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Inferring spatial source of disease outbreaks using maximum entropy
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Mathematical modeling of disease outbreaks can infer the future trajectory of an epidemic, allowing for
making more informed policy decisions. Another task is inferring the origin of a disease, which is relatively
difficult with current mathematical models. Such frameworks, across varying levels of complexity, are typically
sensitive to input data on epidemic parameters, case counts, and mortality rates, which are generally noisy and
incomplete. To alleviate these limitations, we propose a maximum entropy framework that fits epidemiological
models, provides calibrated infection origin probabilities, and is robust to noise due to a prior belief model.
Maximum entropy is agnostic to the parameters or model structure used and allows for flexible use when faced
with sparse data conditions and incomplete knowledge in the dynamical phase of disease-spread, providing for
more reliable modeling at early stages of outbreaks. We evaluate the performance of our model by predicting
future disease trajectories based on simulated epidemiological data in synthetic graph networks and the real
mobility network of New York State. In addition, unlike existing approaches, we demonstrate that the method
can be used to infer the origin of the outbreak with accurate confidence. Indeed, despite the prevalent belief on
the feasibility of contact-tracing being limited to the initial stages of an outbreak, we report the possibility of
reconstructing early disease dynamics, including the epidemic seed, at advanced stages.
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I. INTRODUCTION

The spread of SARS-CoV-2 virus constitutes the most
recent example of the vulnerability of modern society to
the spread of communicable diseases [1–3]. In particular,
the combination of features such as extensive trans- and
intranational transportation networks, shortening travel time
between faraway regions [4–6], the existence of important
socioeconomic inequities [7–9], and the phenomenon of rapid
urbanization [10,11] have conspired to give rise to the un-
precedented speed at which SARS-CoV-2 has advanced,
becoming a global threat within a few months of the (reported)
initial outbreak.

The initial stages of disease spread of novel pathogens
are critical because of the lack of knowledge of disease
characteristics and lack of therapeutics or vaccines. Indeed,
early attempts at mitigation resorted to nonpharmaceutical
interventions such as recommending hand-washing, hygienic
measures, social distancing, travel restrictions, and population
confinement via stay-at-home orders [12–14]. A key tool for
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devising and assessing the effectiveness of such measures is
mathematical modeling of the epidemic trajectories under var-
ious scenarios. The advantage of such models are twofold: On
the one hand, epidemic models provide short-term forecasts
on the evolution of an outbreak, providing useful information
to assess the potential harmfulness of the. pathogen and act
accordingly to reduce their impact. On the other hand, the
different layers of complexity introduced in the epidemic
models has boosted their use as benchmarks to devise cost-
effective nonpharmaceutical interventions aimed at hindering
the spread of the disease [15,16].

Regardless of their stochastic or deterministic nature
[17–19], the successful application of epidemic models to
provide reliable forecasts is tightly linked with the correct
estimation of their relevant parameters. Early in an epidemic,
the key parameters describing the spread of the infection
are highly uncertain, and this uncertainty can severely im-
pact the predicted outcomes [20]. This becomes particularly
relevant in the context of highly complex compartmental
models that produce wildly varying degenerate trajectories
in the short-term dynamics, even for small changes in the
parameter estimates [21,22]. While this degeneracy dissi-
pates in the long-term dynamics due to exponential growth
encoded in the equations, even minor inaccuracies in the
epidemic parameters limits reliable predictions to at most a
few weeks in the future [23]. Given this, the practical effi-
cacy of epidemiological models is in providing a range of
possible outcomes rather than producing precise quantitative
predictions [24].
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FIG. 1. High-level model overview. (a) Model inputs: an SEAIR compartmental epidemiological model, prior belief of the epidemiological
parameters, and a set of sparse observations that come from disease screening tests. The contact network in a metapopulation can be represented
as a network graph. The infection starts at an unknown origin and spreads through the network. We generate a large set of trajectories and
explore the epidemic trajectory space over a high variance prior belief for the epidemiology parameters. The large variance is represented as
the shaded areas with 80% confidence intervals. The infection starts in a single node in each trajectory series, but that node varies over the next
trajectories. (b) Model outputs: MaxEnt reweighted ensemble of trajectories given the observations, posterior distributions of the parameters,
and predicted infection origin. The reweighted trajectories allow us to predict how the disease spreads through the network and infer the
location for the source of infection.

Multiple ways to infer epidemiological parameters have
been proposed in the literature. One typical method is to
use maximum likelihood approaches, where parameter values
are chosen to maximize the likelihood of observing the ex-
perimentally measured data (observations), given some prior
distribution of the parameters [25,26]. A disadvantage of this
method is that the functional form of the likelihood function
must be known or approximated to perform maximization.
Another approach is least-squares fitting, which employs
various optimization methods, including but not limited to
Markov-chain Monte Carlo [27–30], sequential Monte Carlo
[31–33], trajectory matching [34–38], and machine learn-
ing methods such as support vector machines [39]. Other
approaches include generalized profiling [40], approximate
Bayesian computation [41–43], derivative-free optimization
[44,45], and Bayesian inference [46–50]. Furthermore, most
of the epidemiological models in the literature focus on for-
ward dynamics of the diffusion of the pathogen through the
network, while the backward-dynamics problem of identify-
ing the diffusion source has been comparatively less studied
[51–53]. Such an analysis bears significant importance in
guiding systematic contact-tracing and increasing the chance
of early containment of an outbreak.

An approach that circumvents these difficulties is a well-
known method from statistical mechanics, maximum entropy
(MaxEnt) biasing. MaxEnt has been proven to be successful
in various settings such as molecular dynamics simula-
tions [54–56], ecology [57–60], nuclear magnetic resonance
spectroscopy [61,62], x-ray diffraction [63,64], electron mi-
croscopy [65,66], economics [67], and neuroscience [68–71].
This method uses the principle of entropy to measure the
difference between two distributions or trajectories and ap-
plies a change using Lagrange multipliers to alter a given
distribution to match a target one, while maximizing the en-
tropy (and thus, effecting minimal change) [72]. Unlike the
inference methods mentioned earlier, where the main goal is
to estimate the model’s parameters, MaxEnt aims at reweigh-
ing an ensemble of trajectories generated by the model, such
that their corresponding average fits a set of sparse observed
data. This approach is highly promising in the context of
epidemic modeling, as it mitigates the need for designing
complex compartmental models and having to make a lot of
simplifying assumptions. As remarked in Ref. [73]: “What
has been produced the day before often must be completely
revised the day after because a new piece of information
has arrived.” This approach relies more on daily (weekly)
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evidence rather than relying on uncertain early estimates
of disease parameters, especially at the early stages of an
epidemic outbreak. A few instances of applying MaxEnt to
characterize epidemic spreading exist in the literature. Law
et al. [74] provided an analysis for spatiotemporal spread
of syphilis. However, their analysis relied not on transient
dynamics governed by compartmental models but rather on
a time-dependent covariance matrix constructed based on the
spatial distribution measurements of confirmed cases across
different areas over several years. In Ref. [75], MaxEnt is
used to bias the epidemic curves generated by mean-field SIS
(Susceptible, Infectious, Susceptible) and SIR (Susceptible,
Infectious, Recovered) compartmental models to reproduce a
set of empirical observations and uncover probability distri-
butions used for contagion and recovery events. Harding et al.
[76] propose a MaxEnt approach to modify a SIS framework
running on a contact network to model the time-varying nature
of human mobility in response to the diffusion of an epidemic
outbreak.

Here we explore the use of MaxEnt biasing when more
layers of complexity are added to the dynamic equations gov-
erning the advance of an epidemic. To do so, we consider a
more elaborated compartmental scheme, the SEAIR model,
running on metapopulations [77,78] to accommodate different
realistic features such as human mobility, the relevance of
the incubation period of one pathogen, or the existence of
asymptomatic infectious individuals [1]. The novelty of our
approach lies in inferring disease trajectories directly rather
than model parameters. This enables simultaneous estimation
of disease progression before (backward dynamics) and after
(forward dynamics) the observations. We show that mak-
ing the objective to fit the ensemble of trajectories, rather
than directly inferring model parameters, enables accurate
identification of the spatial source of infection and how the
infection spreads across the metapopulation, even with sparse
observations.

In Fig. 1, we represent a high-level overview of the frame-
work. Graphs in this work were generated using NetworkX
[79]. Model inputs include a compartmental epidemiology
model, prior belief for its parameters, and a set of sparse
observations. The prior belief on the model parameters can in-
clude a relatively large variance, making our approach highly
applicable to risk assessment analysis at the early stages of
the outbreak, where the true parameters are unknown. The
observations are weekly average data obtained by disease test
screenings that contain random noise. This noise accounts
for the uncertainty associated with the number of infected
individuals due to the variance of testing policies across a
metapopulation. The output is the MaxEnt reweighted trajec-
tories that are used for inference on the epidemic spread and
the source of infection.

All the results in this work are benchmarked against data
obtained from epidemiological simulations with preselected
parameters. This data is referred to as the ground-truth model
onwards. The term “ground truth” means data that are known
to be true and are what the inference method should match.
This convention is from statistical inference. The definition of
the ground-truth model allows us to benchmark and access the
prediction performance of our approach in inferring disease
dynamics without ethical and practical concerns. Note that

ground truth does not mean data obtained from real-world
empirical measurements; however, we apply a few settings
under which our approach can have a stronger connection with
the real-world epidemiological data: (1) The values for the
preselected epidemiological parameters used for generating
the ground-truth models are within ranges similar to other
real-world disease pathogens and (2) the sampled disease
trajectories share the same demographic distributions as the
ground-truth model. However, as they are generated based on
a large variance prior belief on the epidemiological parameters
and variations of the mobility flows, they do not represent the
exact correct dynamics as the ones in the ground-truth model.
This allows us to replicate the similar situation of lacking
precise knowledge about the disease pathogen at the early
stages of an outbreak in a real-world scenario. (3) Inference
is done based on sparse noisy observations obtained from
{I, R} compartments only. Considering a real-world setting,
collecting data from these two compartments is more practical
than others. (4) By allowing for some disagreement between
the MaxEnt reweighted fit and noisy observations, we are
replicating the common case of under-reporting in real-world
epidemiological data.

The manuscript is organized as follows. In Sec. II A, we
describe the theory of MaxEnt applied to a general model
function and describe the procedure for MaxEnt path bias-
ing. In Sec. II B we describe the underlying equations of
the SEAIR model occurring on a metapopulation framework.
In Sec. III we present results on both synthetic and real-
world metapopulation mobility networks, demonstrate how
the method can predict infection spread, and make a high
certainty inference on the source of an epidemic using the
posterior reweighted trajectory from the MaxEnt approach. In
particular, we demonstrate that this inference can be done even
in late stages of the disease dynamics. In Sec. IV we end with
a discussion of the implications of our findings.

II. THEORY

A. Maximum entropy with uncertainty

The principle of maximum entropy is founded based on
the probabilistic definition of entropy, a measure of the spread
of a probability distribution. The goal is to infer a probabil-
ity distribution with the largest uncertainty (i.e., maximum
entropy) subject to a set of observations (constraints). The
power of this approach lies in its ability to reduce the model
order by inferring the state of underconstrained dynamical
systems, where the number of unknowns exceeds the number
of equations.

Consider that for a given simulator f (�θ ) with a set of
parameters �θ , we have a prior distribution of parameters P (�θ ).
For example, the function f (�θ ) can be a system of ODEs in a
compartmental epidemiology model. Suppose we have a set of
N observations gk with uncertainty εk , where k ∈ [1, . . . , N].
We constrain our prior model P (�θ ) to observations such that:∫

d�θ d�εP ′(�θ )P0(εk ){gk[ f (�θ )] + εk} = E [gk + εk] = ḡk ∀k.

(1)
This means that we want the average over the posterior
distribution P ′(�θ ) to match the observation data with some
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allowable disagreement based on {εk}. The expected value
of the observations given their corresponding allowable dis-
agreements of P0(ε) based on {εk} are denoted with {ḡk} in
Eq. (1). Note that unlike in Bayesian frameworks, the men-
tioned average disagreement with the data is optional. In case
of a perfect match with data, the error distribution is set to
a Dirac δ about 0 [i.e., P0(εk ) = δ(εk = 0)]. However, in our
settings, the Laplace distribution prior P0(ε) is used to ac-
count for some disagreement with a given standard deviation
σ0, thus:

P0(ε) = − εσ 2
0

1 − ε2σ 2
0

2

. (2)

This definition does not describe the underlying variance of
the observational data but rather it is a means of accounting for
the epistemic uncertainty and underreporting that comes with
disease test screening data measurements as an average bias
in agreement. The posterior distribution P ′(θ ) that satisfies N
constraints is given by [56,80–82]:

P ′(�θ, �ε) = 1

Z ′P (�θ )
N∏
k

e−λkgk [ f (�θ )]e−λkεkP0(εk ), (3)

Z ′ = ∫
d�θ d�εP (�θ )P0(ε)e−∑

k λk{g[ f (�θ )]+εk}, (4)

where Z ′ is a normalization constant and λk values are itera-
tively updated using gradient descent to satisfy the constraint
E [gk + εk] = ḡk . More information on the MaxEnt model im-
plemented in this study can be found in the work of Barrett
et al. [72].

Using this method applies minimal change to the model’s
original output, without altering the parameters directly. The
premise of this change is that the original model is treated as
well trusted but only slightly incorrect, with the intent of im-
proving predictive accuracy for future events by matching the
model’s output to experimental data (observations). However,
experimental data are known to contain systematic error, so
we include a formulation of MaxEnt that accounts for some
bias.

The MaxEnt framework suggests a strong belief in our
prior distribution of parameters, which reflects the use of
approximately correct parameters. In this setting, the term
approximately correct suggests that the prior distribution of
model’s parameters are not chosen at random but rather with
epidemiological intuitions. Even in cases where little to no
information is available on novel pathogens, the magnitude
of general epidemiological parameters that describe how the
infection spreads are bounded within certain values. These
bounded limits can be used as an initial guess for the men-
tioned prior distribution. In the case of epidemics, the outcome
of MaxEnt algorithm is an ensemble of weighted epidemic
trajectories, whose average reproduces the observed data with
some allowable disagreement. In this setting, the observations
can be the number of confirmed disease cases, given some
random noise to account for uncertainty.

This method is agnostic to the functional form of the origi-
nal model; given that it reweights paths produced by sampling
model parameters, which can be done a priori, it can be treated
as a black box. This also has the advantage that the method’s
computational complexity scales with only the number of

FIG. 2. SEAIR compartmental scheme. Populations in each
patch can be any of susceptible, exposed, asymptomatic, infected,
and resolved. Susceptible (S) individuals can get exposed (E) to the
disease through I-S and A-S interactions, with probability per contact
β and β ′, respectively. Once exposed, they become asymptomatic
(A) or infected (I) with probabilities (1 − ε)η and εη. They finally
recover or die with probability μ and become resolved (R). Note
that η and μ are related to the latent period and the infectious
window, respectively, whereas ε accounts for the fraction of infected
(symptomatic) individuals.

paths sampled and number of target functions rather than the
number of model parameters [72].

B. Epidemic model

Epidemic spreading can be represented as a reaction-
diffusion process, where the reaction term refers to the
contagion events triggered by the interaction between infected
and susceptible hosts whereas the diffusion phase corresponds
to the spatial dissemination of the population across the sys-
tem under study. In this sense, metapopulations, originally
introduced in the field of ecology, represent a convenient
framework, balancing complexity with analytical tractability,
to account for the impact of mobility on epidemic spreading
[83–85]. Metapopulations are composed of spatial patches
(nodes) where local populations interact in a mean-field man-
ner, connected via flows (edges) corresponding to movement
of individuals between patches. The spatial resolution of the
spatial patch may vary (neighborhoods, zip codes, districts,
cities, etc.) depending on the granularity of the input data or
the scale at which the dynamics are being modeled. In what is
to follow, we assume that our metapopulation is composed of
NP patches and that each patch i is populated by ni residents.

To model the disease spread, we consider a discrete-time
variant of the Susceptible-Exposed-Infected-Removed (SEIR)
model to account for the existence of (A)symptomatic indi-
viduals. With the addition of compartment A, our model is
denoted as the SEAIR model. The choice for this particu-
lar flavor of compartments was inspired by its relevance in
modeling the evolution of the current COVID-19 pandemic
[86,87]. The schematic of the model is detailed in Fig. 2. At
each time step, susceptible individuals (S) become exposed
(E) by interacting with asymptomatic (A) and infectious (I)
agents with probability 	. This probability depends on the
probability of infection per every I-S and A-S contact, de-
noted with β and β ′, respectively. Exposed individuals turn
into asymptomatic or symptomatic infected with a probability
η, distributing between both compartments as dictated by
fraction of symptomatic individuals denoted by ε. Finally, μ
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denotes the probability that an asymptomatic or symptomatic
individual recovers or dies, thus becoming resolved (R). Once
resolved, the individuals have lifelong immunity and can no
longer be infected. Note that the probabilities η and μ can be
related to the latent period and the infectious window included
in continuous-time approaches [88].

Considering mobility, we follow the movement-
interaction-return scheme introduced in Ref. [89] to reflect
the impact of commuting mobility on epidemic spreading.
At the movement stage, the individuals are redistributed
across the network according to the flows encoded in the
links of the metapopulation. Following the redistribution of
the population, contagion and recovery processes take place
at the interaction stage, changing the epidemic state of the
population accordingly. Finally, to reflect the recurrent nature
of daily human movements, all the agents come back to their
associated residential areas. All the equations in this work are
formulated based on an uncontrolled scenario, where there
are no restrictions imposed on the mobility patterns of the
metapopulation.

The spreading process is represented through a temporally
discretized ODE that includes the spatial distribution of the
population as well as their mobility patterns [90]. Here we
aim at characterizing the evolution of the fraction of agents in
state m (where m ∈ {S, E , A, I, R}) associated with each node
i, denoted in the following by ρm

i (t ). The temporal evolution
of these quantities are given by:

ρS
i (t + 1) = [1 − 	i(t )]ρS

i (t ), (5)

ρE
i (t + 1) = (1 − η)ρE

i (t ) + ρS
i (t )	i(t ), (6)

ρA
i (t + 1) = (1 − ε)ηρE

i (t ) + (1 − μ)ρA
i (t ), (7)

ρI
i (t + 1) = εηρE

i (t ) + (1 − μ)ρI
i (t ), (8)

ρR
i (t + 1) = ρR

i (t ) + μ
[
ρI

i (t ) + ρA
i (t )

]
. (9)

	i(t ) denotes the probability that a susceptible agent asso-
ciated with node i contracts the disease by making contacts
with an asymptomatic or infected individual. Under our as-
sumptions regarding human mobility, it can be expressed as:

	i(t ) =
NP∑
j=1

Ri jPj (t ), (10)

where Ri j represents the probability of a resident inside patch
i moving to patch j, and Pj (t ) is the probability of contract-
ing the disease inside node j at time t . Assuming that the
number of trips recorded between both locations in a real
dataset is given by the origin-destination (OD) matrix Ti j ,
the elements of the mobility matrix R are easily computed
as Ri j = Ti j/

∑
j

Ti j . Thus, under the well-mixed assumption,

Pi(t ) becomes

Pi(t ) = 1 −
NP∏
j=1

(1 − β )
z f

(
neff

i
ai

)
nI

j→i (t )

neff
i (1 − β ′)

z f

(
neff

i
ai

)
nA

j→i (t )

neff
i .

(11)

Note that the product term in Eq. (11) accounts for the proba-
bility for an individual not getting infected while staying in
node i and the exponent represents the number of contacts
made with the infectious individuals from compartments A
and I. To compute these contacts, we assume that the number
of interactions increases monotonically with the population
density in each patch according to a function f , given by

f (neff
i ) = 2 − e−ξneff

i /ai . (12)

where ξ is a constant (ξ = 5 × 10−3 square miles throughout
the whole manuscript), ai corresponds to the area of patch
i and neff

i represents the effective population gathered inside
patch i after the movement stage. Taking into account the
mobility matrix, the latter is given by:

neff
i =

NP∑
j=1

Rjin j . (13)

For every contact, each individual interacts with another
at random. Therefore, the probability of interaction with an
infectious individual belonging to the compartment m at time
t inside patch i is given by nm

j→i(t )/neff
i , where nm

j→i is the
number of infectious agents going from j to i belonging to
the compartment m, and ai denotes the area of node i. In
particular:

nA
j→i(t ) = Rjin jρ

A
j (t ), (14)

nI
j→i(t ) = Rjin jρ

I
j (t ). (15)

Finally, z is a normalization function to ensure that the
average number of contacts across the whole population is 〈k〉.
Therefore,

z = NTOT〈k〉
NP∑
i=1

neff
i f

(
neff

i
ai

) , (16)

where NTOT is the total number of individuals across the

metapopulation, i.e., NTOT =
NP∑
j=1

n j .

III. RESULTS

In what it is to follow, with an initial guess on the epidemi-
ological parameters and a set of observations, we apply our
method to address two fundamental problems in epidemiology
modeling: (1) Early assessment of the potential spread and (2)
identifying the origin of the outbreak. For observations, we
consider weekly averages for the fraction of the population in
compartments I and R. We choose these two compartments,
given that these are the most likely for which somewhat
reliable estimates can be made from real-world data. Nev-
ertheless, it is well documented [91] that such estimates are
noisy and their fidelity varies from region to region. To ac-
count for some degree of uncertainty about the data, we add
multiplicative noise with a mean 1 and standard deviation 0.05
to the observations obtained from the ground-truth trajectory.
The sampling process tries to explore the trajectory space by
adjusting the epidemiological parameters such as β, β ′, ε, η,
and μ from normal or truncated normal distributions, while
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FIG. 3. Predicting forward and backward dynamics in a synthetic contact network. (a) A sparse synthetic metapopulation network with
NP = 10 and edge-connection probability τ = 0.4. Nodes indicate spatial regions (containing a fully mixed population) and directed edges
represent mobility flows. The ground-truth model is generated by seeding the infection in a single individual residing in Node 1 (highlighted
in yellow) at time t = 0. Each node is colored according to their P0 probabilities (the probability of being the source of infection) as
calculated by the model. The model predicts that node 1 is the most probable source with 76% certainty. (b) Dashed curves represent the
ground-truth trajectories in each patch for the SEAIR model over a period of 250 days (each time-unit t is considered a single day). Highlighted
panels and blue circles represent observations. Solid lines curves represent the average over the MaxEnt reweighted ensemble of trajectories
(8192 samples), and the shaded areas represent the ±33% and ±67% quantiles. Model predictions match well with ground-truth trajectories
(Dtraj

KL = 8 × 10−3).

varying the infection seed across different spatial patches,
as well as accounting for a small variance in the mobility
flows. Finally, MaxEnt reweights the ensemble trajectories,
maximizing entropy subject to the observations, and deter-
mines the most probable state of the network. We consider
a Laplace distribution prior [Eq. (2)] with standard deviation
of 1 to allow some disagreement between the MaxEnt fit and
the observations. The MaxEnt implementation is done using
Adam optimizer [92] with initial learning rate of 10−2 and re-
duced learning rate on plateau callback (factor of 0.9, patience
of 10 and minimum learning rate of 10−4) for 1000 epochs.
To assess the model’s performance, we compare the predic-
tions against a simulated ground-truth trajectory derived from
known preselected epidemiological parameters. Knowledge
of the ground truth enables a proof-of-concept analysis to
assess model performance under different scenarios. The ones
we consider are density of the network, temporal window of
observations, the number of observations, use of less complex
compartmental schemes for inference, and variations in mo-
bility flow of observations with respect to the infection seeded
origin. As performance metrics we consider the following:

(i) Forward dynamics: To compare the predicted trajectory
against the known ground-truth trajectory we measure the KL
divergence, defined as

Dtraj
KL = − 1

T NP

T∑
t=0

NP∑
i=1

∑
m

ρm
i (t ) log

[
ρm

i (t )

ρ̂m
i (t )

]
. (17)

Here T is the total time in the epidemic trajectory and m is
the label for the compartments. The term ρ̂m

i (t ) is the model’s
prediction for the probability of an individual associated with

the patch i to belong to a compartment m at time t and ρm
i (t )

is the corresponding value for the ground-truth trajectory.
(ii) Backward dynamics: The accuracy of the model in

making the correct prediction with respect to the ground-truth
source of infection (P0). This can be treated as a binary mul-
ticlass classification problem, where the correct prediction of
the true origin node is regarded as the true positive (TP) class
and every other prediction falls into the false positive (FP)
class. Given this, the accuracy (α) is defined as

α = T P

T P + FP
. (18)

The posterior probabilities P0 for nodes are obtained by sum-
ming over the MaxEnt posterior weights for each node seeded
as the infection source—compartment E—in the sampled tra-
jectories ensemble at t = 0, and the largest value among the
set corresponds to P0 probability. To assess performance, we
use the top-k posterior probabilities P0, and the frequency of
true positive predictions as our metric. For instance, for k = 5,
the model’s prediction for P0 is classified as a true positive
if the infection source is among the top five values of P0

probabilities and a false positive otherwise.
We employ our method on two systems: a synthetic

metapopulation network and the mobility network of New
York State at the resolution of counties.

A. Synthetic contact networks

The 10-node metapopulation (NP = 10) is represented as
a directed graph in Fig. 3(a), where each node (patch) in the
network represents a town or city in the metapopulation and
the directed edges account for mobility flows between them.
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TABLE I. Distributions of input parameters for the synthetic contact network ground-truth trajectory.

Parameter Distribution Mean Std Min Max

Area (ai) Normal 2 × 103 103 300 —
Populations (ni) Normal 5 × 105 3 × 105 0 —
Ti j (i = j) Normal 105 3 × 103 0 —
Ti j (i 	= j) Normal 102 5 × 101 0 —

The nodes are connected at random with a connection proba-
bility τ = 0.4, such that on average each node is connected to
four other patches (considering both in- and out-flows). The
area of each node, the population, and entries of the mobility
matrix are sampled from normal distributions with parameters
listed in Table I.

The infection is initially seeded in patch 1 [node with the
yellow edge in Fig. 3(a)] with a single individual exposed
to the disease at t = 0. The parameters for this ground-truth
trajectory are chosen to be β ′ = 0.025, β = 0.05, ε = 0.6,
η = 1

1.2 , and μ = 1
7 . In Fig. 3(b) we show as dashed curves

the trajectory of the ground-truth SEAIR model for all 10
nodes for a period of T = 250 days. We define a distribution
of the parameters and explore the trajectory space. These
distributions and their Kernel density estimation plots can be
found in Table S1 and Fig. S1 in the Supplemental Material
[93]. For all 8192 sampled trajectories, we assume a uniform
probability of infection, and randomly choose a patch, and an
individual in that patch as the infection seed (see Fig. S2 in the
Supplemental Material [93]). For observations, we consider
a total of 50 data points (weekly averages) from the I and
R compartments within an observation window of (50 140)
days. The highlighted panels and blue circles in Fig. 3(b)
mark the five randomly chosen patches and the observations,
respectively.

We use the MaxEnt framework, to reweight the ensemble
of trajectories to agree best with the observed data points
and obtain the P0 probability by summing all the weights for
each exposed node in the sampled trajectories at t = 0. The
reweighted average over the sampled trajectories are shown
as solid curves in Fig. 3(b), and the shaded area marks the
±33% and ±67% quantiles. The calculated Dtraj

KL of 8 × 10−3

indicates close agreement between model predictions and
the ground-truth trajectory. In Fig. 3(a) we also show nodes
colored by their value of P0 probability, indicating that the
algorithm predicts node 1 (the true origin of infection) as the
most probable source with a certainty of 76%.

1. Effect of network density

Next, we check the accuracy of the model as a function
of the density of connections between nodes. We tune the
connection probability in the range 0.25 � τ � 1 to sample
the spectrum between a sparse and fully connected network.
We redo our simulations over 8000 different networks in this
range and for each trajectory choose a random node from
which to seed the infection. All other relevant parameters are
kept the same. In Fig. 4(a) we plot Dtraj

KL as a function of τ ,
where the solid lines indicate the mode over 200 samples
for a given τ , and the shaded areas mark the 30% confi-
dence interval. The region marked in green corresponds to

the true positive (TP) where the algorithm correctly identifies
the true infection seed as the most probable source, whereas
the region marked in blue corresponds to false positive (FP)
when the true source was not identified as the most probable.
Here we use a k = 1 acceptance criteria, a rather stringent
condition, as even when the true source is identified as the
second most probable, it is still marked FP. The low values of
Dtraj

KL indicates that irrespective of the correct identification of
the infection seed, the predicted and ground-truth trajectories
match well, independent of network density. Note that this is
true for the chosen observations obtained in the (50,140) day
temporal window and will be further discussed later.

Additionally, we find high values of P0 for TP that are
(mostly) independent of the graph connection probability τ ,
while for FP, we find low values of P0 that get progressively
worse with increasing τ [Fig. 4(b)]. This means that our model
is far more confident in its TP predictions compared to the
FP ones. The model’s calibration is assessed in the reliability
diagram shown in Fig. 4(c), where we plot the accuracy α

as a function of P0. The case of a perfectly calibrated model,
where α changes linearly with certainty, is shown as the or-
ange dashed line. The figure indicates that the model is more
accurate than it believes in a conservative manner. Finally, in
Fig. 4(d) we plot α as a function of τ finding that the model’s
performance degrades in high-density networks, which is to
be expected given that dense networks have more complexity
in their mobility flows. Nevertheless, at worst, the model
shows ≈60% accuracy in a fully connected graph. Indeed,
for a wide range of connection probabilities (corresponding to
realistic settings) we find an accuracy in the range of 80–90%.

2. Effect of temporal window of observations

Next we evaluate the model’s performance as a function of
the temporal window in which observations are made. Current
understanding of epidemic dynamics suggests that contact-
tracing is effective only in the initial stages of the outbreak,
and any information on the infection source is lost at later
times. Indeed, in Ref. [51] an approximation to this temporal
horizon, thor, was derived for the SIR model. Adapting the
formulation to the SEAIR model leads to an expression of the
form:

thor = λ−1
max log

(
NTOT

cmax

)
, (19)

where λmax corresponds to the leading eigenvalue of the
linearized system of ODEs governing the evolution of the dy-
namics and cmax a constant needed to fix the infectious seeds
at the beginning of the outbreak (see Appendix A for a com-
plete derivation). We consider a sparse (τ = 0.4) and dense
(τ = 1.0) network and check for the presence of such a
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FIG. 4. Effect of network density on model performance. Epidemic evolution on 8000 synthetic metapopulation networks with connection
probabilities in the range 0.25 � τ � 1.0. All other parameters kept the same. (a) Performance of forward dynamics, Dtraj

KL as a function of
τ . Solid lines indicate the mode, and the shaded areas mark shows the 30% confidence interval. Green marks where the model indicates the
true seed as the most probable infection source and blue otherwise. (b) The P0 probability as a function of τ , lines and shaded regions are the
same as in (a). (c) Reliability diagram for the model, where the dashed line represents a perfectly calibrated model where accuracy α changes
linearly with certainty. The model’s predictions fall into the conservative region (above the orange dashed line), suggesting that it is more
accurate than it believes. The expected calibration error (mean absolute calibration error) between our model and a perfectly calibrated model
is 0.123. (d) Accuracy α as a function of the connection probability τ , indicating a performance drop as one moves from sparse to dense graphs
(given the same number of observations).

temporal horizon by shifting the 5-week observation period
within the range T = 250, collecting 50 data points (5 points
from each of compartments I and R for 5 random nodes). As
a robustness check, we exclude the true-infection source from
our observed samples. In Figs. 5(a) and 5(b), we plot Dtraj

KL
and P0 as a function of the midpoint of observations for each

5-week window (200 sample runs in each bin), where curves
indicate the mode and shapes refer to dense (circles) and
sparse (inverted triangles) networks. Curves are split into TP
(green) and FP (blue). In the figure, we show the k = 3 accep-
tance criteria, and in Fig. S3 in the Supplemental Material [93]
we show the case for a k = 1 acceptance criteria. In Fig. 5(c),

FIG. 5. Effect of observations temporal window on model performance. Epidemic evolution on 8000 synthetic metapopulation sparse and
dense networks, with τ of 0.4 and 1.0, respectively. Green shows true positive predictions and blue accounts for false positives in sparse
(triangle) and dense (circle) networks, given a top-3 acceptance criteria. Each point in panels (a) and (b) represent the mode over 200 samples
at the corresponding midpoint observation period. (a) Forward dynamics predictions assessment using Dtraj

KL between the MaxEnt reweighted
trajectory and ground truth. (b) Mode values for the P0 probabilities. (c) Accuracy vs midpoint observation period. The model’s accuracy drops
as observations are obtained from time values beyond early stages of the outbreak (stage A) but increases again at more advanced time periods
(stage B) and beyond the time horizon (thor), where thor (adapted from Ref. [51]) is a reported fundamental limit beyond which no algorithm
can detect the true origin of infection.
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we plot the accuracy α as a function of the midpoint of obser-
vations. As expected, the figure indicates high accuracy at the
early stages of the outbreak (marked Region A), and decreases
as the epidemic progresses. Considering the set of parameters
(β, β ′, μ, 〈k〉, ε, η) = (0.05, 0.025, 1

7 , 10, 0.6, 1
1.2 ) and a seed

composed of a single exposed individual at the beginning of
the outbreak, we obtain cmax = 0.372 and thor = 90.9 days
marked as a red vertical dashed line.

Surprisingly, as one crosses thor a nonmonotonic trend is
observed and a new peak in the accuracy is observed at later
times (t ≈ 150) in both sparse and dense networks, marked
as Region B. To the best of our knowledge, this peak in
accuracy at advanced stages of the epidemic evolution, where
information can be recovered on the infection source, has not
been reported before. Indeed, this region also corresponds
to the lowest values of Dtraj

KL indicating the closest match to
the ground-truth trajectory and thus an optimal window in
which to simultaneously infer the most accurate information
in forward and backward dynamics [in Figs. 5(a) and 5(b),
respectively]. A possible explanation for this phenomenon is
that it corresponds to the regions with the highest gradients in
epidemic curves [Fig. 3(b)], whereas the low gradients of the
trajectories at other values of t provides the model with insuf-
ficient information to perform a reliable inference. Moreover,
given that the number of contacts across the metapopulation is
pretty homogeneous, as dictated by Eq. (12), one can expect a
roughly homogeneous duration of the SIR outbreaks in all the
patches. This homogeneity entails that the order at which out-
breaks die out across the metapopulation respects the arrival
of the pathogen at the early stage of the dynamics.

3. Epidemiological model-agnostic inference

Next, we try benchmarking the prediction performance of
our approach, with a simpler inference compartmental model,
compared to the compartmental scheme used to generate the
ground-truth trajectory. In this setting, the ground truth is
generated based on SEAIR, whereas the inference model for
sampling trajectories uses a simple SIR scheme. The main
differences between both compartmental models is that in the
SIR model scheme, susceptible agents become symptomatic
and infectious on contagion from other infectious counter-
parts, therefore neglecting both the latent period and the
existence of asymptomatic individuals. We run an exhaustive
analysis by adjusting connection probability (τ ) and accep-
tance criteria for the true positive identification. We consider
a sparse (τ = 0.4) and dense (τ = 1.0) network and use a
top-1 and top-3 evaluation setting. Prediction accuracies for
this analysis are shown in Table II.

The accuracies reported in each row are based on 8000
simulations, where the infection is seeded randomly in a 10-
node synthetic mobility network with five nodes observed in
temporal window and parameters similar to the ones used
in Sec. III A 1. Using a simple SIR compartmental scheme,
the stringent top-1 accuracy scores are consistent with was
reported earlier in Fig. 4(d). This suggests that the MaxEnt
approach can still provide a reliable inference on the spatial
source of the seeded infection, regardless of lacking complete
knowledge on more complicated epidemiological models that
better capture the disease dynamics. Note that the runs with

TABLE II. Model-agnostic performance with simpler inference
compartmental models. Benchmarking prediction performance with
simple SIR inference compartment models with respect to an SEAIR
ground-truth model. Each row represents results from 8000 sim-
ulations, where node connection probability (τ ) and true positive
acceptance criteria are adjusted.

τ Acceptance Inference model Accuracy

1.0 Top-1 SIR 0.564
1.0 Top-3 SIR 0.784
0.4 Top-1 SIR 0.970
0.4 Top-3 SIR 0.993

the less strict top-3 acceptance criteria have higher accuracy
scores. This trend is expected and suggests that higher ac-
curacy scores are achievable by increasing the number of
observations (see Sec. III B 1).

B. Mobility network of New York State

In this section, we apply our formalism to characterize the
spread of infectious diseases across a real metapopulation, the
network of commuters across New York State at the spatial
resolution of counties, of which there are 62. The mobility
flows between counties, as well as their respective areas and
populations, are obtained from the United States LODES
commuting database [94]. Our focus here is on assessing the
performance of the method in detecting the spatial location
of the infection seed given more complex and realistic mo-
bility patterns. We first generate the ground-truth trajectory
according to the following epidemic parameters: β ′ = 0.029,
β = 0.052, ε = 0.586, η = 1

2.493 , 〈k〉 = 10, and μ = 1
1.49 and

then collect observations corresponding to weekly averages of
populations in compartments I and R. Observations are col-
lected from specific counties and are drawn from the (60,140)
day temporal window. Once again, we define a distribution
of the parameters according to Table S1 [93] and explore the
trajectory space by generating an ensemble of 65 536 different
realizations as the MaxEnt prior.

1. Effect of the number of observations

Given that the number of observations is directly linked to
epidemic surveillance efforts, we first check the performance
of our model as a function of the number of counties from
which data are collected. Specifically, we test the accuracy
of identifying the correct spatial origin of the infection seed
as we increase the number of counties observed. We choose
three counties with different population densities in which to
seed the infection: Hamilton (2.74 per square mile), Mon-
roe (1.14 × 103 per square mile), and Kings (3.72 × 104 per
square mile). We collect 10 samples from each county (ran-
domly chosen) and vary the number of counties observed from
1, 5, and 25. We do not necessarily exclude the seed counties
from our randomly chosen observations.

In Fig. 6 we plot the counties colored according to their
values of the posterior probability P0. The top row represents
observations from a single county, the middle row from 5
counties and the bottom row 25 counties. The true origin is
marked as a downward yellow triangle and the observations
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FIG. 6. Effect of number of observations on model performance. Epidemic evolution in the real mobility network of New York State. The
yellow downward triangle represents the true origin of infection, and blue circles show the counties observed. The P0 predictions are ranked
based on their probabilities. The most probable and true origin ranks, as well as the Dtraj

KL values, are shown for each simulation. For example,
in the simulation with Kings County as the true origin with 10 observations, model’s most probable prediction for the infection source is Essex
County with Pprob

0 of 0.023, while the true origin is ranked sixth with Pprob
0 of 0.021. Starting from the first row to bottom, with the increase of

the number of observations, the model is able to infer the true origin of P0 among the top-5 most probable predictions and obtain a well fit to
the ground-truth trajectory, balancing both future and backward dynamics predictions.

by blue circles. The three columns correspond to the different
infection seeds. In each case, we show Dtraj

KL, P0 for the true
origin and how the model ranks it as a likely source of in-
fection, as well as the model’s prediction for the top-ranked
county in terms of the posterior probability P0. For all three
infection sources, observations from a single county yields
poor results for Dtraj

KL, and the model ranks the true origin quite
low as a probable source (16 for Hamilton, 58 for Monroe,
and 6 for Kings). Sampling from 5 counties results in a con-
siderable increase in performance for the first two counties (6
for Hamilton and 5 for Monroe), while for Kings the model
correctly identifies it as the most likely origin. We also note
about an order of magnitude decrease in Dtraj

KL for all three
counties, indicating good agreement with the forward dynam-
ics. Finally, sampling from 25 counties results in the best
performance, where in addition to Kings, the model correctly
identifies Hamilton as a true infection source, while for the
case of Monroe the model ranks it as the third most likely
origin. We see further improvements in matching the forward
dynamics with further decreases in Dtraj

KL (about two orders of
magnitude as compared to observing as single county). As

an illustrative example, we show the full trajectory set for
Monroe County true origin with 250 observations in Fig. S4
in the Supplemental Material [93].

We note the difference in accuracy of the model when
assessing Hamilton and Monroe counties. Hamilton, despite
being a much more sparsely populated area than Monroe, was
correctly identified as the true source, whereas Monroe was
ranked third. The reason for this discrepancy is that Hamilton
was also included in the sample of 25 counties as an input
to the model, whereas Monroe was excluded from its obser-
vation set. The likelihood of the model to correctly guess
the true source increases greatly when the source itself is
included as an observation, a feature also seen in our synthetic
metapopulation networks. On the other hand, the ability of the
model to identify Monroe as the third most likely source is
notable, given that no information on Monroe was available
to the model. Indeed, Erie County, adjacent to Monroe, was
marked as the most likely source of infection. Kings County
is an outlier compared to the other two, in a sense that already
with a single observed county, the model marked it amongst
the upper 10% of posterior probabilities P0. Certainly there are
more people in Kings (it has the highest population density
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FIG. 7. Effect of mobility-strength between counties on accuracy
in the mobility network of New York State. The accuracy of the
model as a function of the effective proximity φ [Eq. (20)]. Each point
represents the average over 180 runs of the model with a randomly
selected true origin county and 10 sampled trajectories from a single
county. The horizontal axis corresponds to the ranking of the values
of φ. Rank-1 corresponds to the case when the observations are made
from the source county.

by far among the three counties), but also it is coterminous
with Brooklyn, and a popular destination for residents of other
counties. Therefore, there is a higher likelihood of mixing of
populations from different parts of the state.

2. Dependence of accuracy on effective proximity

Given the latter observation, we next check whether the
strength of mobility flows (both in and out) between coun-
ties plays a role in the model’s accuracy. Two locations are
strongly connected if there are many people traveling between
them, and therefore we define an effective proximity matrix φ

with elements given by

φi j = 1

Ri j + Rji
, (20)

where R is the mobility matrix, and we take into account both
in- and out-flows. In this setting, counties that are strongly
connected by mobility flows have low values of φi j and are
therefore more proximal in mobility space. We next seed the
infection in location i and sample from a single county j
(including the source), ranked in increasing order according
to their value of φi j with the rank of i corresponding to 1.
We then generate 8000 trajectories with a randomly sampled
true origin and plot the accuracy α as a function of effective
proximity to the origin county in Fig. 7. Each point in the
figure corresponds to the average over 180 realizations. We
clearly see a monotonically decreasing trend; sampling from
counties further away from the origin-county leads to a sharp
decline in accuracy, saturating at around the seventh furthest
county. The trend is expected, given that locations further
away from the source in mobility space, experience delays in
arrivals of infectious cases. This lag results in the observation
of degenerate epidemic trajectories, thus making the inference
less accurate.

IV. CONCLUSIONS

This paper has provided a systematic study of both back-
ward and forward dynamics inference on contagion process
in contact networks. We have applied the statistical mechanics
principle of maximum entropy to the conventional SEAIR epi-
demiology models to reweight disease trajectories and obtain
the best fit to a set of observations, while making reliable
predictions on the true source of the outbreak. The novelty
of this work lies within working well under the sparse-data
regime and highly uncertain initial parameter priors, making
our method highly suitable for studying disease dynamics.
Finally, the method proposed here is independent of the un-
derlying compartmental model. While we presented our work
in the context of epidemics, the approach is easily generaliz-
able to similar classes of spreading processes. For example, a
single computer virus can infect millions of other computers
through the Internet. An isolated failure in an electrical power
grid network can result a citywide blackout. Misinformation
or a baleful rumor can spread through social networks and
cause terror and inconvenience. In all these scenarios, the
contagion process [95,96] could identify the source of the risk
on the network and quarantine its harmful effects [97–100].

The MaxEnt implementation is publicly available on
Github [101] as a Python package called maxent and it can
be applied to any simulator. The SEAIR model used in this
work is publicly available as Python package called py0 on
Github [102].
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APPENDIX: DERIVATION FOR TIME HORIZON

One of the key findings in this work is the nonmono-
tonic trend found for the time dependence of the accuracy
of patient-zero identification. This result is in sharp contrast
with other findings published in Refs. [51,103], suggest-
ing that such accuracy should monotonically decrease with
time because of the degeneracy of the epidemic trajecto-
ries. Specifically, in the latter manuscript, the authors derive
an estimation for the so-called time horizon, beyond which
patient-zero identification becomes infeasible. For the sake
of comparison, we now adapt the derivation of the thor

value to our compartmental model, according to the same
rationale followed in Ref. [51]. Mathematically, the authors
define the time horizon as the time at which the number of
infectious individuals scales to the entire population. To derive
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it, the authors neglect the nonlinear terms governing the evo-
lution of the number of infected individuals. This assumption
simplifies the mathematical analysis at the expense of under-
estimating the duration of the outbreak and, consequently, the
estimation of the time horizon. This occurs because the non-
linear terms involved in the contagions of SIR-like dynamics
slow down the late advance of the outbreak.

Being aware of the limitations posed by the assumptions
made to derive the time horizon, for the sake of compari-
son, we now proceed to adapt the derivation made by the
authors in Ref. [51] to our compartmental dynamics. First,
it is useful to consider a mean-field scenario and neglect the
contact heterogeneities existing across the different patches of
the metapopulation. At this limit, the dynamics is completely
characterized by the fraction of the population in each com-
partment m at each time step t , denoted in the following by
ρm(t ). Specifically:

ρS (t + 1) = [1 − 	(t )]ρS (t ), (A1)

ρE (t + 1) = (1 − η)ρE (t ) + ρS (t )	(t ), (A2)

ρA(t + 1) = (1 − ε)ηρE (t ) + (1 − μ)ρA(t ), (A3)

ρI (t + 1) = εηρE (t ) + (1 − μ)ρI (t ), (A4)

ρR(t + 1) = ρR(t ) + μ
[
ρI (t ) + ρA(t )

]
, (A5)

with

	(t ) = 1 − (1 − β )〈k〉ρI (t )(1 − β ′)〈k〉ρA(t ), (A6)

At the early stages of the outbreak, the number of af-
fected individuals is negligible compared with the size of
the population. Therefore, we can assume that ρm � 1, with
m = {E , A, I, R}. This turns the latter expression into:

	(t ) � 〈k〉[βρI (t ) + β ′ρA(t )], (A7)

where we have considered that β, β ′ � 1 as well. Introducing
the latter expression into Eq. (A2) and neglecting O(ρ2) terms

lead to

ρE (t + 1) = (1 − η)ρE (t ) + β〈k〉ρI (t ) + β ′〈k〉ρA(t ). (A8)

For the sake of simplicity, it is convenient at this point to
rewrite the equations in terms of the occupation of each
compartment m, denoted by m(t ). In particular, restricting
ourselves to the infectious or potentially infectious individ-
uals, we have that

Ė = −ηE + β ′〈k〉A + β〈k〉I, (A9)

Ȧ = (1 − ε)ηE − μA, (A10)

İ = εηE − μI, (A11)

where we have defined ṁ = m(t + 1) − m(t ). Consequently,
the evolution of the system is given by:

�m(t ) =
3∑

i=1

ci�vie
λit , (A12)

being λi and �vi each of the eigenvalues and their associ-
ated eigenvectors respectively and ci the integration constants
needed to fix the initial conditions to run the dynamics. Albeit
the latter expression constitutes the exact evolution of the
system, the long-term dynamics is completely determined by
the largest eigenvalue λmax and its associated eigenvector �vmax.
Therefore, we can assume that:

�m(t ) ≈ cmax�vmaxeλmaxt , (A13)

with

λmax =
√

(η − μ)2 + 4〈k〉η[(1 − ε)β ′ + εβ] − (η + μ)

2
.

(A14)
Without loss of generality, we set the component of the
eigenvector associated with the symptomatic infectious com-
partment to vI

max = 1. Finally, equating the number of
symptomatic infectious individuals to the population size, we
derive the time horizon thor which reads as:

thor = λ−1
max log

(
NTOT

cmax

)
. (A15)
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