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Adversarial attacks on voter model dynamics in complex networks
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This paper investigates adversarial attacks conducted to distort voter model dynamics in complex networks.
Specifically, a simple adversarial attack method is proposed to hold the state of opinions of an individual closer
to the target state in the voter model dynamics. This indicates that even when one opinion is the majority
the vote outcome can be inverted (i.e., the outcome can lean toward the other opinion) by adding extremely
small (hard-to-detect) perturbations strategically generated in social networks. Adversarial attacks are relatively
more effective in complex (large and dense) networks. These results indicate that opinion dynamics can be
unknowingly distorted.
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I. INTRODUCTION

Opinion dynamics and collective decision making indicate
processes that lead to either a consensus, in which all individu-
als have the same opinion, or coexistence through competition
between different opinions within a population. These pro-
cesses were theoretically investigated using the voter model
[1–3]. Voter model dynamics have primarily been investigated
for regular lattices. However, with the development of net-
work science [4,5] revealing nontrivial connectivity patterns
(e.g., small-world topology [6,7] and heterogeneous or scale-
free connectivity [8,9]) in complex real-world networks, the
effects of such patterns on voter model dynamics have also
been evaluated.

Given that social networks can influence opinion dynamics
because they constrain the flow of information among indi-
viduals [10], voter model dynamics in complex networks are
useful for understanding how to distort collective decision
making (e.g., how to disrupt public discourse and democratic
decision making) by considering the social network struc-
ture. A previous study [11] demonstrated that information
gerrymandering, i.e., a specific network connectivity, which
indicates who connects to whom, can allow the vote out-
come to lean toward one opinion, even when the size of
the population with each opinion under the initial state (or
each party size) is equivalent and all individuals have the
same influence. In addition, zealots can distort the opinion
dynamics [12,13]. A previous study [11] showed that a small
number of zealots and automated bots can induce information
gerrymandering when strategically established in a network.
The results indicate that a vulnerability occurs in which the
restricted information flow systematically distorts the collec-
tive decision making.

However, alterations to network connectivity, zealots, and
bots may be relatively easy to detect; thus, several strategies
(e.g., removing zealots and bots and prohibiting alterations in
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the connectivity) can be considered to avoid such vulnerabili-
ties. Nevertheless, the adequacy of such defense strategies has
yet to be verified. A different possibility for distorting opinion
dynamics can be considered given the analogy between the
voter model in complex and neural networks (e.g., the fact
that perceptrons in neural networks can be regarded as voters
because their outputs are determined by the majority vote
[14]). Because neural networks are known to be vulnerable
to adversarial perturbations (specifically small, i.e., hard-to-
detect, perturbations distort their outputs) [15–17], it can be
hypothesized that such perturbations can also be generated to
distort opinion dynamics in social networks.

In this paper, inspired by adversarial attacks on neural
network tasks, a simple adversarial attack method is proposed
for distorting the voter model dynamics in complex networks
and numerically evaluating whether, when one opinion is the
majority, the vote outcomes can be shifted toward the other
opinion by adding extremely small strategically generated
perturbations to social networks. Evaluations were conducted
using models and real-world social networks. Moreover, the
effects of the network size, average node degree, and network
connectivity patterns on the outcomes of adversarial attacks
were investigated and discussed.

II. VOTER MODEL

In this paper, voter model dynamics in a network with
N nodes (individuals) are considered [1,2,8,9,18]. Each node
has one of two discrete opinions at time t : xi(t ) = {−1,+1}
for i = 1, . . . , N . Let ρinit ∈ (0, 1) be the proportion of in-
dividuals with opinion +1 in the network at time zero. The
voter model dynamics start from an initial state in which
the opinions +1 are assigned to randomly selected ρinit × N
nodes, and opinions −1 are assigned to the remaining nodes.

For i = 1, . . . , N , the time evolution of xi(t ) can be de-
scribed as

xi(t + 1) =
{−xi(t ) with pi

xi(t ) with 1 − pi
. (1)
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Note that one (global) time step indicates N node updates.
In Eq. (1), pi is the probability that the opinion of node i is
flipped at the next time step (i.e., t + 1) and is written as

pi = 1

2

(
1 − xi(t )∑N

h=1 Aih

N∑
j=1

Ai jx j (t )

)
. (2)

Here, Ai j is an element of the weighted adjacency matrix A of
the network. The link weight Ai j (>0) indicates the influence
of neighbor j on individual i. Equations (1) and (2) indicate
that xi(t + 1) is likely to be the opinion of the majority of
neighbors (after considering the link weights) at time t . For
simplicity, complex networks, in which bidirectional links are
drawn between individuals and all link weights have a value of
1 (i.e., each individual has the same influence on each neigh-
bor), are considered; that is, Ai j = Aji = 1 if a relationship
exists between nodes i and j, and Ai j = Aji = 0 otherwise.
Here, self-loops are considered to represent a self-intention:
Aii = 1 for i = 1, . . . , N .

Equations (1) and (2) are computed until the time step
reaches tmax, and the proportion ρ of individuals with opinion
+1 is computed as

ρ = 1

N

N∑
i=1

δ(xi(tmax),+1),

where δ(i, j) represents the Kronecker delta. Notably, 1 − ρ

indicates the proportion of individuals with an opinion −1 at
time tmax.

III. ADVERSARIAL ATTACKS

Adversarial attacks that distort the voter model dynamics
in complex networks consider holding the state of opinions of
the individuals at the next time step (i.e., t + 1) closer to the
target state. Let x∗

i = {−1,+1} be the opinion of node i in its
target state. The attacks consider making xi(t + 1) = x∗

i for
i = 1, . . . , N as much as possible. Because the voter model
always reaches a consensus on one opinion in a finite network
[1], adversarial attacks reaching a consensus on opinion +1
(−1) are considered in this paper, specifically, x∗

i = +1 (−1)
for i = 1, . . . , N . The attacks are applied by minimizing the
energy E (the negative value of the correlation coefficient
between the observed opinion state and target opinion state),
which is defined as

E = − 1

N

N∑
i=1

x∗
i xi(t + 1).

We consider minimizing E by temporarily altering the link
weights (i.e., by modifying A at each time step); specifically,
a perturbation is added to the adjacency matrix at each time
step using a gradient descent. Assuming that the link weights
for self-loops and node pairs not connected in the original
network are unchangeable, the link weights for node pairs i
and j, for which Ai j �= 0 and i �= j, are perturbed at time t as
follows:

A∗
i j (t ) = Ai j − ε

∂E

∂Ai j
,

where ε is a small, positive value.

However, the gradient ∂E/∂Ai j is not obtained directly
(analytically) from the stochastic process described in Eqs. (1)
and (2). Thus, we consider a mean-field time evolution of the
stochastic process from time t to t + 1:

xi(t + 1) = pi × −xi(t ) + (1 − pi ) × xi(t )

= xi(t )2∑N
h=1 Aih

N∑
j=1

Ai jx j (t ). (3)

The gradient ∂E/∂Ai j in Eq. (3) can be expressed as follows:

∂E

∂Ai j
= − 1

N

x∗
i xi(t )2(∑N
h=1 Aih

)2

N∑
h=1
h �= j

Aih[x j (t ) − xh(t )]. (4)

However, the direct use of Eq. (4) may not be useful for
adversarial attacks as the perturbation strength is uncontrol-
lable (i.e., high perturbation may be obtained depending on
the value of the gradient ∂E/∂Ai j), and computing the sums
is costly, e.g.,

∑
h �= j Aih[x j (t ) − xh(t )].

To avoid these limitations, inspired by the fast gradient
sign method [16] for adversarial attacks on neural network
tasks, an optimal maximum-norm constrained perturbation is
considered. Specifically, each element in A is perturbed based
on the sign of its gradient:

Aadv
i j (t ) = Ai j − ε × sign

(
∂E

∂Ai j

)
,

where ε denotes the strength of perturbation.
From Eq. (4), sign(∂E/∂Ai j ) = −x∗

i x j (t ) can be esti-
mated because N > 0;

∑N
h=1 Aih > 0; and x∗

i , x j (t ), xh(t ) =
{+1,−1}. In addition, xi(t )2 = 1. sign{∑h �= j Aih[x j (t ) −
xh(t )]} = F = x j (t ) because x j (t ) − xh(t ) = 2x j (t ) if x j (t ) �=
xh(t ), and 0 otherwise. Note that F = 0 [as a result,
sign(∂E/∂Ai j ) = 0] when all nodes connecting to node i have
the same opinion, i.e.,

∑
h �= j Aih[x j (t ) − xh(t )] = 0. However,

for simplicity, we can consider that F = x j (t ) [as a result,
sign(∂E/∂Ai j ) = −x∗

i x j (t )] in this case because this consider-
ation does not affect the probability pi, when the link weights
only for node pairs connected in the original network are
perturbed. In particular, pi = 0 whether perturbation is added
or not. Thus, if Ai j �= 0 and i �= j, Ai j are finally perturbed as
follows:

Aadv
i j (t ) = Ai j + εx∗

i x j (t ). (5)

Here, Aadv(t ) may be asymmetric.
Adversarial attacks on the voter model dynamics described

in Eqs. (1) and (2) are conducted using Eq. (5), where Aadv(t )
is used at each time step t instead of A in Eq. (2).

Equation (5) indicates the simple adversarial attack strat-
egy, that is, the strengthening of the link weight from node j
to node i (i.e., the influence of node j on node i) (weakened)
if the opinion of neighbor j under the observed state is con-
sistent (inconsistent) with that of node i under the target state
(i.e., x∗

i ).
To compare the performance of the adversarial attacks with

random controls, random attacks on the voter model dynamics
were considered. Specifically, the adjacency matrix was per-
turbed as Arnd

i j (t ) = Ai j + ε × s for i and j, for which Ai j �= 0
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FIG. 1. (a) Line plot of perturbation strength ε vs 〈ρ〉. The
filled-in symbol indicates 〈ρ〉 for adversarial attacks against model
networks with N = 1000 and 〈k〉 = 6. A cross indicates 〈ρ〉 for ran-
dom attacks against ER networks. Relative frequency distributions of
ρ and P(ρ ), at ε = (b) 0.001, (c) 0.002, and (d) 0.004 in ER networks.

and i �= j, where s is a random variable uniformly sampled
from the set {−1,+1}. Random attacks were conducted using
Arnd(t ) at each time step t instead of A in Eq. (2).

IV. SIMULATIONS

Supposing that ρinit = 0.8 (i.e., the opinion +1 is the ma-
jority under the initial state), adversarial attacks reaching a
consensus on opinion −1 (i.e., the target state in which x∗

i =
−1 for i = 1, . . . , N) are considered.

The adversarial attacks on the voter model dynamics are
simulated in complex networks generated from three rep-
resentative network models: the Erdős-Rényi (ER) [19,20],
Watts-Strogatz (WS) [21], and Barabási-Albert (BA) models
[19,22].

ER is a well-used network model that generates random
networks by drawing links between L node pairs that are ran-
domly selected from a set of all possible node pairs. The node
degree follows a Poisson distribution with mean 〈k〉 = 2L/N .
However, real-world social networks exhibit a nonrandom
structure; they have highly clustered subnetworks and hetero-
geneous (power-law-like) degree distributions [19,20]. Thus,
WS and BA models were considered. By randomly rewiring
the links in a one-dimensional lattice, in which each node
has k (= 〈k〉) neighbors, with probability pWS, the WS model
generates small-world networks the clustering coefficients of

FIG. 2. Line plot of network size N vs 〈ρ〉. A filled-in symbol
indicates 〈ρ〉 for adversarial attacks with ε = 0.005 against model
networks with 〈k〉 = 6. A cross indicates 〈ρ〉 for random attacks
against the ER networks.

which are higher than those expected from ER networks. In
this paper, pWS = 0.05 according to [6,23]. In addition, by
connecting a newly added node at each time step to m existing
nodes using the preferential attachment mechanism, the BA
model generates scale-free random networks in which the
degree distribution P(k) follows a power law [P(k) ∝ k−3].
Note that 〈k〉 = 2m for N � 0.

The voter model dynamics are applied with tmax = N un-
less otherwise noted because the average time (using the
global time step as the unit of measurement) to reach a con-
sensus (consensus time τ ) in uncorrelated networks is scaled
by at most N [18]. The distribution of ρ is obtained from
3000 realizations of the voter model dynamics; moreover,
their mean 〈ρ〉 is computed.

Figure 1(a) shows that 〈ρ〉 rapidly decreases with the per-
turbation strength ε for adversarial attacks despite a low ε

(<0.01). However, the values 〈ρ〉 are independent of ε for
random attacks (random controls) and are the same as the
value at ε = 0 (i.e., 〈ρ〉 in the case of no perturbations). Note
that, although the values of 〈ρ〉 obtained from random attacks
are only displayed for the ER networks shown in Fig. 1(a),
they are also the same for the WS and BA networks (this ten-
dency is similar in Figs. 2 and 3). This indicates that the rapid
decrease observed in 〈ρ〉 with ε results from the adversarial
attacks.

Figures 1(b)–1(d) show that the distribution of ρ is dra-
matically changed for adversarial attacks, whereas it is not
altered for random attacks. In particular, the figures show
the transition from the state under which opinion +1 is the
majority to the state under which opinion −1 is the majority
owing to an adversarial attack. Note that P(ρ) in the case of no
perturbations (i.e., at ε = 0) is similar to that under a random
attack (not displayed here to avoid redundancy).

The robustness against adversarial attacks differs slightly
among the network models. For WS and BA networks, in
comparison to ER networks, a larger ε is required to decrease
〈ρ〉 to a desired value owing to an adversarial attack. However,
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FIG. 3. Line plot of average degree 〈k〉 vs 〈ρ〉. A filled-in symbol
indicates 〈ρ〉 for adversarial attacks with ε = 0.003 against model
networks with N = 1000. A cross indicates 〈ρ〉 for random attacks
against ER networks.

〈ρ〉 ≈ 0 at ε = 0.01 for all model networks, indicating that
small perturbations can invert the vote outcomes.

Remarkably, adversarial attacks are more effective for
larger networks (Fig. 2). For a fixed ε (= 0.005), 〈ρ〉 rapidly
decreases with network size N for an adversarial attack,
whereas it is independent of N for random attacks. Note
that all voter model dynamics are applied with tmax = 1000,
thereby demonstrating that the observed N dependency on 〈ρ〉
is independent of tmax. However, a similar tendency (i.e., a
rapid decrease in 〈ρ〉 with N) is also observed when tmax = N .

Adversarial attacks are also more effective for denser net-
works (Fig. 3). For a fixed ε (= 0.003), 〈ρ〉 decreases with the
average degree 〈k〉 for an adversarial attack but is independent
of 〈ρ〉 for a random attack. However, the effect of 〈k〉 on the
decrease in 〈ρ〉 is less remarkable than the effect of N (Fig. 2).

Adversarial attacks shorten the consensus time τ despite
a small ε (Fig. 4). This tendency is remarkable for a large
N ; specifically, τ increases in a sublinear manner with N
compared to the case without perturbations (i.e., ε = 0). How-
ever, for a relatively small N , adversarial attacks may require
a slightly longer τ compared to the case of ε = 0. This is
because the consensus state is antagonistic between opinions

FIG. 4. Line plot of network size N vs consensus time τ in
(a) ER, (b) WS, and (c) BA networks with 〈k〉 = 6. Here, τ is
obtained from 3000 realizations of the voter model dynamics.

FIG. 5. Line plots of perturbation strength ε vs 〈ρ〉 in real-world
social networks: (a) Facebook (N = 4039 and 〈k〉 = 43.7), (b) Ad-
vogato (N = 5054 and 〈k〉 = 16.6), (c) AnyBeat (N = 12645 and
〈k〉 = 7.8), and (d) HAMSTERster (N = 2000 and 〈k〉 = 16.1).

+1 and −1 owing to the weak effect of adversarial attacks for
a relatively small N (Fig. 2).

Adversarial attacks on real-world social networks were
also investigated (Fig. 5). Facebook [24], Advogato [25,26],
AnyBeat [25,27], and HAMSTERster [25] networks were
considered. These networks are undirected. For simplicity,
the largest connected component in each real-world network
was used, and all link weights were set to 1. Voter model
dynamics were applied with tmax = 1000 for each network;
moreover, 〈ρ〉 was obtained from 300 realizations. As shown
in Fig. 5, 〈ρ〉 rapidly decreases with ε for adversarial attacks,
whereas it is independent of ε and is the same value under no
perturbations for random attacks. These results indicate that a
small perturbation (ε < 0.01) can invert the vote outcomes. A
simple comparison of the adversarial robustness (i.e., the min-
imum ε required to decrease 〈ρ〉 to the desired 〈ρ〉) between
networks is inaccurate because N and 〈k〉 differ.

V. DISCUSSION

Herein, it is demonstrated that the voter model dynam-
ics in both the model and real-world complex networks can
be distorted by adding extremely small perturbations to the
networks (link weights in particular) using the proposed ad-
versarial attack method (Figs. 1 and 5). Previous studies
have considered the introduction of relatively easy-to-detect
perturbations such as zealots and alterations to network con-
nectivity to distort the opinion dynamics in complex networks;
however, this paper shows that imperceptible (hard-to-detect)
perturbations can distort such dynamics. Because link weights
are interpreted as the contact frequencies between individuals,
perturbations against link weights indicate a change in contact
frequencies. For example, in social networking services, it
may be easy to change such contact frequencies by manipu-
lating the display frequencies of the other posts of individuals
on the timeline of each individual. Adversaries who have data
on social networks and the opinions of individuals and can
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modify the contact frequencies may then be able to control
the opinion dynamics (and the subsequent vote outcomes)
by slightly increasing or decreasing the display frequencies
based on the opinions of the individuals. Adversarial attacks
[Eq. (5)] are easy to implement. Importantly, social networks
remain mostly unchanged even when adversarial attacks are
conducted. Moreover, zealots and automated bots are not
required. It is possible for opinion dynamics to become dis-
torted.

Larger and denser networks are more vulnerable to adver-
sarial attacks (Figs. 2 and 3). Further investigation is needed
for a deeper mathematical explanation (e.g., using mean-field
approximation approaches [18,28,29], stochastic pair approx-
imation [30], and approximate master equations [31]). This
vulnerability occurs owing to the flip probability [Eq. (2)]
being changed through perturbations. For simplicity, suppos-
ing a network in which every node has neighbors with the
same number of opinions +1 and −1, adversarial attacks
toward the node having the target opinion −1 are considered.
Given Eq. (2), for each node, the flip probability is 1/2 with
no perturbations; however, it increases (decreases) by ε/2
with perturbations if the opinion is +1 (−1). Although this
change appears to be minor for each node, it significantly
affects the dynamics of the entire network. For example, the
probability that all nodes will have the target opinion at the
next time step (i.e., the probability that all nodes with opinion
−1 at time t will also have opinion −1 at time t + 1 and all
nodes that have opinion +1 at time t will have opinion −1
at time t + 1) is (1/2)N with no perturbations; however, the
value increases to [1 − (1 − ε)/2]N (−)

[(1 + ε)/2]N (+) = [(1 +
ε)/2]N when perturbations occur, where N (−) and N (+) are
the numbers of nodes with opinions −1 and +1 at time t ,
respectively. In brief, the probability increases (1 + ε)N times
when perturbations occur as compared to the presence of no
perturbations. Therefore, adversarial attacks can distort the
voter model dynamics with a small perturbation; moreover,
they are more advantageous for larger networks. Similarly,
adversarial attacks can reduce the consensus time (Fig. 4).
In addition, adversarial attacks are more effective when per-
turbations are added to all possible node pairs because the
influence of individuals with the target opinion can be utilized,
although for greater realism adding perturbations is limited to
only connected node pairs in this paper. Therefore, adversarial
attacks are advantageous for dense networks.

Given the results shown in Figs. 1–3, a heterogeneous
connectivity and small-world topology may weakly inhibit
adversarial attacks. In heterogeneous networks, when one

opinion is the majority and hubs have the same opinion, the
existence of the hubs inhibits adversarial attacks because the
hubs affect the opinions of other individuals; in addition,
their opinions are relatively stable even if the opinions of a
few individuals are changed through an adversarial attack. A
small-world topology inhibits the ordering process of voter
model dynamics [6,7]; thus, it may also inhibit adversarial
attacks. It would be interesting to determine a type of network
structure that will enhance or inhibit an adversarial attack.

Given that the voter model dynamics are approximated
with the mean-field time evolution to estimate the gradient
∂E/∂Ai j , the proposed method may be ineffective for specific
networks, although it was confirmed to be useful as a repre-
sentative model (Fig. 1) and for several real-world (Fig. 5)
networks. In this context, to conduct more effective adver-
sarial attacks in future investigations, it would be interesting
to improve the proposed method and propose novel methods
using different approaches. Furthermore, methods for apply-
ing adversarial attacks should be more sparsely developed.
Although the proposed method is simple and effective, it
requires an adjustment of the link weights in the network.

The adversarial attacks considered in this paper are lim-
ited to complex networks in which the relationships between
individuals are bidirectional, and all link weights are the
same. Thus, it would also be interesting to further investigate
adversarial attacks against complex networks in which the
relationships between individuals are asymmetric [32], where
the link weights vary (i.e., each individual has a different
influence on each neighbor) [33]. The connections are tem-
porally altered (e.g., forming relationships among individuals
of similar beliefs [34]), and there are several types of relation-
ships [35]. Moreover, adversarial attacks should be evaluated
using more realistic voter models (e.g., noisy voter [28] and
game-theoretic voter [11] models) and real-world experiments
(as in [11]).

Thus, adversarial attacks on opinion dynamics in complex
networks will become a new line of research.

The data and relevant code for this research are stored in
the author’s GitHub repository [36].
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