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Effect of initial infection size on a network susceptible-infected-recovered model
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We consider the effect of a nonvanishing fraction of initially infected nodes (seeds) on the susceptible-infected-
recovered epidemic model on random networks. This is relevant when the number of arriving infected individuals
is large, or to the spread of ideas with publicity campaigns. This model is frequently studied by mapping to a
bond percolation problem, in which edges are occupied with the probability p of eventual infection along an edge.
This gives accurate measures of the final size of the infection and epidemic threshold in the limit of a vanishingly
small seed fraction. We show, however, that when the initial infection occupies a nonvanishing fraction, f , of the
network, this method yields ambiguous results, as the correspondence between edge occupation and contagion
transmission no longer holds. We propose instead to measure the giant component of recovered individuals
within the original contact network. We derive exact equations for the size of the epidemic and the epidemic
threshold in the infinite size limit in heterogeneous sparse random networks, and we confirm them with numerical
results. We observe that the epidemic threshold correctly depends on f , decreasing as f increases. When the seed
fraction tends to zero, we recover the standard results.
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I. INTRODUCTION

Compartmental epidemic models provide a powerful math-
ematical tool for predicting and understanding the spread of
contagions. In these models, the population is divided into
several compartments, representing different states of indi-
viduals with respect to the disease. Perhaps the most well
known and one of the simplest compartmental models is the
susceptible-infected-recovered (SIR) model [1], which de-
scribes the spreading of contagions, such as diseases, from
which individuals recover with immunity. An important gen-
eralization of such models is to consider the spread taking
place on a heterogeneous contact network [2]. Most individ-
uals begin in the susceptible state, while a small number, the
seeds, are initially in the infected state. Infected individuals
may pass the infection to susceptible neighbors, who then
become infected. Infected individuals may in turn recover,
after which their state no longer changes. Here we consider
the infection to occur along each edge linking an infected
to a susceptible individual with some rate β, while infected
individuals recover at a rate α. This process is summarized in
Fig. 1.

The infection may spread to only a small number of in-
dividuals, or across a significant portion of the network. The
process ends when no more infected nodes remain, so that all
sites are either recovered or still susceptible.

This remains a dynamic and active field of research, with
researchers considering numerous aspects of network disease
spreading models [3], including, for example, the effects of
network structure [4], degree correlations [5], and heteroge-
neous transmission rates [6]. Such models, and more complex
variations of them, form the basis of efforts to model and
predict the SARS-CoV-2 epidemic [7,8].

Usually, theoretical models use the initial condition of a
minute fraction of infected individuals, [2–5,9], or a single
infection [6,10–12], with all others initially being susceptible.
However, some works have considered the effect of nontrivial
initial conditions. Dynamic equations explicitly accounting
for a large initial infection were considered in [13]. The effect
of the particular location of initial infections was considered
in [14] and [15]. Recently, studies of the SIR process in well-
mixed populations in the critical regime have shown that the
initial fraction f of infected individuals may have a significant
effect on the progression of the epidemic [16–18].

The authors of Ref. [19] considered the effect of a non-
vanishing initial infection size on the epidemic threshold in
random regular networks, finding, as we do, that the epi-
demic threshold is sensitive to the value of f , especially
at small values. They showed that this behavior arises be-
cause the infection clusters originating from different seeds
percolate before the cluster from any single seed can form
a giant component. They used a master equation approach,
which leads to several coupled equations in the regular
graphs studied. While in principle this method could be
extended to more heterogeneous graphs, the number of cou-
pled equations would increase rapidly, making the approach
impractical. We have instead developed a self-consistency
equation approach, which allows us to immediately consider
heterogeneous random graphs. This results in only two cou-
pled equations, which can easily be solved, regardless of the
complexity of the degree distribution.

The effect of initial seed fraction has also been considered
in the bootstrap percolation and k-core processes [20,21]. The
application of such models is not limited solely to diseases,
as very similar models can trace the spread of ideas [22]
and other applications, from communication to finance [23].
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FIG. 1. Schematic illustration of the SIR process. Each individ-
ual is in one of the three states—susceptible (S), infected (I), or
recovered (R)—at each point in time. Infected individuals transmit
the infection to susceptible neighbors with a rate β per unit time. Sus-
ceptible individuals transition to the infected state upon receiving the
infection. Note that the label β indicates this rate parameter, which
does not correspond to the transition rate of susceptible individuals
to the infected state. Infected individuals transition to the recovered
state with rate α per unit time. After an individual is recovered, their
state can no longer change.

In these cases, too, the initial seeding of the contagion may
be (intentionally) widespread, representing media coverage,
political campaigns, or advertising.

Our aim in this paper is to explore the effect of the fraction,
f , of randomly chosen initial infections on the SIR epidemic
process occurring on a heterogeneous random network. We
show that the usual approach of mapping the epidemic size
to the network giant component in a bond percolation process
[24] is inadequate for a nonvanishing initial seed fraction. This
is because there is no longer a one-to-one correspondence be-
tween occupied edges in the percolation mapping, and disease
transmission in the SIR model. We propose instead to measure
the giant component of infected individuals within the original
contact network. This gives an unambiguous interpretation
and correctly reflects the effect of the initial seed fraction.
We derive self-consistency equations that allow us to calculate
the size of this giant component and the epidemic threshold
exactly in uncorrelated random networks in the large-size
limit. These theoretical results are in good agreement with
simulations even for moderately sized networks. In this for-
mulation, the threshold now depends on the seed fraction f .
This enables, for example, the identification of the size of the
initial infection required to provoke a large outbreak. Impor-
tantly, small changes in f can produce significant changes in
this threshold, so careful consideration of initial conditions is
necessary for an accurate prediction of epidemics. We con-
firm the observation made in [19] for regular random graphs,
namely that the finite clusters of infections caused by each
seed percolate before any individual seed can infect a finite
fraction of the network, as illustrated in Fig. 2.

The paper is organized as follows. In Sec. II we specify
the SIR model that we use, and we provide the general equa-
tions for calculating node infection probabilities. In Sec. III
we introduce our proposed measure of the outbreak size, and
we show how it can still be calculated based on the percolation
mapping, with careful adaptation. In Sec. IV we show how the
epidemic threshold may be determined. In Sec. V we summa-
rize how the threshold varies with respect to the parameters
f and p (the probability that an infected individual infects a
susceptible neighbor before recovering) using the example of
Erdös-Rényi networks. Conclusions are presented in Sec. VI.

II. THE MODEL

We now describe the SIR model in detail. We consider a
system of N individuals, each represented by a different vertex

FIG. 2. Stylized illustration of the evolution of the system as the
density of connections increases. In the limit f → 0 (top row), the
cluster of infections from a seed node grows and eventually forms a
giant component beyond a critical threshold, indicated by the cluster
connecting more than one border of the region, in the rightmost
panel. For larger f (second row), the clusters from multiple seeds
grow and eventually meet each other, forming a giant component
within the contact network at a lower threshold (middle panel) before
any individual cluster forms a giant component. At the bottom of
the figure, we also sketch the size of the giant component SX as
a function of network density (mean degree 〈q〉) for f → 0 [lower
(blue) curve] and f > 0 [upper (red) curve]. Each panel corresponds
to the position in the plot indicated by the vertical arrows.

of a contact network. Each individual can be in one of three
states at a given time: susceptible, infected, or recovered. A
susceptible node can only evolve to the infected state, and an
infected node can only evolve to the recovered state. Once a
node is recovered, it can no longer leave this state. Thus the
system evolves as shown in Fig. 1.

At the start of the process (t = 0), a fraction f of indi-
viduals, chosen uniformly at random, are set to the infected
state. We will refer to these nodes as the seeds. All remain-
ing individuals are initially susceptible. In the limit of large
system size, a finite number of seeds corresponds to f → 0.
(Note that in finite systems, the smallest realizable value of f
is actually 1/N .) Considering finite values for f has important
implications for the size of the epidemic and how it should be
measured.

Each infected node transmits the infection to each of its
susceptible neighbors (who then become infected), indepen-
dently, with rate β per unit time. Also, each node in the
infected state moves to the recovered state at rate α per unit
time. (This corresponds to an exponential infected lifetime
distribution, which we have chosen merely for the sake of
simplicity. One may choose any other distribution without
affecting the analysis.) Thus, the network in the infinite time
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limit will be constituted solely of susceptible and recovered
nodes.

We assume a large, sparse, uncorrelated random contact
network. Such a network is defined by its degree distribution
P(q), where q is the node degree, with mean degree 〈q〉.
The relative fraction of cycles in the network vanishes as the
system size tends to infinity. That is, the network is locally
treelike in the large size limit. This allows us to write self-
consistency equations for all the relevant quantities.

The usual approach is to map this problem to a bond perco-
lation problem [24]. Let us define p to be the probability that
an infected individual ever transmits the infection to a given
susceptible neighbor before recovering. In a continuous time
formulation of this process, this probability is

p = β

α + β
. (1)

One may also consider a discrete-time process; see Ap-
pendix B.

Now, starting from the seed nodes, the infection traverses
each edge with probability p. We can consider the edges for
which this happens as being occupied with probability p. The
nodes that can be reached by following occupied edges are the
ones that will eventually become infected. Thus all the nodes
in any connected cluster in the bond percolation problem that
contains at least one seed node will be infected, and hence will
be recovered at the end of the process. Thus the fraction of
nodes that are infected (and end up recovered) is equal to the
fraction of nodes in connected clusters in the bond percolation
problem that contain at least one seed.

Using the locally treelike property of the network, one can
then calculate the probability that a randomly selected node is
recovered at the end of the process by writing a self-consistent
equation

SZ = f + (1 − f )
∞∑

q=1

P(q)[1 − (1 − Z )q]. (2)

The first term represents the probability that the node is a seed,
which is infected from the start. The second term gives the
probability that the node is a nonseed node and has at least
one edge leading to an occupied subtree containing at least
one seed node. The probability, Z , that an edge leads to such
a subtree can be calculated recursively by solving

Z = p

[
1 − (1 − f )

∞∑
q=1

qP(q)

〈q〉 (1 − Z )q−1

]
. (3)

The first term represents the probability of following an occu-
pied edge and encountering a seed. The second term regards
the probability of following an occupied edge and meeting a
nonseed node, of any degree, which has at least one other edge
(not counting the edge along which we arrived at the node)
which satisfies the same condition. These equations depend
on the assumption that the transmission of the disease in each
edge is independent of the others, which is valid under the
treelike approximation.

We emphasise that SZ does not correspond to the size of
any connected cluster, but is simply the fraction of nodes
that are recovered at the end of the process (having at some

FIG. 3. Example of how nodes infected from different infection
paths can be included/excluded from the percolation giant com-
ponent due to ambiguous edges. Seed nodes (initial infection) are
marked with a cross, and infected nodes are shaded. Arrows indicate
the chains of infections. Occupied edges in the percolation mapping
are shown as solid lines, unoccupied edges are dashed. Node A
received the infection via a chain of infection starting from Seed 1,
node B from that starting at Seed 2, and node C from that starting at
Seed 3. Seed 1 has a connection leading to the giant component of the
percolation network. Neither the occupied edge between A and B nor
the unoccupied edge between A and C ever passed the infection, in
either direction, yet the cluster of nodes with infection originating in
Seed 2 is connected to the percolation giant component by a path of
occupied edges, while the cluster with infection originating in Seed
3 is not.

time been infected). As such, it does not display any phase
transition.

III. MEASURING THE SIZE OF THE EPIDEMIC

One may then ask, when does a large outbreak—an
epidemic—appear? Typically in network SIR models, one
looks for the appearance of a giant component in the percola-
tion mapping [9]. This approach gives an unambiguous result
when the initially infected nodes form a vanishing fraction
of the network ( f → 0). In this limit, the existence of an
occupied edge in the percolation problem represents infection
in clusters where there is a seed. Then the giant component
in the bond percolation problem, if it exists, differs from the
entire set of infected nodes only by a small number of infected
nodes in finite clusters. One finds a sharp epidemic threshold
in the control parameter (network mean degree, say) above
which an epidemic appears.

When f > 0, this no longer holds true, and several dif-
ficulties arise with the percolation mapping treatment. The
nonvanishing density of seeds means that occupied edges do
not necessarily correspond to the path of infection as there
may be multiple such paths leading from different seeds to
the same node. Furthermore, clusters of infections originating
from individual seeds may be arbitrarily included or excluded
from the percolation giant component, depending on the pres-
ence or absence of a connecting occupied edge. This means
that the size of the percolation giant component no longer
matches the epidemic size. Furthermore, as a finite fraction
of the network is always infected, there is no longer a sharp
transition in the total fraction of infected nodes. Finally, the
percolation giant component size does not change with f .
Some of these ambiguities are illustrated in Fig. 3.
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FIG. 4. Size SX of the epidemic, measured as the size of the giant
component of infected nodes within the original contact network, as
a function of mean degree 〈q〉 for several combinations of seed frac-
tion, f , and transmission probability, p, as indicated in the legend.
The giant component appears at an epidemic threshold that decreases
with increasing f for the same value of p. For smaller p, the threshold
is delayed and the epidemic is smaller. The theoretical curve for the
limit f → 0 corresponds to the usual treatment of the SIR model
on a network. Note that for finite graphs, the smallest realizable
value is f = 1/N . Markers show numerical results for Erdös-Rényi
networks with N = 105 nodes, averaged over 10 realizations. Curves
are theoretical results obtained from Eqs. (15)–(20).

Our main consideration when addressing this problem is
coherence. One should either maintain only edges across
which the infection was transmitted (severing both links B–A
and A–C in the example shown in Fig. 3), or include all adja-
cent infected components as part of the same cluster (keeping
both of the edges in the example). The first choice would
result in a separate connected component for each seed node,
creating numerous finite clusters, which would be insufficient
to describe the general behavior of the system, and would
make comparison of results for different values of f difficult
(Ref. [25], pp. 62 and 63). Instead, we choose to measure
the size of the giant component of recovered nodes (that have
been infected at some time) connected by the original edges of
the full contact network, that is, ignoring the status of edges as
having been used in infecting or not. In the remainder of this
section, we will simply refer to this as the “giant component.”
Note that this much more closely resembles the situation one
might find oneself in when dealing with a real epidemic, in
which the infections are known but the path of infection may
not be. As we will see, we can still calculate the size of
this giant component using the edge occupation probability
p, by careful consideration of the probability that a node is
recovered, and that it belongs to the giant component. We find
that the second-order phase transition at the emergence of the
giant component is retained, but that the threshold and size
of the giant component now depend on the seed fraction f .
The giant component is also larger, as some finite clusters
connected only by unoccupied edges are now included; see
Fig. 4.

The percolation mapping is still useful for calculating
the probability that a given node is ever infected. We

therefore look for a giant component within the original con-
tact network, considering only nodes that have been infected
(recovered nodes).

The fraction, SX , of nodes that belong to the giant com-
ponent is equal to the probability that a randomly selected
node has at least one connection to the giant component (of
recovered nodes within the contact network in the final state),
and has at least one connection leading, via a path of occupied
edges, to a seed node. This probability obeys the following
equation:

SX = f
∞∑

q=1

P(q)
q∑

l=1

(
q

l

)
X l (1 − X )q−l + (1 − f )

∞∑
q=1

P(q)

×
[

1 − (1 − Z )q −
q∑

l=1

(
q

l

)
Y l (1 − X − Y )q−l

]
, (4)

where Z is as defined above. We define X to be the probability
that, starting from a node that is recovered in the final state,
and following a random edge, we encounter a neighbor that
connects to the giant component via one of its remaining
edges (whether occupied or not in the percolation mapping).
Having at least one such connection thus guarantees that a
node belongs to the giant component. We also define Y to
be the probability that by following an occupied edge from
a recovered node, one meets a neighbor that is recovered, but
that does not connect to the giant component via any of its
other edges.

The first term in Eq. (4) represents the probability that the
node is itself a seed, in which case we just need the condition
that it has at least one connection to the giant component,
which occurs for each edge with probability X . We construct
the second term, for the case when the node is not a seed,
negatively by subtracting from 1 the probability of never be-
ing infected [(1 − Z )q], and further subtracting the probability
that it does become infected, but that any path leading to
a seed node does not lead to the giant component (Y ), and
neither do any of the other edges. This is necessary because,
unlike in the standard percolation mapping, the configurations
counted by X are no longer a subset of those corresponding
to Z , as we also include the possibility of connections via
unoccupied edges.

To find X and Y , we construct a pair of coupled self-
consistency equations, accounting for the configurations
illustrated in Fig. 5. If the node encountered upon following an
edge (leading from a recovered node) is a seed, or if the edge
we follow is occupied (so that the node at its end could have
been infected from the node we started from), we require sim-
ply a further connection to the giant component, cases 1) and
2) in the figure, respectively. The final possibility contributing
to X , case 3), requires that the node encountered has at least
one ongoing connection of the type corresponding to Z , as
well as at least one corresponding to X . As these are partly
overlapping, it is easiest to calculate this term negatively, sub-
tracting probabilities that lead to finite subtrees. This requires
the probability Y , which accounts for configurations satisfying
Z but not X .

These terms and their probabilities are described in detail
in Appendix A. After some simplification, we arrive at the
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FIG. 5. All the possible cases contributing to the probability X ,
and those contributing to the probability Y . The probability X ac-
counts for when, on following an edge, we encounter a node that was
infected at some time, and has at least one further connection satisfy-
ing the same condition (indicated by the symbol X in the figure). The
different terms, representing different configurations contributing to
X , are labeled 1), 2), and 3). Case 3) can be described negatively by
using the probability Y that a node is infected but does not connect
to the giant component. The terms contributing to Y are labeled 4)
and 5). The probabilities corresponding to these numbered terms are
described in Appendix A.

following coupled equations:

X =
∞∑

q=1

qP(q)

〈q〉 {[1 − (1 − X )q−1]

+ (1−p)(1− f )[(1 − X − Y )q−1 − (1 − Z )q−1]} (5)

and

Y = p
∞∑

q=1

qP(q)

〈q〉 [(1 − X )q−1 − p(1− f )(1 − X − Y )q−1].

(6)
Using Eq. (2), we can simplify Eq. (4) as

SX = SZ −
∞∑

q=0

P(q)[(1 − X )q + (1− f )(1 − X − Y )q]. (7)

One may also write the fraction of recovered nodes that do
not belong to the giant component, SY . Nodes in this situation
are either seeds that do not connect to the giant component via
any of their edges, or nonseed nodes with at least one neighbor
which transmitted the disease to it, but none of its neighbors
connect to the giant component, giving

SY =
∞∑

q=0

P(q)(1 − X )q − (1 − f )
∞∑

q=0

P(q)(1 − X − Y )q

(8)

so that

SX = SZ − SY , (9)

with SZ given by Eq. (2).

IV. EPIDEMIC THRESHOLD

Clearly when X � 1, then SX � 1, and specifically
SX = 0 when X = 0. Looking at Eqs. (5) and (6), we can
see that the X = 0 (the probability of connecting to the giant
component being zero) is always a solution (with Y becoming
equal to Z). A second solution for X eventually appears,
marking the emergence of a giant epidemic. To calculate the
point at which this happens (the critical point), we assume that
the giant component appears continuously from zero, and we
linearize Eq. (5) around the critical point:

X = 〈q(q−1)〉
〈q〉 X − (1−p)(1− f )G2(1−Z )(X − δ) + O(X 2),

(10)

where

Gn(x) ≡
∞∑

q=0

P(q)

〈q〉
dn

dxn
xq (11)

and δ ≡ Z − Y , which we assume to be small. In fact, δ = 0
below the transition and is very small just above it.

Making a similar expansion for Y in orders of X allows us
to write an expression for δ in terms of X :

δ =
p 〈q(q−1)〉

〈q〉 − p(1− f )G2(1 − Z )

1 − p(1− f )G2(1 − Z )
X. (12)

Using Eq. (12) to eliminate δ, eliminating a factor of X ,
and rearranging, we arrive at the condition for the epidemic
threshold:

1 = 〈q(q − 1)〉
〈q〉 − (1−p)(1− f )G2(1 − Z )

×
[

1 − p 〈q(q−1)〉
〈q〉

1 − p(1− f )G2(1 − Z )

]
. (13)

For details of this derivation, see Appendix D.
Notice that this is not an explicit equation with respect to

the model parameters p (itself a function of the rates α and β),
f , and the degree distribution P(q) and its moments. Instead,
one must solve this equation simultaneously with Eq. (3). For
a specific degree distribution, one may obtain a closed-form
condition for the critical point; see the following section.
Equation (13) may be used to obtain the critical point with
respect to p, for example holding all other parameters fixed,
but also fixing p (i.e., α and β) to find the minimal number of
nodes that have to start in the infected state for the emergence
of a giant epidemic.

Including further terms in the expansion of Eq. (5), we
can determine that X , and hence the epidemic size S, grows
linearly above the epidemic threshold:

S ≈ (p − pc)β (14)

with β = 1, as for the standard percolation transition. See
Appendix D for the derivation of this result.

014307-5



G. MACHADO AND G. J. BAXTER PHYSICAL REVIEW E 106, 014307 (2022)

V. RESULTS FOR ERDÖS-RÉNYI NETWORKS

To illustrate the dependence of the epidemic on the various
parameters, we now consider the specific case of Erdös-Rényi
networks, whose degree distribution tends to Poisson in large
systems, P(q) = e−〈q〉〈q〉q

q! . In this case, Eqs. (2), (7), and (8)
become

SZ = 1 − e−〈q〉Z , (15)

SX = SZ − e−〈q〉X [1 − (1 − f )e−〈q〉Y ], (16)

SY = e−〈q〉X [1 − (1 − f )e−〈q〉Y ], (17)

while Eqs. (3), (5), and (6) become

Z = p[1 − (1 − f )e−〈q〉Z ], (18)

X = (Z − Y )

(
1 − p

p

)
+ p(1 − e−〈q〉X ), (19)

Y = pe−〈q〉X [1 − (1 − f )e−〈q〉Y ], (20)

δ = 〈q〉XZ

1 − 〈q〉(p − Z )
. (21)

We illustrate the solution of Eq. (16), which depends on
the simultaneous solution of Eqs. (18)–(20), in Fig. 4. We
see that the size of the epidemic, as well as the threshold at
which it emerges, depends on the seed fraction f when other
parameters are held equal.

With a Poisson degree distribution as described, we have

G2(1 − Z ) = 〈q〉e−〈q〉Z , (22)

which, substituting into Eq. (13), gives us the condition for the
critical point of an Erdös-Rényi graph:

1 = 〈q〉 + (1 − p)

p
〈q〉(Z − p)

[
1 − p〈q〉

1 + 〈q〉(Z − p)

]
, (23)

where we have used Eq. (18) to obtain the last line. Remem-
bering that Z is a function of mean degree 〈q〉, one can obtain
the threshold 〈q〉c numerically by solving Eq. (23) together
with Eq. (18).

Figure 6 shows how 〈q〉c changes with p for different
values of f . We can see that the critical points for the same
p decrease with increasing f as a greater initial presence of
seeds facilitates the formation of the giant component. At the
critical point, the finite clusters of infections from each seed
connect to one another (via unoccupied or occupied edges),
together forming a giant component even though none of the
seeds individually has infected a finite fraction of the network.
This is illustrated in a stylized way in Fig. 2. Similarly, the
overall epidemic size is larger for larger f for equal values
of all other parameters. See also Fig. 4. If we were to use the
standard method of measuring the size of the percolation giant
component, we would only obtain the limiting f = 0 curve.
It is also observable that, especially for small values, small
changes in small values of f have a large effect on the critical
threshold, highlighting the importance of f on the system’s
evolution.

In the limit f = 1, all nodes are seeds, and the epi-
demic threshold corresponds to the site percolation threshold
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c f → 0

f = 1

f = 0

f = 0.01

f = 0.1
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f = 0.5

f = 1

FIG. 6. Epidemic threshold for the mean degree, 〈q〉c, as a
function of p for several values of f , as indicated in the legend.
Curves represent the theoretical calculation for, from top to bottom,
f = 0.01, 0.1, 0.2, 0.5, and 1. The upper and lower dashed lines
represent the theoretical calculations for the limits f → 0 and f = 1,
respectively. Circular markers indicate the limiting value as p → 0.
Square markers represent critical points measured from discrete-time
simulations on Erdös-Rényi networks of N = 104 nodes using 1000
realizations. Critical points were identified as the peak value of
susceptibility; see Appendix C.

〈q〉c = 1, irrespective of the value of p. In the limit p → 0,
when the seed fraction is not zero, the critical point does not
diverge (as it does for p → 0 with f → 0), because the seeds
eventually percolate by themselves, at the point 〈q〉 = 1/ f ,
indicated by the circular markers in the figure. In the limit
p = 1, the giant component of the epidemic corresponds to
the giant connected component of the contact network, as all
the infected nodes transmit the disease to all their neighbors.

In Fig. 7, we show the minimal fraction of seeds sufficient
for an outbreak to occur (which we define as fcrit) as a function
p for several values of the mean degree, 〈q〉. Naturally, as the
probability of infection, p, increases, the minimal fraction of
seeds sufficient for an outbreak diminishes. The superior hori-
zontal dashed line represents the case of 〈q〉 = 1, above which
there is no giant epidemic, as there is no giant component of
nodes in the contact network in the first place. In the limit
〈q〉 → ∞, fcrit tends to zero, even for p → 0, as the number
of connections between nodes compensates for the lack of
seeds and infectiousness. At the limit p = 1, the threshold
corresponds to the percolation threshold of the seeds. At the
horizontal axis ( f → 0), we find the epidemic threshold for
the standard SIR model for each value of 〈q〉.

Finally, Fig. 8 shows how the threshold on the network’s
parameter evolves with f for a fixed p. One may observe
that this figure is very similar to Fig. 6. These similarities
result due to two reasons: first, both p and f are variables
whose increase (decrease) facilitates (hinders) the appearance
of an epidemic; second, there is a symmetry between the
limiting curves in both figures. The lower limit corresponds to
the percolation threshold with respect to 〈q〉 of the substrate
contact network when all edges are occupied (p = 1, Fig. 8) or
all nodes are occupied as seeds ( f = 1, Fig. 6). Meanwhile the
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FIG. 7. Epidemic threshold for f as a function of p for several
values of mean degree 〈q〉. Solid lines represent the theoretical pre-
diction for the minimal fraction of seeds sufficient for an outbreak to
occur, at each value of 〈q〉. The upper dashed line (gray) represents
the theoretical prediction for the limit 〈q〉 → 1, the minimal value
of 〈q〉 for the appearance of a giant component in the network.
The markers indicate the point at which each line intercepts with
each axis.

upper limit corresponds to percolation of the seeds for a given
value of 〈q〉 (p → 0, Fig. 8) or percolation due to occupied
edges ( f → 0, Fig. 6).

VI. CONCLUSIONS

In this paper, we have presented a generalization of the
well known SIR model of disease spreading on a network to
consider the effect of allowing the fraction of initially infected
nodes, f , to be nonvanishing.

0 0.2 0.4 0.6 0.8 1
f

0

1

2

3

4
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7
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q
c

p → 0

p = 1

p = 0

p = 0.01

p = 0.1

p = 0.2

p = 0.5

p = 0.7

p = 1

FIG. 8. Theoretical calculation of the epidemic threshold 〈q〉c as
a function of f for several values of p as indicated in the legend.
The upper and lower dashed lines represent the theoretical values for
the limits p → 0 and p = 1, respectively. Circular markers indicate
the interception between the theoretical lines and the vertical axis at
f = 0.

The size of the epidemic in the SIR model is usually calcu-
lated by mapping the process to a bond percolation problem,
and the initial condition is usually taken to be either a sin-
gle infection, or infection of a vanishingly small fraction of
the network ( f → 0 in the large system size limit). In this
case, the occupied edges correspond to the paths of infection
through the contact network. The size of the percolation giant
component then gives the exact expected outbreak size, also
allowing the determination of the epidemic threshold.

We found, however, that allowing the initial fraction of
infected nodes, f , to be larger leads to a disconnection be-
tween the size of the percolation giant component and the
epidemic size. The percolation mapping calculation shows no
dependence on f . Worse, clusters of recovered nodes may be
included or excluded from the giant component arbitrarily,
and occupied edges no longer correspond perfectly to disease
infection. Thus the calculated giant component does not ac-
curately represent the size of the epidemic nor the paths of
infection through the network.

To resolve this problem, we instead measure the giant
component of recovered nodes in the original contact net-
work, keeping all edges. This mimics the situation one might
encounter in a real epidemic: the social contacts are known,
but the exact path of the infection may not be, when there
are multiple contacts. We extended the usual self-consistency
equations to show how the size of this giant component can
be calculated, starting from the percolation mapping. This
was done by separating the probability that the node en-
countered upon following a random edge is infected, from
the probability that it connects to the giant component. We
find that the expected size of the epidemic and the epi-
demic threshold both now correctly depend on the initially
infected fraction, f . In particular, we find that a larger ini-
tial infection (larger f ) means that the epidemic threshold
is reached sooner (lower epidemic threshold) with respect
to the other parameters. When other parameters are kept
equal, a larger value of f corresponds to a larger epidemic
size. Near f = 0, the threshold is highly sensitive to the
value of f , showing that an accurate determination of initial
conditions is crucial to the correct modeling of the evolu-
tion of an epidemic and correct estimation of other model
parameters.

We studied the model on Erdös-Rényi random networks
as an example of sparse random graphs. The results will be
qualitatively the same for any uncorrelated random networks
with finite first and second moments of the degree distribution.
In fact, our method can be directly generalized to consider,
for example, nearest-neighbor degree correlations, arbitrary
infection lifetime distributions, or heterogeneous transmission
rates, without significantly increasing the difficulty of the
analysis. In other words, all the results already found for
the f → 0 limit can easily be extended to nontrivial initial
conditions using our method.

Our generalization of the SIR model is also relevant to
the spread of opinions, ideas, or technology, in which, for
example, active campaigning produces an initial seed frac-
tion that is not of negligible size. We believe that this work
contributes to the general understanding of this fundamental
model, and it shows that a careful consideration of nontrivial
initial conditions should be one element included in more
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realistic generalizations of the model and its application to
specific situations.
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APPENDIX A: SELF-CONSISTENCY EQUATIONS
FOR THE PROBABILITIES X AND Y

We define X to be the probability that, starting from a node
that is recovered in the final state, and following a random
edge, we encounter a neighbor that connects to the giant com-
ponent via one of its remaining edges (whether occupied or
not in the percolation mapping). The possible cases in which
this can happen, also illustrated in Fig. 5, are as follows:

1) The edge is either occupied or unoccupied in the per-
colation mapping, and the node we meet is a seed, which
connects to the giant component by one of its other edges.
The probability for this to occur is

f
∞∑

q=2

qP(q)

〈q〉
q−1∑
l=1

(
q − 1

l

)
X l (1 − X )q−1−l . (A1)

2) The edge is occupied, the node we meet is not a seed,
but it connects via one of its remaining edges to the giant
component. Notice that the node we meet necessarily ends
up recovered, since we are defining X as coming from a
recovered node. This has the probability

p(1 − f )
∞∑

q=2

qP(q)

〈q〉
q−1∑
l=1

(
q − 1

l

)
X l (1 − X )q−1−l . (A2)

3) The edge we are following is unoccupied, the node we
meet is not a seed, but it became infected via a different node
(i.e., different from the parent one), and it connects to the giant
component.

This term is difficult to construct, since it is no longer a
subset of the cases of Z . To solve this, we consider the pos-
sibilities that, upon following an unoccupied edge, one meets
a nonseed node that does not connect to the giant component,
and then we subtract them from 1. The only cases in which
this happens are if either the nonseed node we meet was never
infected (all its ongoing edges are cases of 1 − Z), or it was
infected but none of its ongoing edges connects to the giant
component. This last possibility corresponds to having at least
one ongoing connection that corresponds to Y , while all the
others which are not Y are also not X . Here Y is the probability
that, on following an occupied edge, one meets a neighbor
that transmitted to it the disease, but that does not belong to
the giant component. This is a subset of the cases of Z . Thus,

combining the two cases, term 3) will read

(1−p)(1− f )
∞∑

q=2

qP(q)

〈q〉

[
1 − (1 − Z )q−1

−
q−1∑
l=1

(
q−1

l

)
Y l (1 − X − Y )(q−1−l )

]
. (A3)

Finally, we need to write the equation for Y . This configu-
ration can happen in two ways, by following an occupied edge
that does one of the following:

4) Leads to a seed, but the seed does not connect to the
giant component, with probability

p f
∞∑

q=1

qP(q)

〈q〉 (1 − X )q−1. (A4)

or
5) Leads to a nonseed, which is recovered but which does

not connect to the giant component. This requires at least one
further connection of a type corresponding to Y , and those that
are not Y must also not be X . Probabilistically, this term reads

p(1− f )
∞∑

q=2

qP(q)

〈q〉
q−1∑
l=1

(
q−1

l

)
Y l (1 − X − Y )(q−1−l ). (A5)

Since all the cases that construct X and Y are independent
of each other, we can simply sum their probabilities to obtain

X = 1) + 2) + 3), (A6)

Y = 4) + 5), (A7)

where numbers represent the terms described in the cor-
respondingly numbered paragraphs above. Simplifying the
resulting equations, we obtain Eqs. (5) and (6).

APPENDIX B: PERCOLATION MAPPING
FOR CONTINUOUS AND DISCRETE TIME

Consider the edge connecting an infected node to a suscep-
tible neighbor. The mapping of the contagion process to bond
percolation is given by the probability p that the infected node
ever infects its susceptible neighbor via this edge [24]. Here
we show how p may be obtained both for a continuous-time
and discrete-time formulation. Once this value is known, all
the results given in the main text are valid for either case.

Given transmission rate β and recovery rate α, the proba-
bility that the infection occurs in a very short time interval δt
is given by

βδt (1 − αδt ). (B1)

The probability that it occurs in a second interval of equal
length is, including the probability that it did not occur in the
first interval,

βδt (1 − aδt )(1 − aδt )(1 − βδt ). (B2)

Continuing, the probability that the infection occurs in the
interval (t, t + δt ) and not before (where, without loss of
generality, we set the time at which the infected node became
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infected as t = 0) is

Pt = βδt (1 − αδt )[(1 − αδt )(1 − βδt )]t/δt . (B3)

To obtain the continuous time limit, we take δt → 0, ob-
taining

P(t )dt = βdte−αt e−βt , (B4)

where we have changed to a probability density function P(t ).
Integrating P(t ) over all times, we obtain the probability

that a node ever transmitted the disease before it recovered, p:

p =
∫ ∞

0
e−αt e−βtβdt = β

α + β
. (B5)

For the discrete-time formulation, we return to Eq. (B3)
and fix the time interval δt ≡ �t . The probabilities of infec-
tion, b, and recovery, a, in a single interval are

a = 1 − e−α�t , (B6)

b = 1 − e−β�t . (B7)

We then sum Pt over all time intervals to obtain

p =
∞∑

i=1

b(1 − a)[(1 − a)(1 − b)]i−1 = b(1 − a)

a + b(1 − a)
, (B8)

where i = t/�t .

APPENDIX C: NUMERICAL SIMULATIONS

Simulation results shown in the figures were gener-
ated using discrete-time simulations, by choosing single-step
infection probability b and recovery probabilities a corre-
sponding to the desired value of p. Correspondence to a
continuous time formulation can be found by choosing a value
for �t and using Eqs. (B6) and (B7).

In simulations with discrete time, the order of checking for
recovery of transmission becomes important. In our case, we
checked for each infected node’s recovery first, before they
could attempt to transmit the contagion to their neighbors,
thus a factor of 1 − a multiplying with b appears, ensuring
that each infected node does not recover in the same time step
it transmits the agent. Notice that we recover Eq. (B5) from
Eq. (B8) when �t → 0.

The epidemic threshold is identified numerically by look-
ing for the peak susceptibility, defined as

χ =
〈
S2

X

〉
〈SX 〉2

, (C1)

which has no system size dependence; see Ref. [26] for a
discussion of this definition. In simulations SX is measured
as the size of the largest connected component of recovered
nodes at the end of the simulation.

APPENDIX D: CALCULATION OF THE CRITICAL
EXPONENT β

Let us define

Gn(x) ≡
∑

q

P(q)

〈q〉
dn

dxn
xq. (D1)

Then

G1(1) = 1, (D2)

G2(1) = 〈q(q − 1)〉
〈q〉 , (D3)

G1(1 − Z ) =
∑

q

qP(q)

〈q〉 (1 − Z )q−1, (D4)

G2(1 − Z ) =
∑

q

qP(q)

〈q〉 (q − 1)(1 − Z )q−2, (D5)

and so on. Terms of this sort appear frequently in our equa-
tions, so at times it will be useful to write them in terms of Gn.
It is also useful to see how these may be expanded in terms of
a small perturbation to the parameter Z:

G1(1 − Zc − �) ≈ G1(1 − Zc) − G2(1 − Zc)�

+ 1

2
G3(1 − Zc)�2 − · · · (D6)

and

G2(1 − Zc − �) ≈ G2(1 − Zc) − 2G3(1 − Zc)� + · · ·
(D7)

and so on. We may then rewrite the main equations in terms
of Gn:

X = [t]1 − G1(1 − X ) − (1 − p)(1 − f )[G1(1 − Z )

− G1(1 − X − Y )], (D8)

Z = p[G1(1) − (1 − f )G1(1 − Z )], (D9)

Y = p[G1(1 − X ) − (1 − f )G1(1 − X − Y )]. (D10)

It is clear that when X = 0, Y = Z .
Remembering that δ = Z − Y , subtracting Eq. (D10) from

Eq. (D9) gives

δ = p[1 − G1(1 − X )] − p(1− f )

× [G1(1 − Z ) − G1(1 − X − Y )]. (D11)

Let pc be the critical value of p, at which point Z takes the
value Zc. Writing p = pc + ε and Z = Zc + �, then near this
point Eq. (D9) may be expanded as

Zc + � ≈ (pc + ε)[1 − (1 − f )G1(1 − Zc)

+ G2(1 − Zc)� − S3(1 − Zc)�2], (D12)

which gives

� ≈ 1 − (1 − f )G1(1 − Zc)

1 − pcG2(1 − Zc)
ε (D13)

for ε � 1, where higher-order terms have been neglected.
Similarly, for Y we note that, since δ is zero at the critical

point, Yc = Zc. So

Y = Z − δ = Zc + � − δ (D14)

near the threshold. This means we can use the expansion
Eq. (D12), as well as Eqs. (D6) and (D7) for Y , by substituting
� − δ for �.
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We first expand Eq. (D11) to leading orders of X :

δ ≈ p[G2(1)X − G3(1)X 2] − p(1 − f )

[
G1(1 − Z )

− G1(1 − Y ) + G2(1 − Y )X − 1

2
G3(1 − Y )X 2

]
.

(D15)

Then we have to expand the generating functions, which are
functions of 1 − Z and 1 − Y in � and � − δ, respectively.
Since Zc = Yc, a few terms cancel, and we get, neglecting all
terms that are second order in small values,

δ ≈ pG2(1)X − p(1 − f )G1(1 − Zc)(X − δ), (D16)

which can be rearranged to give

δ ≈ pG2(1) − p(1 − f )G2(1 − Zc)

1 − p(1 − f )G2(1 − Zc)
X. (D17)

We still have not considered these expansions in terms of the
deviation of p from the critical value pc. We will come to this
later.

Now that we have worked out the expansions of all
the “secondary” quantities, we are finally ready to consider
the behavior of X above the critical point. First we expand the
right-hand side of Eq. (D8) in powers of X :

X ≈ G2(1)X − 1

2
G3(1)X 2 − (1−p)(1− f )

[
G1(1−Z )

− G1(1−Y ) + G2(1−Y )X − 1

2
G3(1−Y )X 2

]
. (D18)

Then we substitute the expansions for Gn(1 − Z ) and
Gn(1 − Y ) about Zc, using Eqs. (D6) and (D7):

X ≈ G2(1)X − 1

2
G3(1)X 2 − (1 − p)(1 − f )

×
{

G2(1 − Zc)(X − δ) + 1

2
G3(1 − Zc)

× [�2 − (� − δ)2 − 2X (� − δ) − X 2]

}
, (D19)

where we have truncated any terms of higher order than O(X 2)
or equivalent.

We first use this expression to obtain the criterion for the
critical point. Keeping only terms linear in X , substituting the
right-hand side of Eq. (D17) for δ, dividing by X , and taking

the limit p → pc (X → 0+), we have

1 = G2(1) − (1 − pc)(1 − f )G2(1 − Zc)

×
{

1 − pcG2(1)

1 − pc(1 − f )G2(1 − Zc)

}
, (D20)

which is Eq. (13).
Now, to find the behavior of X just above this transition

point, we write p = pc + ε in Eq. (D19). For the sake of
brevity, we write the right-hand side of Eq. (D17) as cX and
the right-hand side of Eq. (D13) as dε. Then

X ≈ G2(1)X − 1

2
G3(1)X 2 − (1 − pc − ε)(1 − f )

×
{

G2(1 − Zc)(1 − c)X + 1

2
G3(1 − Zc)

× [d2ε2 − (dε − cX )2 − 2X (dε − cX ) − X 2]

}
.

(D21)

Using Eq. (D20), removing the common factor X , and rear-
ranging, we find

X ∼= 2(1− f )(1 − c)[(1−pc)G3(1−Zc)d + G2(1−Zc)]

[G3(1) − (1−pc)(1 − f )G3(1−Zc)(1 − c)2]
ε,

(D22)
where

1 − c =
{

1 − pcG2(1)

1 − pc(1− f )G2(1 − Zc)

}
, (D23)

d = 1 − (1− f )G1(1 − Zc)

1 − pcG2(1 − Zc)
. (D24)

Thus, X grows linearly with the distance above the critical
point.

Expanding Eq. (4) in X � 1, we find

S ≈
∑

q

P(q){qX − (1 − f )q(1 − Y )q−1(X − δ)}, (D25)

where we have used that Z = Y + δ. Writing the right-hand
side of Eq. (D17) as gX , we have

S ≈ X
∑

q

qP(q){1 − (1 − f )q(1 − Y )q−1(1 − g)}. (D26)

In other words, S is proportional to X near the critical point,
so that, from Eq. (D22), we can conclude that

S ∝ ε = (p − pc) (D27)

near the critical point.
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