient and asymptotic states. In the transient state (i.e.,
t ∈ [0, St ]), the dynamics of a time-varying network fluctu-
ates between synchronous and asynchronous states, whereas
in the asymptotic case, only synchronized dynamics exists
(i.e., t > St ). Hence, we compute the synchronization time
whenever the network shows complete synchrony. While cal-
culating the St , to determine network synchrony, we have used
the synchrony measure (σm) for each small subinterval of a
time series. In particular, when successive values of σm in
subintervals reach the maximum value (σm = 1), the time of
the first subinterval is denoted as the synchronization time of
that particular network.

III. RESULTS

A. Determining the coupling range of stable synchronous
solution using the master stability function approach

We start our analysis by calculating the coupling range in
which the synchronous solution of model (1) is stable accord-
ing to the MSF approach (discussed in Sec. II D). From the
MSF depicted in Fig. 3(a), we find that the temporal network
can stably synchronize below a critical coupling strength after
crossing the zero line. For different values of the average
degree k, Figs. 3(b) and 3(c) illustrate the coupling range in
which the synchronous solution for static as well as averaged
networks are stable, with variation in the rewiring probability.
We see that, for the averaged network, the range of stable
synchronous state is broader than that of the static network.
This also holds good for other metacommunity models (see
Fig. 10 in the Appendix). Hence, the temporal network outper-
forms the static network in terms of synchronization stability.
Further, with an increase in the average degree, there is an
increase in the coupling range, i.e., the minimum coupling
strength at which the synchronized state is stable decreases
further with an increase in the average degree. The differ-
ence between the coupling ranges of static and averaged
networks minimizes when the average degree increases [see
Fig. 3(c)].

B. Synchronous and asynchronous dynamics in static and
time-varying networks following the basin stability measure

To understand the influence of network structure on collec-
tive dynamics of the metacommunity model (1), we start with
studying static networks. We consider static networks (i.e., Li j
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FIG. 3. (a) Master stability function for the metapopulation model (1). The black dashed line marks the neutral line. Using the MSF
approach, the coupling range of stable synchronized solution is calculated with variations in the rewiring probability for both the static and
averaged networks: In (b) k = 2 and (c) k = 8. The region bounded below by the dashed (solid) curve marks the region of stable synchronous
state for the averaged (static) network. As observed, on increasing the average degree (k), a stable synchronous state is achieved even for lower
coupling strength.

remains unchanged with time) that follow the Watts-Strogatz
(WS) network topology with a rewiring probability (p). Then
we consider static networks with p value ranging from p = 0
(regular) to p = 1 (completely random). For each p value, 103

networks are generated, and the corresponding synchronous
dynamics are analyzed in a time interval [0, 104] for an ε.
We calculate the BS measure to analyze synchrony in the
metacommunity [see Fig. 4(a)]. We find that, as the p value
increases, for moderate values of ε, the BS first increases
and eventually decreases to zero [see Fig. 4(a)]. Therefore,
for moderate values of ε, random networks yield lower syn-
chronization regions than a regular network, increasing the
metacommunity persistence. However, as expected for weak ε

values, the BS remains at zero, and there is no synchronization
region. Our results are in agreement with previous literature:
Increasing randomness in a static network structure through
the rewiring probability p decreases the metacommunity syn-
chronization and hence increases species persistence [43].

Next, we consider a time-varying network structure of the
metacommunity with a rewiring period (T ), where each snap-
shot of a network follows the WS topology. Here the rewiring
period is considered as T = 16, which is a subharmonics of
the Hastings-Powell model’s dominant period determined us-
ing the wavelet analysis. Here the BS is computed for varying
rewiring probability (p) at different values of ε. At each value
of p, a total of 103 simulations is performed with a fixed ε

in the time interval [0, 104]. Figure 4(b) shows the BS of
the time-varying networks computed for different p values.
For a range of ε values, the BS increases on increasing the
rewiring probability and then decreases on further increase in
p value. In other words, the temporal network with T = 16 ex-
hibits larger synchronization regions for intermediate values
of p and smaller synchronization regions for low and high p
values. Hence, in the proximity of regular and completely ran-
dom network structures, a metacommunity will exhibit higher
species persistence by reducing the synchronization region.

0 0.2 0.4 0.6 0.8 1
Rewiring probability

0

0.2

0.4

0.6

0.8

1

B
as

in
 s

ta
bi

lit
y 

B
S

 

(a)
Static

0 0.2 0.4 0.6 0.8 1
Rewiring probability

0

0.2

0.4

0.6

0.8

1

B
as

in
 s

ta
bi

lit
y 

B
S

Time-varying
(b)

FIG. 4. Basin stability of (a) static and (b) time-varying networks with variations in the rewiring probability (p) for different coupling
strengths (ε). At each value of p, the basin stability is computed using 104 independent simulations in the time interval [0, 104]. Other
parameters are N = 100, k = 2, and T = 16.
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FIG. 5. Spatiotemporal dynamics and corresponding time series of the metacommunity model (1) with a temporal network structure:
(a), (d) asynchronous oscillations for p = 0.01; (b), (e) synchronous oscillations for p = 0.5; and (c), (f) asynchronous oscillations for p =
0.99. The other parameter values are N = 100, k = 2, ε = 0.005, and T = 16.

As mentioned earlier, for simplicity here we consider equal
dispersal rates (i.e., ε1 = ε2 = ε) for both the species. How-
ever, for different species dispersal rates (i.e., ε1 �= ε2) results
are similar except the fact that the degree of synchronization
varies depending upon the values of ε1 and ε2. Specifically, in
comparison with ε1 = ε2, the degree of synchrony increases
when ε1 < ε2 and it decreases when ε1 > ε2 (not shown here).

Figure 5 shows the spatial dynamics of the temporal net-
work for different values of p. In accordance with the results
depicted in Fig. 4(b), depending upon the rewiring prob-

ability p, here the model displays either asynchronous or
synchronous dynamics. For p = 0.01 and p = 0.99 the tem-
poral network exhibits asynchrony [see Figs. 5(a) and 5(d) and
Figs. 5(c) and 5(f)]. However, for p = 0.5 the synchronous dy-
namics in the system is easily visible from Figs. 5(b) and 5(e).

C. Effects of the average degree (k) and the rewiring period (T )
on metacommunity persistence

In this section we discuss the impact of average degree
k and rewiring period T on the collective dynamics of the
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FIG. 6. Effects of changes in (a) the average degree k (with ε = 0.005 and T = 16), and (b) the rewiring period T (with ε = 0.005 and
k = 2), on the BS measure of temporal networks. For networks with high average degree (k = 20) (i.e., for more connected networks) the BS
is almost one irrespective of the chosen rewiring probability p. On increasing T from T = 16, the BS decreases. However, decreasing T has
reverse effects, resulting in higher BS.

014309-7



BHANDARY, BISWAS, BANERJEE, AND DUTTA PHYSICAL REVIEW E 106, 014309 (2022)

network. Both of these factors influence the connectivity
structure of the metacommunity and hence can significantly
influence the population persistence. Figure 4(b) displays that
at ε = 0.005, k = 2, and T = 16 the network can exhibit both
synchronous and asynchronous dynamics depending upon the
rewiring probability p. Next, we show that this result signifi-
cantly depends upon choices of k and T .

To begin, we fix the dispersal rate at ε = 0.005 and the
rewiring period at T = 16 and determine the BS measure for
different values of k. With an increase in k, the BS increases,
resulting in larger synchronization regions [see Fig. 6(a)].
Eventually, the BS reaches 1 for a large enough k, irrespective
of the rewiring probability p. While, at higher k, the BS does
not change depending on p, and the network achieves global
synchronization regions, at lower k values, the BS exhibits
unimodal dynamics along gradients of p. Thus, the chance of
reaching the synchronous state is greater for more connected
networks. The BS shown in Fig. 6(a) is calculated from 103

independent simulations estimating the frequency of reaching
the synchronized state. The result shown in Fig. 6(a) also
holds good for different values of the coupling strength ε.

Until now we have considered the rewiring period as T =
16 = 24, which is a subharmonic of the dominant period 27

as determined by the wavelet analysis (see Fig. 2). Here we
address how the synchronization region changes with varia-
tions in T . To calculate the BS measure, we fix ε = 0.005
and k = 2. On increasing T (slower rewiring), from T = 16,
the synchronization regions decrease for different p. However,
the synchronization regions increase by decreasing T (faster
rewiring). This result is depicted in Fig. 6(b). Further, we
see that when T = 128, the BS is almost zero irrespective of
the rewiring probability p. This suggests that if we give the
network more time to adapt to the changes in the structure (by
increasing the rewiring period T ), the synchronization regions
shrink, resulting in species persistence via asynchrony.

D. Multiclustering in time-varying networks

For a combination of average degree and coupling strength,
clusters in the metacommunity (1) are computed with varia-
tions in time (Fig. 7). The N-patch metacommunity with the
time-varying network structure can show n-clusters, 1 � n �
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FIG. 7. Distribution of clustering: (a)–(c) At weak (ε = 0.001)
and (d)–(f) moderate (ε = 0.005) dispersal rates with less and more
connectivity (left to right panels). The frequency of each cluster is
shown using 104 independent simulations. Other parameters are p =
0.2 and T = 16.

N , which vary over time conditioned by the near-neighbor
connections (k). Here the N-cluster represents complete
asynchrony (supports species persistence), and the 1-cluster
represents complete synchrony (can trigger community col-
lapse and reduce species persistence). Using 104 independent
simulations, the frequency of the clusters has been computed
and is shown in Figs. 7(a)–7(f) at weak dispersal rate (top
panel), moderate dispersal rate (bottom panel), with fewer
connections (k = 2), followed by more connections (k = 4)
and (k = 8). The frequency of n(�11) clusters is high when
k = 2. With increasing k, the patches become more syn-
chronous, and we see more n(�10) clusters. Similarly, for
a fixed average degree k, an increase in the dispersal rate ε

increases the synchrony in the systems, and the frequency of
the 1-cluster solution increases. Hence, a higher dispersal rate
and higher average degree are detrimental for metacommunity
persistence as they increase the frequency of n(�10) clusters
and 1-clusters (global synchrony).

E. Synchronization time of time-varying networks

We calculate synchronization time to assess the influence
of network properties in driving the system to synchrony
and the time after which it is completely synchronized. The
computed synchronization time for networks is represented
by violin plots corresponding to each rewiring probability
(p = 0.2, 0.4, 0.6, and 0.8) (see Fig. 8). By sorting the syn-
chronization time from least to greatest, we determine the

FIG. 8. Violin plots for synchronization time, corresponding to
different p value, for varying coupling strength ε. With an increase
in ε, the number of networks synchronizing with a smaller sync
time increases. Also, irrespective of change in p, the mean sync
time decreases for an increase in ε. For each coupling strength,
the central black mark indicates the mean. A white dot denotes the
median, and each violin’s bottom and top edges indicate the 25th
and 75th percentiles, respectively. The size of a violin represents
the initial conditions for which the network synchronizes in the con-
sidered time interval. We have considered 5 × 103 initial conditions
to study the sync time for the four different rewiring probabilities
(p = 0.2, 0.4, 0.6, 0.8). Other parameters are N = 100, k = 2, and
T = 16.
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average time in which most networks reach the synchronized
state.

In Fig. 8 the minimum and the maximum synchronization
times have been indicated by the lower and the upper ex-
tremes, respectively. At each rewiring probability, the mean
synchronization time of the networks is indicated by the cen-
tral black mark in each violin. The majority of the networks
require less synchronization time with increasing rewiring
probability, and with a further increase in rewiring proba-
bility (p = 0.8), synchronization time increases. The number
of synchronized networks increases with rewiring probability
and decreases at high rewiring probability. A clear implica-
tion from the calculation of synchronization time is at the
extremes (very low and very high) rewiring probabilities, the
number of networks reaching synchronized state is less, in
agreement with our basin stability measure results in Fig. 4(b).
However, results are more prominent at low coupling strength
(ε = 0.005). The results will be qualitatively similar and hold
good for different coupling strengths.

IV. CONCLUSIONS AND DISCUSSION

The dispersal network structure is an essential factor
determining the fate of ecological communities amid envi-
ronmental degradation [43]. Species may switch interactions
and opt for a more viable choice owing to unfavorable habi-
tat conditions in a dynamic environment. Interestingly, these
changes can be envisioned in networks at different timescales
[51]. However, to the best of our knowledge, the dynamics
of ecological networks under the framework of a time-
varying network topology remains less explored. Extinction in
ecological networks has been associated with synchronous dy-
namics, further increasing risks of a community collapse [53].
Under this backdrop, we study the dynamics of time-varying
ecological networks and their impact on metacommunity per-
sistence. Here we take an approach of evolving structure in
networks for a range of rewiring probabilities with varying
rewiring timescales. We obtain an interesting yet alarming
result: The timescale of rewiring and the rewiring probability
interplay in inducing or dissuading synchrony in the system.
Our key results indicate that coupling strength has a positive
effect on a certain rewiring probability p leading to synchrony
in the system. After a critical threshold value of p, networks
tend to be more random, and the system reaches an asyn-
chronous state. One of the main results of our study is that the
slower rewiring periods promote asynchrony in the system.
We observe that on increasing the rewiring period, the basin
stability decreases irrespective of the rewiring probability and
eventually pushes the system to an asynchronous state. Apart
from the basin stability measure, the estimated synchrony time
and multifrequency cluster analysis support our key findings.

Our work presents an in-depth study of collective popula-
tion dynamics in temporal networks using the master stability
function approach and the basin stability measure that aids
in investigating local and global synchrony, respectively. Cer-
tainly, quantifying the stability of the synchronous manifold
is of grave ecological importance. While in the face of global
environmental change, the evolution of species dispersal net-
work structure is inevitable, our results indicate that slowing
the timescale of change in dispersal network structure can

serve as a mitigation strategy to prevent synchrony, thus re-
ducing global extinction risk. Since it is difficult to quantify
the timescale separation between uncoupled ecological dy-
namics and evolution of dispersal network structure, like most
of the studies we do not consider the timescale of changes in
network structure in the order of numerical integration step
size.

We believe our results have much broader implications
for managing real ecological networks and demand further
in-depth research in this direction. We validate the robust-
ness of our results for another important ecological model,
namely, the Blasius-Huppert-Stone model [1] (see the Ap-
pendix). We obtain qualitatively similar findings for both
models. Our approach provides intriguing results, albeit re-
quiring future investigation in a large class of other ecological
networks. While structural evolution is obligatory across net-
works of diverse origin, such as biogeochemical networks
[54], food-trade networks [55], and other socio-economic net-
works [56,57], further work along this direction can provide
practical mitigation policies towards a sustainable future.
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APPENDIX: THE BLASIUS-HUPPERT-STONE
METACOMMUNITY MODEL

We demonstrate results for the MSF approach and the BS
regions for another temporal ecological network model: The
Blasius-Huppert-Stone model [1]. The results obtained are

FIG. 9. Wavelet analysis to a chaotic time series of the metacom-
munity model (A1): (a) phase-portrait depicting a chaotic trajectory,
(b) corresponding wavelet power spectra, and (c) the wavelet global
spectrum. Model parameters are a = 1, b = 1, c = 10, β1 = 0.2,
β2 = 1, K1 = 0.05, and w∗ = 0.006.
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FIG. 10. (a) Master stability function for the coupled Blasius-Huppert-Stone model (A1). The black dashed line marks the neutral line. The
region of a stable synchronized solution is plotted as a function of p and ε in the solid (dashed) curve corresponding to the static (averaged)
network calculated using the MSF approach for (b) k = 2 and (c) k = 8. The region between solid (dashed) curves corresponds to the range of
coupling strength ε where the synchronous state is stable for the static (averaged) network.

qualitatively similar to the Hastings-Powell model and add
to the generality of our study. The coupled Blasius-Huppert-
Stone network model is represented as follows:

dxi

dt
= axi − β1

xiyi

1 + K1xi
, (A1a)

dyi

dt
= β1

xiyi

1 + K1xi
− β2yizi − byi + ε

N∑
j=1

Li jy j, (A1b)

dzi

dt
= −c(zi − w∗) + β2yizi + ε

N∑
j=1

Li jz j, (A1c)

where xi, yi, zi represents vegetation, herbivore, and predator
populations, respectively, in the ith patch. The growth rates of
each trophic species in the absence of interspecific interaction
are represented by the parameters a, b, and c, respectively.
The predator-prey and consumer-resource interactions are in-
corporated into the equation via the Lotka-Volterra term or
the Holling type II interaction term. ε denotes the dispersal
rate. When ε = 0, for a specific set of parameters dynamics

of the model (A1) are chaotic, and the attractor is displayed
in Fig. 9(a). Corresponding wavelet analyses, to determine
the rewiring period T , are presented in Figs. 9(b) and 9(c).
Parameters of the uncoupled model (A1) (when ε = 0) used
for numerical simulations are a = 1, b = 1, c = 10, β1 = 0.2,
β2 = 1, K1 = 0.05, and w∗ = 0.006.

We have calculated the stability regions of synchronous
state using the MSF approach for static and temporal networks
as shown in Fig. 10. Figure 10(a) shows expected stability
intervals for varying normalized coupling strength (α). The
range of the coupling strength (ε) in which a synchronous
solution is stable for different rewiring probability and av-
erage degree (k = 2 and k = 8) are plotted in Figs. 10(b)
and 10(c). We observe that the synchronous state is stable
in α1 < ελk < α2, where α1 = 0.13 and α2 = 2.62. One can
also conclude that the expected regions of stable synchronous
solution decrease with decreasing rewiring probability p, and
the result is similar to the one shown in Fig. 3. While in Fig. 3
the stability region is bounded below only, here in Fig. 10 it is
bounded both below and above.
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FIG. 11. Basin stability (BS) of the time-varying network (A1) across different values of the rewiring probability p: (a) for different values
of ε (with k = 2 and T = 16) and (b) for different values of T (with k = 2 and ε = 0.1).
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Figure 11 exhibits changes in the BS for different coupling
strengths ε and rewiring period T , with k = 2. In Fig. 11(a) we
observe that for moderate ε values, the synchronous solution
is stable for intermediate rewiring probabilities. However, for
low and high ε values, the BS is zero irrespective of the
choice of rewiring probability p, resulting in complete asyn-
chrony in the system. This result is in agreement with the

synchronization region calculated using the MSF approach
[see Fig. 10(b)]. Further, increasing T lowers the BS of the
time-varying networks [Fig. 11(b)], and eventually, the BS
becomes zero for all values of p at a high rewiring period
T . These results are in line with our previous findings il-
lustrated in Fig. 4(b) and Fig. 6(b) for the Hastings-Powell
model.
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