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Absorbing phase transition in a unidirectionally coupled layered network
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We study the contact process on layered networks in which each layer is unidirectionally coupled to the next
layer. Each layer has elements sitting on (i) an Erdös-Réyni network, and (ii) a d-dimensional lattice. The top
layer is not connected to any layer and undergoes an absorbing transition in the directed percolation class for
the corresponding topology. The critical infection probability pc for the transition is the same for all layers. For
an Erdös-Réyni network the order parameter decays as t−δl at pc for the lth layer with δl ∼ 21−l . This can be
explained with a hierarchy of differential equations in the mean-field approximation. The dynamic exponent
z = 0.5 for all layers and ν‖ → 2 for larger l . For a d-dimensional lattice, we observe a stretched exponential
decay of the order parameter for all but the top layer at pc.
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I. INTRODUCTION

The identification of the underlying topological struc-
ture for complex systems [1] has led to a new branch of
“network science” [2]. Several researchers have studied dif-
ferent properties of real-life networks and proposed models.
The most popular models are scale-free [3] and small-world
networks [4]. These studies helped to better understand
phenomena as diverse as the spreading of diseases in the pop-
ulation [5], information processing in gene circuits [6], and
biological pathways [7]. It has also helped in understanding
the transport properties of several man-made systems [8].

Another model which has attracted attention recently has
been the multiplex network. It models multiple levels of in-
teraction in a given network. One example is a social media
network [9,10] where individuals are connected by Twitter,
Facebook, WhatsApp, etc., and there is a certain information
flow in the layers. Another example is the traffic network [11]
where people travel using various modes of travel such as
trams, buses, etc. In the spread of diseases [12,13], empirical
studies on different strains of disease or different diseases
have shown the necessity of modeling the underlying network
as a multiplex network. The interaction between the nodes is
described by a single-layer network and the different layers of
networks describe the different modes of interaction. Various
properties such as random walks [14] on these networks,
eigenvalues [15] and the eigenvector structure of these net-
works, the spread of infection on such networks, etc., have
been investigated.

In this paper, we study a simplified model of multilayer
networks where all layers have the same type of connectivity
within a given layer. Every site is connected to the sites in the
next layer in a unidirectional manner. We study the contact
process on this network. For low infection probability p, the
infection dies down and the fraction of infected individuals
goes to zero. For higher p, this fraction tends to be a constant.
Usually, this is an absorbing transition in the universality
class of directed percolation (DP). We find that the nature of

decay of the order parameter at the pc changes from layer to
layer. Interestingly, for an Erdös-Réyni network, we observe
a power-law decay of the order parameter with different ex-
ponents for different layers. On the other hand, for one- or
two-dimensional (1D or 2D) basic networks, we find that the
decay is well described by a stretched exponential for all but
the top layer at the pc.

We note that the DP universality class is extremely robust
against perturbations. The Janssen-Grassberger conjecture
stated the conditions for a DP transition to a nondegenerate
absorbing state with a single scalar order parameter. The pre-
requisites are short-range interactions in space and time, and
the absence of frozen randomness or multicritical points. It
has been found that the DP class is very robust and observed
even in the presence of memory, quenched disorder, infinitely
many absorbing states, or unidirectional coupling [16–18].
There are very few universality classes known for transitions
to an absorbing state such as a directed Ising class or voter
class, dynamical percolation, etc. [19–21]. Thus it is quite sur-
prising that this perturbation leads to a different universality
class in the Erdös-Réyni network.

II. MODEL

First, we consider a multiplex network with L layers each
having N sites. Each layer has an Erdös-Réyni network, i.e.,
each site is coupled to k randomly chosen sites in the same
layer for the top layer and the same connectivity is repeated
for all L layers. Each site is connected to the previous layer
unidirectionally. Each mth site in the lth layer is connected to
the mth site in the (l − 1)th layer of the lattices in a unidirec-
tional way for l > 1. The top layer (l = 1) is not connected
to the layer. The representative picture of the Erdös-Réyni
network topology for L = 2 and k = 2 is shown in Fig. 1(a).
We have also studied the case of a Cartesian lattice as a net-
work for the top layer in later sections. Figures 1(b) and 1(c)
show a representative multiplex structure for a 1D network
(L = 4) and a 2D network with (L = 2). We have carried out
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FIG. 1. Topological representation of a multiplex structure with
(a) an identical Erdös-Réyni network on each layer (k = 2, two
layers), (b) a 1D network at each layer (four layers), and (c) a 2D
network for each layer (two layers).

extensive numerical simulations for the contact process on the
above Erdös-Réyni multiplex network for k = 4. We associate
the variable xl

m(t ) to the mth site on the lth layer of this
NL-dimensional multiplex where L is the number of layers,
each of which has N sites. Initially, we assign xl

m(0) = 0 or
xl

m(0) = 1 with equal probability. Let sl
m(t ) be the sum of

xl
m′ (t ) where m′ is connected to m. The evolution proceeds

in a synchronous manner as xl
m(t + 1) = 1 with probabil-

ity p if sl
m(t ) �= 0 and 0 otherwise. Thus the sites become

active with probability p if any of its neighbors is active.
Being a contact process, this model shows the absorbing state
transition. If all sites in the multiplex become inactive, they
remain so forever. Furthermore, we observe another feature

FIG. 2. (a) Plot of order parameter Ol (t ) vs t for various layers
(from bottom to top) of an Erdös-Réyni network at p = pc = 0.25
for N = 8 × 106. The decay exponent is given by δl = 21−l and the
fit is shown. (b) Plot of Ol (t )t δl vs t (from top to bottom) for the same
system. This quantity is a constant in time, confirming δl .

due to the unidirectional connection between layers. If the top
layer becomes inactive, it remains so forever because it is not
connected to any other layer. Similarly, if all sites in the top
two layers become inactive, they stay inactive regardless of
the presence of active sites in the next layers. On the other
hand, the lth inactive layer can become active if there are
active sites in any kth layer such that k < l . The activity
persists only for p > pc, which is a well-defined quantity
in the thermodynamic limit. We expect the value of pc to
be the same for the entire lattice as it is for the top layer.
The reason is simple. Below pc, the top layer will become
inactive. Now the second layer is the top layer for all practical
purposes and will become inactive. When it becomes inactive,
the third layer is the top layer which will be inactive for p <

pc. Thus the entire multiplex is expected to become inactive
for p < pc.

For an Erdös-Réyni network with k neighbors, we ex-
pect the absorbing state for kp < 1 in the mean-field limit.
Thus we estimate pc = 1/k. For k = 4, we numerically
obtain pc = 0.250 00 ± 0.000 15 which is close to this ap-
proximation [22–24]. The dynamic phase transition for such
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FIG. 3. For an Erdös-Réyni network, finite-size scaling is obtained by plotting Ol (t )Nzδl as a function of t/Nz for different system sizes
N at p = pc = 0.25 where δl = 21−l and δ1 = 1. The value of the dynamic exponent z = 0.5 is the same for all layers. (a) l = 1, (b) l = 2,
(c) l = 3, (d) l = 4, (e) l = 5, and (f) l = 6.

connectivity is expected to be in the mean-field universality
class. For nonequilibrium phase transitions, this expectation
is not always fulfilled [25,26].

The pc as well as the critical exponents for the absorb-
ing phase transition in the top layer must be in the same
universality class as the absorbing phase transition for that
connectivity. As mentioned above, this is also the pc for the
entire multiplex structure. However, we may question how the
critical exponents (if any) change for l > 1.

A. Erdös-Réyni network

We study the six-layer Erdös-Réyni network in which we
study the absorbing phase transition using the order parameter
Ol (t ) which is a fraction of active sites in the lth layer as a
quantifier. We simulate the network for N = 8 × 106 and av-
erage over more than 400 configurations. We indeed observe
a power-law decay of the order parameter at p = pc for all l .
The order parameter Ol (t ) ∼ t−δl for each layer p = pc. The

power-law exponent value for the top layer is close to δ1 = 1,
which is a mean-field value. For l = 2, δ2 = 0.5. We observe
that the exponent for the lth layer is half of the exponent
for the (l − 1)th layer, i.e., δl = δl−1/2 (l > 1). Due to a
continuous infusion of infection from the layers above, the
inactivation rate becomes slower for larger l . This is shown in
Fig. 2(a). An excellent power law is obtained with δl = 21−l .
This behavior is confirmed by plotting Ol (t )t δl as a function
of time t and independent fits [see Fig. 2(b)]. These values
are confirmed within 1%. We note that Ol (t )t δl is constant
in time over a few decades. While the exponent in the l = 1
is in the mean-field class, we report on the other exponents
here. We study the finite-size scaling at the critical point for
different layers. We simulate for N = 2m × 100 for m = 0–9.
We average over at least 2 × 106 for N � 12 800 and over
2 × 105 configurations for N � 25 600. We obtain finite-size
scaling for every layer in the network. The dynamic exponent
z for all layers is the same and has the value z = 0.5. This
scaling is shown in Fig. 3.
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FIG. 4. Ol (∞) is plotted for various values of � ranging from
0.0005 to 0.0065 for various layers (from bottom to top). The be-
havior can be approximated as Ol (∞) ∝ �βl with βl = ν‖,lδl , and
ν‖,1 = 1, ν‖,2 = 1.1, ν‖,3 = 1.2, ν‖,4 = 1.44, ν‖,5 = 1.6, ν‖,6 = 1.92.

We expect the asymptotic value of the order parameter to
scale as Ol (∞) ∝ �βl where � = |p − pc| and Ol (∞) is the
fraction of active sites in the lth layer. We note that βl =
ν‖,lδl where ν‖,l is related to divergence of the correlation
time ξ‖ close to criticality as ξ‖ ∼ (p − pc)−ν‖ . We carry out
simulations for N = 8 × 106 and average over more than 80
configurations (see Fig. 4). [We fit the function Ol (∞) ∝ a�b

using the fit function in GNUPLOT and the values of bl obtained
are 0.99 ± 0.002, 0.54 ± 0.002, 0.29 ± 0.003, 0.17 ± 0.005,
0.10 ± 0.005, and 0.07 ± 0.005 for l = 1–6, respectively.]
We find that ν‖,1 = δ1 = 1 for the first layer, which is a mean-
field value. However, for l �= 1, ν‖,l > 1 and βl �= δl . In fact,
ν‖,l → 2 for higher layers.

To understand this behavior, we write mean-field equa-
tions for various layers. The mean-field equation for directed
percolation can be derived as follows. Let the rate of offspring
production reaction A → 2A be μp, annihilation reaction A →
0 occur with rate μr , and coalescence reaction 2A → A occur
with rate μc. Thus there an effective birth rate τ = μp − μr

which is linear in nature and a quadratic loss term with rate
g = μc. The mean-field equation for directed percolation is
given by Eq. (3.6) in Ref. [27] as ∂tρ1(t ) = τρ1(t ) − gρ1(t )2.

For the critical point τ = 0, ρ1(t ) = 1
c+gt , where c =

[ρ1(0)]−1. Thus δ1 = 1. For τ > 0, ρ1(t ) ∼ τ
g as t → ∞, im-

plying β1 = 1 and hence ν‖,1 = 1. These are exponents in the
mean-field limit. We heuristically write equations for different
layers as

∂tρ1(t ) = τρ1(t ) − gρ1(t )2,

∂tρ2(t ) = τρ2(t ) − gρ2(t )2 + ρ1(t )

...

∂tρl (t ) = τρl (t ) − gρl (t )2 + ρl−1(t )

...

∂tρL(t ) = τρL(t ) − gρL(t )2 + ρL−1(t ). (1)

FIG. 5. t δl ρl (t ) is plotted as a function of time t for various layers
(from top to bottom).

We simulate these equations at the critical point τ = 0
using the fourth-order Runge-Kutta method with h = 0.01
with ρi(0) = 0.9 for 1 � i � L. Asymptotically, we observe
a power-law decay of the order parameter as ρl (t ) ∼ t−δl with
δl = 21−l . The plots are shown in Fig. 5. Thus the hierarchy
of mean-field equations explains the order density decay ex-
ponent at p = pc very well.

However, for τ > 0, the behavior does not match with the
Erdös-Réyni multiplex described above. We propose ρl (∞) ∝
τβl and obtain βl = δl . The above equations yield ν‖,l = 1 for
all layers which is the mean-field value. But the Erdös-Rényi
network shows larger values of βl for l > 1. The reason may
be long crossover times or the mean-field limit may be ap-
proached for very large values of k. It has been shown that
the nonequilibrium system networks with random nonlocal
connectivity do not necessarily show a transition in the mean-
field class [25,26].

FIG. 6. Plot of Ol (t ) as function of time t for a 1D network
(from bottom to top) for N = 5 × 105 and p = pc = 0.705 485 15.
The order parameter decay exponent for the top layer is δ1 = 0.159.
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FIG. 7. For a 1D network, we plot Ol (t ) vs tβ on a semilogarithmic scale for l �= 1 at p = pc. A clear straight line shows that the decay is
well described by a stretched exponential. (a) l = 2, β = 0.09, (b) l = 3, β = 0.16, and (c) l = 4, β = 0.24.

B. One-dimensional network

Now we consider the case in which each layer has internal
connections such as a d-dimensional Cartesian lattice. Con-
sider the case of a 1D lattice and L = 4 layers. We simulate
for N = 5 × 105 and averaged over 80 configurations. The
top layer which is a 1D lattice undergoes a DP transition at
p = pc = 0.705 485 15 [27] and shows a power-law decay of
O1(t ) with a critical exponent δ1 = 0.159 (see Fig. 6) which
is in the 1D DP class. The value of pc is the same for all
layers. However, Ol (t ) for l > 1 is not a power-law decay.
It is better fitted with a stretched exponential as Ol (t ) ∝
exp(−Blxcl ). The value of cl increases with l (see Fig. 7)
and c2 = 0.09, c3 = 0.16, and c4 = 0.24 within 3%. This
behavior is confirmed by fitting using standard software such
as ORIGIN [28] and using a fit function in GNUPLOT which
uses an implementation of the nonlinear least-squares (NLLS)
Marquardt-Levenberg algorithm [29].

C. Two-dimensional network

In 2D, we simulate an N × N lattice in a given layer with
N = 3 × 103 at p = pc = 0.344 57 [27]. We averaged over
105 configurations and consider four layers. The O1(t ) decays
with exponent δ1 = 0.45 which is in a two-dimensional DP
class (see Fig. 8). However, for l > 1, Ol (t ) is better described
by a stretched exponential decay exp(−Blxcl ) as in the 1D
case. We obtain c2 = 0.1, c3 = 0.19, and c4 = 0.32 within 1%
(see Fig. 9). For l = 4, the curvature indicates the possible
presence of nonlinear corrections to the stretched exponential
fit.

III. SUMMARY

In this paper, we discussed three systems, i.e., the Erdös-
Réyni, 1D, and 2D systems. In these systems, each layer is
connected to the layer above it in a unidirectional manner. The
top layer has no connection to any other layer. The contact
process in this system is defined in the following manner. Any
site becomes active with probability p if any of the connected
sites is active. The critical point for the top layer is well known

FIG. 8. Plot of Ol (t ) as a function of time t for a 2D network
(from bottom to top) of size N = 3 × 103 at p = pc = 0.344 57. For
the first layer, the exponent δ1 = 0.45.
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FIG. 9. Plot of Ol (t ) vs tβ on a semilog scale for l �= 1 at p = pc. Data are well fitted by a stretched exponential. (a) l = 2, β = 0.10,
(b) l = 3, β = 0.19, and (c) l = 4, β = 0.32.

and the critical point is expected to be the same for the entire
network. We compute the fraction of active sites Ol (t ) in a
given layer l as an order parameter.

(a) In an Erdös-Réyni network, we find that there is a
power-law decay of the order parameter at each layer for p =
pc and the decay exponent is half of the previous layer. Since
a well-defined order parameter decay exponent is observed,
we compute other exponents such as finite-size scaling and
off-critical scaling. We find that the dynamic exponent z = 0.5
for all layers is not the mean-field exponent. The saturation
value of the order parameter for various layers scales as �βl

where βl = δlν‖,l , and even the value of ν‖,l �= 1, except for
the first layer which is a departure from the mean field. We
propose a system of hierarchy of differential equations that

correctly reproduces the behavior at a critical point for all
layers, but not the behavior in a fluctuating phase.

(b) In 1D and 2D networks, the absorbing phase transition
in the first layer leads to a power-law decay of the order
parameter only in the top layer with the same exponent as DP.
However, the decay is not described by the power law for other
layers. It is better fitted by the stretched exponential.
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