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We propose an alternative to the standard mechanisms for the formation of rogue waves in a nonconservative,
nonlinear lattice dynamical system. We consider an ordinary differential equation (ODE) system that features
regular periodic bursting arising from forced symmetry breaking. We then connect such potentially exploding
units via a diffusive lattice coupling and investigate the resulting spatiotemporal dynamics for different types
of initial conditions (localized or extended). We find that in both cases, particular oscillators undergo extremely
fast and large amplitude excursions, resembling a rogue wave burst. Furthermore, the probability distribution
of different amplitudes exhibits bimodality, with peaks at both vanishing and very large amplitude. While
this phenomenology arises over a range of coupling strengths, for large values thereof the system eventually
synchronizes and the above phenomenology is suppressed. We use both distributed (such as a synchronization
order parameter) and individual oscillator diagnostics to monitor the dynamics and identify potential precursors
to large amplitude excursions. We also examine similar behavior with amplitude-dependent diffusive coupling.
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I. INTRODUCTION

The formation of rogue waves or spatiotemporal bursts has
been investigated by a number of authors [1,2] and different
mechanisms leading to such waves have been identified. Rel-
evant approaches include completely linear mechanisms (e.g.,
a superposition of multiple linear waves) or fully nonlinear
mechanisms (e.g., modulational instability of a uniform wave
train) [3,4]. Some of the original observations stem from the
study of North Sea waves [5–8], but more recent work has
extended similar considerations not only to other areas of
the oceans but also to numerous other scientific areas where
controlled laboratory experiments are available. These include
studies of sloshing of water waves in large tanks [9–12]
and the realm of nonlinear optics [13–16], with some work
spanning both areas (see, e.g., [12]). Attempts to establish
rogue wave emergence as a property of a broad class of
physics-based models have been reported in ultracold atomic
Bose-Einstein condensates [17], in space plasmas [18–21] and
elsewhere [22].

Arguably, a large portion of the relevant efforts to generate
rogue waves has revolved around models of dissipationless
dispersive wave propagation, with the nonlinear Schrödinger
(NLS) equation [23,24] and its variants providing the central
model in this direction. Given that the NLS equation describes
the slow evolution of a packet of small amplitude dispersive
waves, nonlinear effects are key to the formation of large
amplitude rogue burst events. In this context, specific nonlin-
ear solutions, such as the Peregrine soliton [25], the periodic
in time Kuznetsov-Ma soliton [26,27], and the periodic in

space Akhmediev breather [28], have been central to numer-
ous investigations. However, as is well known, such exactly
integrable settings and the analytical solutions available via
the inverse scattering transform (and related approaches) are
rather rare, especially so in higher-dimensional settings.

Many of the above ideas on identifying rogue events in
integrable systems have also been extended to lattice models
such as the integrable Ablowitz-Ladik system [29], the nonin-
tegrable discrete NLS equation [30], and the Salerno system
which homotopically interpolates between the two. Rogue
events in such lattice models are a consequence of nonlinear
effects arising from modulational instability. However, con-
servation laws (if present) prohibit arbitrarily large responses
and limit the norm at any lattice node to the initial norm. Such
constraints do not play a role in the dynamics of dissipative
lattice systems such as the model considered in this work,
allowing rogue wave behavior arising from fundamentally dis-
tinct physical mechanisms. It is thus of considerable interest
to explore such alternative mechanisms given their potentially
broader applicability and straightforward extension to higher
dimensions. Indeed, the recent work of [31] captures the rele-
vant motivation well in the statement: “from the general point
of view, the identification of the necessary ingredients for the
emergence of rogue waves and extreme events in dissipative
systems remains a challenging open problem.”

Here we focus on the fundamentally spatiotemporal nature
of the localization of rogue waves and their defining property
of “appearing out of nowhere and disappearing without a
trace” [32] but employ an approach that does not rely on
the Hamiltonian nature of the problem or on its integrability
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properties. In dissipative systems sustained rogue wave for-
mation requires the presence of forcing. To capture the
essence of rogue waves this forcing must be uniform in space.
In this work we leverage the properties of a model prob-
lem studying the interaction properties of standing waves in
domains of moderate aspect ratio, following [33,34]. This dis-
sipative system satisfies the above requirement where waves
arise via a Hopf bifurcation from a trivial state. With Neu-
mann boundary conditions these waves may be of even or
odd parity under spatial reflection, and in moderately large
domains such waves are nearly degenerate with an approxi-
mate interchange symmetry between them, resulting in strong
interaction. The state of the system is described by a pair
of coupled equations for the two wave amplitudes given by
the normal form for a Hopf bifurcation with broken D4 sym-
metry. This symmetry is a consequence of spatial reflection
together with the approximate interchange symmetry between
the two modes; the symmetry is broken because the inter-
change symmetry is not exact, and sample integration of the
resulting equations reveals intermittent bursts with amplitudes
as large as 109 [35]. We refer to these solutions as bursts to
emphasize they are localized in time but not in space. The
resulting system explains successfully the presence of bursts
in experiments including those on binary fluid convection in
domains of moderate aspect ratio [33,36].

Within the above formulation the spatial degrees of free-
dom are inevitably slaved to the temporal dynamics of the
mode amplitudes. In order to activate spatial degrees of free-
dom over yet larger length scales, we consider here a ring
of identical, diffusively coupled oscillators of the above type,
each of which can generate a large spatially coherent burst
(or a sequence of such bursts), depending on parameters. We
use the ring geometry in order to generate a spatially periodic
system, i.e., to mimic a very large aspect ratio system where
local regions remain spatially coherent. The resulting model
has the advantage that the dynamics of each oscillator is well
understood. In particular, it is understood that the broken D4

symmetry permits the trajectory of each individual oscillator
to escape to infinity in finite time and to return from infinity,
also in finite time, even when the even and odd standing waves
both bifurcate supercritically. On a ring of such oscillators
the resulting excitation may be localized at one site, or a
small group of adjacent sites, resulting in the generation of a
temporally and spatially localized extreme event, i.e., a rogue
wave.

We demonstrate here, via direct numerical simulations, that
for weak coupling the above system exhibits rogue events
apparently occurring at “random” times and at “random” lo-
cations. Importantly, this is the case even when the parameters
characterizing the individual oscillators are chosen to generate
periodic oscillations only. We offer different diagnostics rang-
ing from the event amplitude distribution function to studying
the precursors to the local emergence of large amplitude
events, in an effort to obtain diverse perspectives towards
a qualitative understanding of the relevant phenomenology.
This is followed by an investigation of progressively larger
coupling, eventually leading to the synchronization of the
entire lattice, as well as couplings that vary over space
or time, depending on the site amplitude. For this purpose
we leverage various synchronization diagnostics such as the

Kuramoto order parameter [37]. Our hope is that this initial
study will provide motivation for further exploration of alter-
native mechanisms producing extreme events, and potentially
enable their identification in other nonlinear lattice systems in
one or more dimensions.

The presentation of our results is structured as follows. In
Sec. II, we describe the basic formulation of the model, its
parameters, and initial conditions at the ordinary differential
equation (ODE) level, first for a single node and subsequently
for the diffusively coupled network. In the latter setting, we
present the main phenomenology of the system, the diagnos-
tic tools of interest, and the resulting findings for different
values of the coupling parameter, as well as for amplitude-
dependent coupling. Finally, in Sec. III, we summarize our
findings and point to some directions for future study. The
Appendix presents some further details on the dynamics of
the ODEs on a single node of the lattice.

II. MODEL

A. An oscillator with approximate D4 symmetry

The dynamics near onset in a system exhibiting a Hopf
bifurcation with broken D4 symmetry, i.e., on a domain of
moderate length, is described by the truncated equations

ż± = [λ ± �λ + i(ω ± �ω)]z± + A(|z+|2 + |z−|2)z±

+ B|z±|2z± + Cz̄±z2
∓. (1)

Here z± are the complex amplitudes of the even and odd
standing wave modes, the parameters �λ and �ω measure
the differences in their linear growth rates and onset frequen-
cies, respectively, while A, B, and C are complex coefficients.
When �λ = �ω = 0 the two modes follow the same evolu-
tion equations and the interchange symmetry between them is
exact. Thus, the parameters �λ and �ω represent terms that
reflect the fact that the two competing standing modes are not
in general identical. Equations (1) assume that in a moderately
large domain this effect can be captured at linear order, i.e.,
via the inclusion of small differences in the growth rates and
frequencies of the two competing modes [33].

New variables A, θ , and φ defined in [33,34] allow us to
completely characterize the solutions of the system with exact
D4 symmetry (�λ = �ω = 0) in terms of three qualitatively
different periodic solutions, hereafter u, v, and w. Writing

z± = A 1
2 sin

(
θ + π

4
± π

4

)
exp

(
i
(±φ + ψ )

2

)
, (2)

the u solutions correspond to cos θ = 0 and cos 2φ = 1, the
v solutions correspond to cos θ = 0 and cos 2φ = −1, and
the w solutions correspond to sin θ = 0. A fourth solution, a
quasiperiodic state referred to as qp, is present in a restricted
parameter range. When �λ = �ω = 0 these states bifurcate
simultaneously from the trivial state at λ = 0, and the u, v,
and w states then represent invariant subspaces of the system.
This is no longer the case when the interchange symmetry is
broken, i.e., �λ �= 0, �ω �= 0. In this case the w states split
into two (the even and odd standing oscillations) and the other
states are generated only in secondary bifurcations [34]. We
mention that in contrast to the w states, the states u and v

represent traveling states [33].
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When �λ �= 0, �ω �= 0 there may be parameter regimes
in Eqs. (1) with no stable small amplitude oscillations near
onset, implying that nontrivial dynamics must take place. In
particular, it was found that the solutions in this regime can
be attracted to an invariant subspace (the u/v subspace) that
extends to infinite amplitude. Solutions following this sub-
space reach very high amplitudes, and sample integration of
the equations revealed intermittent bursts with amplitudes as
large as 109 [35]. A detailed study using a rescaled time shows
that solutions lying in this invariant subspace are attracted
to a saddle point at infinity that is, in turn, connected to a
second saddle point at infinity whose stable manifold returns
the trajectory back to small amplitude. In terms of the original
time the excursion to infinity and back takes a finite time
[33,34]. This behavior can be established using the variable
ρ = A−1: as A → ∞, i.e., as ρ → 0, the terms with �λ and
�ω drop out, and the D4 symmetry becomes exact, allowing
a complete description of the dynamics near ρ = 0.

In the following we consider a parameter combination for
which each element in a diffusively coupled ring of such
elements is described by Eqs. (1) but only displays regular
finite amplitude periodic spiking as in Fig. 3(a) of [33]. As a
result, the rogue waves we observe are a consequence of the
spatial coupling of the elements and not of their individual
behavior at the same parameter values. The corresponding
parameter values are

λ = 0.1, �λ = 0.03, ω = 1, �ω = 0.02,

A = 1 − 1.5i, B = −2.8 + 5i, C = 1 + i, (3)

and we focus on the generation of extreme events in the
resulting lattice system.

B. Diffusively coupled ring of N nodes

Our system consists of N identical oscillators on a ring
where each of the N nodes is modeled by the dynamics
described in Eqs. (1). The oscillators are coupled via nearest-
neighbor coupling with diffusion coefficient K ,

ż±,i = [λ ± �λ + i(ω + �ω)]z±,i + A(|z+,i|2 + |z−,i|2)z±,i

+ B|z±,i|2z±,i + Cz̄±,iz
2
∓,i + K	2z±,i. (4)

Here, 	2 stands for the discrete Laplacian and i = 1, . . . , N .
The model allows us to explore the interplay between

regular periodic spiking (at each node, in the absence of
any diffusion) and the effects of amplitude redistribution
via diffusive coupling. In the limit of K = 0, i.e., with
no coupling, we expect to recover regular periodic spik-
ing at each node, albeit with a phase that varies randomly
from node to node. In the opposite, diffusion-dominated
limit with K � 1, we expect that all nodes display syn-
chronized regular periodic spiking. Hence, as we increase
K , we expect to see progressive synchronization as re-
vealed, for example, by the Kuramoto order parameter
(see, e.g., [37]). The transition between these two regimes
and the associated dynamical phenomenologies that it en-
ables are the central topic of interest in the present work.
Our principal aim is to determine whether in some in-
termediate regime the spiking of a single node, alongside
the nearest-neighbor coupling, is able to give rise to a

FIG. 1. Three types of initial conditions showing the distribu-
tion of initial amplitudes Ai(t = 0) in a system of N = 37 coupled
oscillators. The red line with circle markers shows a single peak
initial condition, the blue line with crosses shows a sine wave initial
condition, and the black line with square markers shows a uniformly
distributed random initial condition. In all three cases the Riemann
sums pertaining to the three curves are equal.

rogue event, offering in this way a viable alternative to
the more customary Hamiltonian mechanisms discussed in
the Introduction.

We choose the number of oscillators in the ring, N , in
the range where we can define a distributed initial condition
(such as a sine wave function) with sufficient resolution over
a wavelength. All results in the rest of this paper are for
a system of N = 37 oscillators on a ring. Time simulations
evolve the system over the time interval 0 < t � 5000 and
were performed using MATLAB’s ode23s subroutine with both
relative and absolute tolerance of 1 × 10−5.

In order to explore the consequence of both localized and
extended initial conditions as well as gradients in the initial
condition, we choose three types of initial conditions for z±:
a single spike initial condition where z±,i is only nonzero at
one chosen oscillator, i = 12, a smoothly distributed initial
condition (more specifically a sine wave such that z± reaches
maximum at i = 10, 29 and minimum at i = 0, 19), and a
uniformly distributed random initial condition in (0,1). The
amplitude Ai at the ith node at any instant is related to z±,i by

Ai = |z+,i|2 + |z−,i|2 , (5)

and our initial conditions are such that the sum of Ai at
t = 0 over all nodes in the ring is the same. Figure 1 shows
a comparison of the three types of initial conditions when∑

i Ai(0) = 2.55 × 10−3 in each case.
Figure 2 shows a space-time waterfall plot of the logarithm

of the amplitude at each node, log10 Ai, for the case with cou-
pling constant K = 2.1544 × 10−6 and starting from the sine
initial condition. During this evolution, the range of variation
in Ai spans eight orders of magnitude, reaching a maximum
amplitude excursion of A19 = 2.28 × 108 at t = 2827.5. The
right panel zooms in close to the maximum rogue event to
show the sharp and localized excursion in amplitude in more
detail, thereby demonstrating that the lattice system is indeed
capable of supporting rogue events. In particular we see that,
despite the initial sinusoidal variation of amplitude, this si-
nusoidal pattern is gradually disrupted, and we observe the
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FIG. 2. Left: Space-time plot showing the evolution of log10(Ai ) starting from a sine initial condition in a system of N = 37 coupled
oscillators, 1 � i � 37, with K = 2.1544 × 10−6. The diagonal arrows locate the five largest amplitude excursions in this space-time evolution.
Right: Zoom of the space-time plot to provide a close-up view of the largest amplitude event in the left panel.

emergence of multiple isolated large amplitude events, shown
as black or dark gray events in Fig. 2. The top five amplitude
events are highlighted with diagonal arrows to reinforce the
unpredictability of their occurrence.

The largest rogue event is shown in finer detail in the
zoom in the right panel of Fig. 2. The panels show that at
this value of K even immediate neighbors fail to synchronize
with the rogue event nearby, as evidenced by the sharp spatial
localization of the amplitude. Figure 3 (top panel) confirms
this impression in showing the time variation of the amplitude
of the oscillator undergoing the maximal amplitude excursion,
here i = 19 (in black), and two of its immediate neighbors,
i = 18 (in red) and i = 20 (in blue). We observe that even im-
mediate neighbors do not reflect the extremely large amplitude
excursion occurring at oscillator i = 19.

In contrast, at the larger value K = 1 × 10−4 the neigh-
bors do partially synchronize with the large amplitude event
(Fig. 4, left panel) and all evolve to absolute values that are
comparable to the maximum amplitude. This is also reflected
in Fig. 3 (bottom panel), where the maximum amplitude oc-
curs at i = 30 (again in black) but this time this event is also
reflected in the amplitude evolution of the two immediate
neighbors, i = 29 (red) and i = 31 (blue). The right panel
of Fig. 4 shows that at the yet higher value K = 2.2 × 10−3,
all the oscillators synchronize, leading to spatial coherence
among all of them.

The large amplitude excursions observed in the left panel
of Fig. 2 develop and occur over a very short interval of
time and do so irregularly in both space and time, hence
their resemblance to a rogue event. In order to understand
how frequent such excursions are, we compute the probability
density function pAthresh , which is calculated as the ratio of
the number of instances when the amplitude falls between
two thresholds, i.e., Athresh−1 < A < Athresh, to the total num-
ber of observations over the entire space-time run shown in
Fig. 2, left panel. In Fig. 5 we plot the logarithm of the
probability density function pAthresh using 80 bins spanning
the range of amplitudes over the entire space-time run. From
the figure we see that the occurrence of very high amplitude
events is substantially higher than what would be expected

if the distribution of events followed an exponential distribu-
tion. The emergent bimodality of the amplitude probability
distribution with a second peak corresponding to extremely

FIG. 3. Top: Evolution of large amplitude event at i = 19 (shown
as black line) as seen in the right panel of Fig. 2 along with the
amplitude evolution of its immediate neighbors at i = 18 (red line)
and i = 20 (blue line). Bottom: Evolution of large amplitude event at
i = 30 (shown as black line) as seen in the left panel of Fig. 4 along
with the amplitude evolution of its immediate neighbors at i = 29
(red line) and i = 31 (blue line).
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FIG. 4. Space-time plot showing the evolution of log10(Ai ) starting from a sine initial condition in a system of N = 37 coupled oscillators
with K = 1 × 10−4 (left panel) with maximum amplitude occurring at i = 30, and K = 2.2 × 10−3 (right panel) with maximum amplitude
occurring at i = 10. The left panel shows that the large amplitude feature is not localized at a single oscillator and that neighboring oscillators
respond coherently. In the right panel, all oscillators are synchronized and so oscillate in spatial coherence.

large amplitude events is representative of other, albeit similar,
values of the coupling coefficient K as well. It also persists
in longer runs with the maximum peak amplitude reached
gradually increasing as the run length increases.

We conclude that a diffusively coupled network formed of
elements evolving according to Eqs. (1) is capable of gener-
ating unpredictable, large amplitude excursions over a short
time scale, whose occurrence is more probable than predicted
via an exponential distribution of amplitudes. This system
is therefore able to produce rogue events. We next look at
the effect of varying the coupling coefficient K and describe
the resulting changes to the space-time evolution in each
case.

0 0.5 1 1.5 2

108

-16

-12

-8

-4

0

FIG. 5. Logarithm of the probability density function pAthresh for
different amplitude thresholds Athresh from the time evolution shown
in Fig. 2. We observe an increase in the probability of extremely large
amplitudes, indicating that the occurrence of extreme events is more
probable than what is expected from an exponential distribution of
amplitudes.

C. Effect of varying K

Having observed the model phenomenology for the spe-
cial case of weak diffusive coupling (K = 2.1544 × 10−6),
we now turn to simulations over a range of diffusion coeffi-
cients, 10−10 � K � 1, to appreciate the growing role of the
coupling. The evolution resulting from the single peak initial
condition is shown in Fig. 6 as red lines with circles; that from
the sine wave initial condition is shown as blue lines with
crosses; and, lastly, the one from the random initial condition
is shown in black with square markers.

The top panel in the figure shows the maximum amplitude
rogue wave observed over the evolution time, denoted Amax,
as a function of K , on a logarithmic scale. This maximum
occurs at time t = tmax at the i = Nmax node shown in the
middle and bottom panels. We see that the maximal excitation
remains large until K ≈ 1 × 10−5 after which the maximum
amplitude abruptly decreases. Beyond this threshold, the dif-
fusion coefficient is large enough to synchronize the nodes.
For larger values of K , Amax increases again, albeit very
slowly. For large enough values of K , we recover the regular
periodic spiking behavior of a single oscillator for both the
sine wave (blue line with crosses) and the random initial
condition (black line with square markers). For the single peak
initial condition (red line with circles) and large K values,
the diffusive coupling overcomes driving at each oscillator
and the amplitude decays during subsequent evolution from
the initial amplitude Ai(t = 0) at every node i. For these
evolutions, Amax corresponds to the initial amplitude, which
is O(10−4).

The middle panel shows the time t = tmax taken to reach
the maximal excitation. For very low values of K we observe
that large amplitude excitations occur later in the case of a
sine wave initial condition (compared to the other two initial
conditions). At large values of K (in the synchronized range),
the largest amplitude excursions occur during transient evo-
lution before all the oscillators reproduce the regular periodic
oscillations expected from a single uncoupled oscillator. In the
case of a single peak initial condition (red line with circles),
tmax = 0 once we reach the range of K values where the initial
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FIG. 6. Red lines with circles show the results for the single peak
initial condition, blue lines with crosses show the results for the sine
wave initial condition, while black lines with square markers show
results for the random initial condition. The top panel shows the
variation in the maximum amplitude Amax (on logarithmic scale) as
a function of the diffusion coefficient K . The middle panel shows the
time tmax taken to reach the maximal excitation, also on logarithmic
scale, while the bottom panel shows the variation of the location
i = Nmax of that maximal event among the individual oscillators.

amplitude decays with subsequent evolution, and this scenario
is therefore not represented in the log-log plot of tmax vs K .

The bottom panel shows the location i = Nmax of the maxi-
mal excitation as a function of K . We observe that, irrespective
of the initial condition, the location of the maximum ampli-
tude is unpredictable; when K is large the synchronized nature
of the dynamics also leads to large scatter in Nmax but this
scatter is no longer meaningful.

In order to measure the effect of varying K on synchro-
nization between the nodes in this network, we compute the
Kuramoto order parameter (discussed in detail in, e.g., [37])
for the space-time evolution at each value of the coupling
parameter K . We measure the instantaneous degree of phase
coherence using the quantity r(t ) defined by

r(t ) =
∣∣∣∣∣

1

N

N∑
j=1

eiθ j

∣∣∣∣∣, (6)

where θ j = tan−1(Im(z+)/Re(z+)), and take the asymptotic
value of r, ra ≡ limt→∞ r(t ), as representing the level of syn-
chronization for the chosen level of diffusive coupling [r(t )
calculated with z− shows similar behavior at all K values].
Figure 7 shows the variation of ra as a function of K . As dis-

FIG. 7. Asymptotic value of the Kuramoto order parameter, ra =
limt→∞ r(t ), as a function of the coupling coefficient K for different
initial conditions: the case of a single peak initial condition (red lines
with circles), a sine wave initial condition (blue lines with crosses),
and a uniformly distributed random initial condition (black line with
square markers).

cussed in the Introduction, at very low values of the coupling
the nodes are uncoupled, leading us to expect low values of
ra. In fact, we observe three distinct values of ra, depending
on initial condition, for the following reasons. In the case of a
single peak initial condition, most of the nodes in the network
are initially “synchronized” at zero (leading to an accordingly
larger initial value of ra), while in a random initial condition
there can be some nodes that start with similar values; in
the sine wave initial condition there is a smooth variation of
amplitude instead of multiple repeated values.

In contrast, at large values of K , all nodes in the network
may be fully synchronized, leading us to expect ra ≈ 1. This
is indeed the behavior that we observe for the single-peak
and random initial conditions at large values of K . However,
for the sine initial condition with the smoothest variation of
amplitude (shown in blue line with plus markers), we observe
that at large values of K , ra falls sharply to very low values.
We explain this as follows. Individual oscillators want to un-
dergo regular periodic oscillations under the chosen parameter
conditions. However, at large K , diffusion is strong enough to
overcome such oscillations and causes the amplitude at every
location in the ring to decay with time. In the asymptotic
limit we then obtain small values for the Kuramoto order pa-
rameter ra, indicative of effectively random phases computed
from vanishingly small amplitudes. The final slight increase in
ra ≈ 0.15 is a consequence of further increase in the coupling
strength K .

Of course, the observed behavior for increasing values of
the coupling coefficient K is also related to the initial ampli-
tude distribution. In order to explore this dependence further,
we show in Fig. 8 a similar plot of the asymptotic Kuramoto
order parameter ra as a function of K for the single peak and
the sine wave initial condition starting with a larger initial
amplitude distribution. The Riemann sums of the Ai(t = 0)
for both initial conditions are again identical and the sine wave
has a maximum value of 1 × 10−2. We find that in both cases
the evolution is able to reach fully synchronized behavior,
ra ≈ 1, at large values of K . In this case, the sine wave initial
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FIG. 8. Asymptotic value of the Kuramoto order parameter, ra =
limt→∞ r(t ), as a function of the coupling coefficient K for the
single peak initial condition (red lines with dots) and the sine wave
initial condition (blue lines with crosses) starting with a larger initial
amplitude distribution.

condition is able to overcome diffusion at large K values to
retain the regular periodic oscillations at every oscillator in
the ring, resulting in large values of ra.

D. Precursors for a high amplitude excursion

As observed from the probability density function results
(Figs. 5 and 6) as well as the space-time plots (Fig. 2),
the location Nmax and the peak amplitude Amax cannot be
directly predicted during the evolution of the coupled oscil-
lator network. However, there is great interest in being able
to identify precursors that can indicate an impending large
amplitude excursion in the form of a spatiotemporal rogue
event. Previous work [38] combined statistical analysis along
with a nonlinear stability criterion for a local wave train to
quantify the probability of the occurrence of a large ampli-
tude event. These authors also identified a simpler precursor
which only tracks the energy of the wave field within an
identified critical length scale. Both these measures rely on
the assumption that the basin boundary for a rogue event is
low dimensional. A separate approach, that considers such
waves as hydrodynamic instantons that can be analyzed within
the framework of large deviation theory and computed via
suitably tailored numerical methods, is explored in [39]. Since
the dynamics of the oscillator ring is by construction related
to the dynamics of a single oscillator, we opt here to leverage
the known low-dimensional dynamics of a single oscillator
to design a qualitative diagnostic that can identify impending
large and rapid growth of amplitude at a given location in the
network.

In Fig. 9 we review the behavior during rogue events by
plotting the amplitude A(t ) of the Nmax = 19 oscillator in
a semilogarithmic plot for the evolution shown in the right
panel of Fig. 2. Each large amplitude excursion is noted in
different colors: blue (between 1 and 2), black (between 2
and 3), and red (between 3 and 4). Superimposed on this
evolution and shown as brown circles are instances when our
precursor P (see the relevant definition below) indicates that

FIG. 9. Large amplitude events at i = 19 as seen in the right
panel of Fig. 2 in the time domain shown superposed on locations
where the precursor P identifies rapid growth (brown circles) due to
the alignment of the trajectory with the stable direction of the saddle
solution u∞ (top panel) and of the v∞ solution (bottom panel) of a
single uncoupled oscillator.

the evolution is heading toward a large amplitude excursion.
We observe that the qualitative precursor is able to identify
each of the imminent large amplitude excursions well before
the amplitudes have reached large values and independent of
the amplitude at which the growth commences. In the rest of
this section we detail how we construct this precursor.

The change of variables in Eq. (2) allows us to identify the
large amplitude events as A = ρ−1, where ρ 
 1. The limit
of ρ = 0 corresponds to the invariant subspace 
∞, as this is
the limit for which the amplitude A → ∞. In the following
we denote the u and v solutions in 
∞ with the subscript ∞.

Figure 10 shows the trajectory (after an initial transient)
of both the single uncoupled oscillator (in green, top panel)
and the i = 19 oscillator on a ring with K = 2.1544 × 10−6

(in blue, black, and red colors, bottom panel) projected onto
the variables ρ and φ. In this figure, red markers (pluses,
circles, and triangles) in the panels indicate the locations of the
invariant solutions for an uncoupled oscillator in the (ρ, θ, φ)
variables. Circles indicate solutions of the so-called u∞ type
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FIG. 10. Top: Phase portrait in the (ρ, φ) plane during regular
periodic spiking at a single node in the network with no coupling
(green line). Bottom: Same view in the (ρ, φ) plane with superposed
evolution close to the large amplitude event at i = 19 (black line) in
the coupled network with K = 2.1544 × 10−6, for comparison with
Fig. 9.

[33,34], pluses indicate solutions of v∞ type, and triangles
indicate finite amplitude solutions that are mixed u/v states.
These three solutions represent fixed points of the (ρ, θ, φ)
system in Eqs. (A1) of the Appendix and represent traveling
states of the underlying individual oscillator dynamics de-
scribed by Eqs. (1) with the chosen level of asymmetry at the
parameters given in Eq. (3).

For this oscillator, we calculate the eigenvalues of each
solution in the 
∞ subspace [34] and find that the point u∞
at (ρ, θ, φ) = (0,π/2, 0) is a saddle (red circle in Fig. 10,
top panel), while v∞ at (ρ, θ, φ) = (0,π/2, π/2) is an un-
stable spiral (red plus in Fig. 10, top panel). Integration of
Eqs. (A1) reveals a stable periodic spiking orbit (green line
in the top panel, black arrows indicating direction of forward
time) that periodically approaches both u∞ and v∞, i.e., small
values of ρ. Both of these excursions correspond to ampli-
tude spikes, with no discernible difference between them. We
expect the dynamics of a diffusively coupled ring of such
nodes to follow this orbit at small values of diffusive coupling
K . Indeed, when all the oscillators in the ring are initialized
with this same periodic state and the same temporal phase,
the coupled evolution on the ring retains this synchronization.
This means that the rogue event-bearing state observed for
the oscillator ring coexists with the synchronized periodic

oscillation reflecting the dynamics of a single uncoupled os-
cillator.

In Fig. 10, bottom panel, we superimpose the evolution of
the i = 19 node in the diffusively coupled ring shown previ-
ously in Fig. 9 on the dynamics of the uncoupled system (top
panel, green trajectory), both projected on the (ρ, φ) plane.
The blue, black, and red parts of the trajectory match those in
Fig. 9. Between points 1 and 2 (segment shown in blue) the
solution approaches v∞ (red plus). This approach is respon-
sible for the first spike in Fig. 9. Beyond point 2 (segment
shown in black) the trajectory is able to return to extremely
small values of ρ, ρ = 4.39 × 10−9, but this time due to an
approach to u∞ (red circle). This close approach is responsible
for the very large amplitude spike in Fig. 9. Beyond point 3
(segment shown in red), the trajectory returns to u∞ but does
not reach such small values of ρ. This excursion is responsible
for the third spike in Fig. 9. Thus the evolution of the i = 19
oscillator recapitulates the dynamics of a single oscillator, but
does so irregularly and with occasional excursions close to the
ρ = 0 fixed points, resulting in a large amplitude spike, i.e., a
rogue wave. This comparison also suggests that the coupling
to nearest neighbors may occasionally lead to smaller values
of ρ (i.e., bigger spikes) as in the segment from 2 to 3, but also
to larger values of ρ, as in the segment from 3 to 4.

Given that the uncoupled dynamics has a pair of saddles in
the 
∞ subspace, we can expect a large amplitude excursion if
the evolution is aligned with the stable direction of the saddle
u∞, say, which we will call V̄1. Further, we expect the am-
plitude to continue to grow until the projection of the current
state on the fastest unstable eigendirection of the saddle u∞,
which we will call V̄2, starts to increase. We use the above
notions to design a qualitative precursor for a large amplitude
excursion as follows:

P =
⎧⎨
⎩

1 if P (state, V̄1) > 0 and P (state, V̄2)
is decreasing in time

0 otherwise.
(7)

Here P is the projection of the current state along the respec-
tive eigendirection V̄1 or V̄2. With the above definition, we
identify instances in time where the local dynamics is aligned
close to the attracting direction of the saddle u∞ and is not
evolving along the unstable direction of u∞. We determine the
temporal variation of the projection of the current state along
V̄2 via a simple first order approximation of the derivative.
When both these conditions are satisfied and P = 1, we expect
the dynamics to continue to evolve along the stable direction
V̄1 of the saddle u∞, implying that ρ → 0 and the amplitude
therefore grows. This condition is what we identify as a qual-
itative precursor of an impending large amplitude excursion.
When these conditions are not satisfied, we have P = 0 and
we do not expect to see a large amplitude event.

As already mentioned, overlaid on the amplitude evolution
in Fig. 9, top panel, and shown in brown circles are time
instances where the above criterion predicts a precursor event
(P = 1), indicating that a large amplitude excursion is immi-
nent. We see that this diagnostic is able to identify the growth
intervals of all three amplitude excursions regardless of which
fixed point in 
∞ is approached. A similar definition of a pre-
cursor can also be created with respect to the eigendirections
of the v∞ solution (Fig. 9, bottom panel). Thus, estimating to
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what extent the current state of a node in a coupled ring of
oscillators maps on the dynamics of a single uncoupled oscil-
lator allows us to identify impending large amplitude events
in this system. We believe that this type of diagnostic could
be relevant to other systems, provided that a mathematical
characterization of the large amplitude solutions of a single
uncoupled node is available.

E. Amplitude-dependent diffusive coupling

Having examined the case of uniform coupling across the
nodes of our ring, we now wish to explore the potential impact
of heterogeneity in the lattice coupling (cf. [40–42]). Specif-
ically, we suppose that the spatial coupling depends on the
current value of z± via the amplitude A according to

Ki = K0Ai(t ) = K0(|zi+|2 + |zi−|2), (8)

with K0 being a tunable parameter.
Here we observe some qualitative differences in the behav-

ior of the system for different initial conditions. As shown in
Fig. 11, for the single peak initial condition (red lines with
circle markers) the maximal events observed are much larger,
occur much earlier in the evolution (compared to other initial
conditions), and are all concentrated at the location of the
initial peak. This is expected, as the vast majority of the lattice
nodes is initialized with near-vanishing amplitude thereby
preventing the outward propagation of the initial disturbance
even for K0 �= 0. In contrast, the random and sine distributed
initial conditions are observed to yield excitations with lower
amplitudes over the whole range of K0 considered. For the
sine wave initial condition, these mostly occur at the locations
of the peaks in the sine wave initial condition while there is
no preferential location for the random initial condition. As
expected, the single peak initial condition can only exhibit
rogue events at the location that is initialized with nonzero
amplitude.

III. CONCLUSIONS AND FUTURE CHALLENGES

In this work we have revisited a system that is known to
exhibit bursting over a coherent region of space, and reformu-
lated the problem to permit the activation of spatial degrees
of freedom. We found that the resulting system could indeed
generate extreme events that were localized in both time and
space, and that occurred more or less at random locations on a
periodic ring of such bursters and at random times. Our system
offers an intriguing alternative to more conventional studies of
rogue wave formation based on integrable Hamiltonian par-
tial differential equations, typically the nonlinear Schrödinger
equation and its variants. The latter approach has met with
considerable success, and there is good evidence that rogue
waves resembling the Peregrine soliton [25] and its periodic
and higher order generalizations do in fact occur in wave
experiments in a channel geometry (see, e.g., [10]). Our aim
has been to propose an alternative mechanism that could give
rise to such extreme events in distributed forced dissipative
lattice systems. The proposed mechanism is fundamentally
based on a strong resonance between two almost degenerate

FIG. 11. Same as Fig. 6 but for the amplitude-dependent cou-
pling (8). Red lines with circle markers show results for the single
peak initial condition while blue lines with plus markers are the
results for the sine wave initial condition. The top panel shows the
variation in the maximum amplitude of observed excitations (on
logarithmic scale) as a function of the coupling coefficient K0. The
middle panel shows the variation in the time taken to reach the
maximal excitation tmax on logarithmic scale, also as a function of K0.
Finally, the bottom panel shows the variation of the location Nmax of
the maximal amplitude among the individual oscillators as a function
of K0. Note that the single peak initial conditions were initialized at
i = 12.

modes and has the remarkable property that it permits ex-
citations of arbitrarily large amplitude. The model has the
welcome additional property that its dynamics “at infinity” is
well understood.

We considered a nonlinear dynamical lattice consisting
of diffusively coupled elements of the above type, and
demonstrated that such lattices can manifest a phenomenon
resembling rogue events, i.e., waves that “appear out of
nowhere and disappear without a trace” [32]. We showed in
particular that such events may be present even when the
individual oscillators oscillate periodically, and explained how
this behavior depends on the (weak) diffusive coupling be-
tween the oscillating elements. In addition, we demonstrated
the possibility of synchronization at larger coupling strength,
quantified the distribution of the rogue amplitudes in terms
of a bimodal probability distribution, and examined the syn-
chronization properties of the system using Kuramoto-type
order parameter diagnostics. Importantly, we also presented
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an approach that enabled us to predict reliably impending
rogue events through a quantitative understanding of (infi-
nite amplitude) solutions and their eigenvector characteristics.
We believe that this approach is suitable for implementing
machine learning techniques for lattice systems, and will ex-
plore this approach in a future publication.

As already mentioned we may think of Eqs. (1) as the
amplitude equations for nearly resonant oscillations in, for
example, binary fluid convection in a moderately large do-
main of length L0, say, where the variables z± represent
the amplitudes of odd and even standing waves. An explicit
derivation of the amplitude equations would necessarily lead
to Eqs. (1) while also recovering the parameter dependence
of the coefficients in these equations but remains to be done
(see [43] for a related steady state problem). We expect that
in larger domains, where the domain length L is inversely
linked to the amplitude parameter ε via L ∼ L0ε

−α , α > 0,
one would in addition obtain spatial derivatives describing
the large scale spatial modulation of these amplitudes as in
Eqs. (4), much as in the standard derivation of the complex
Ginzburg-Landau equation, albeit here for the case with two
nearly degenerate carrier wave numbers. In such an equation,
the coupling coefficient K would quantify the (squared) scale
ratio ε2α 
 1 which is expected to be a small quantity in
the original variables. Additional realizations of Eqs. (4) are
readily envisaged.

Our emphasis on strong resonance between nearly degener-
ate modes differs fundamentally from alternative approaches
based on the nonlinear evolution of modulational instabilities
but connects the rogue wave phenomenon to the dynamics
of systems exhibiting large amplitude sloshing [44,45], and
our system is arguably one of the simplest ones of this type.
We have leveraged the behavior of coupled oscillators with
approximate 1:1 temporal resonance [46] but incorporated
in our approach the possibility that standing oscillations are
themselves unstable to traveling modes (cf. [47]). It is ulti-
mately this destabilization of the standing mode that permits
the large amplitude bursting behavior present in our model.
This is, in fact, precisely the situation that arises in binary
fluid convection with typical binary mixture parameters [48].
The spatial coupling of our bursting elements is designed to
activate scales larger than the length scale L0 of each element
and hence captures the dynamics of large scale systems where
similar destabilization is present [49]. Other one-dimensional
lattices, consisting, for example, of Duffing oscillators with
resonant forcing [50] or optical cavity arrays [51], may also
exhibit localized structures in space-time, but without the
dynamic range admitted by the system studied in the present
work.

Naturally, there exist numerous directions for further study.
While we have given here a proof of principle of localized
dynamics in space-time, it does not escape us that the original
ODE system in Eqs. (1) possesses a substantial wealth of addi-
tional possible states as the relevant parameters vary [33,34].
In this light, a further study of the role of such additional
states, especially those in the invariant subspace at infinite
amplitude, in the dynamics of our diffusively coupled lattice
system is certainly merited, as is a study of the effect of
random coupling strengths between adjacent nodes, be these
quenched or stochastically varying in time [40–42]. Moreover,

the mechanism of extreme event production put forth herein is
not restricted to one-dimensional lattices (as is often the case
for integrable Hamiltonian systems) but generalizes naturally
to higher dimensions, a topic also worth exploring in its own
right. Such studies are currently in progress and will also be
reported in a future publication.
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APPENDIX: THE (ρ, θ, φ) SYSTEM

We consider the (ρ, θ, φ) formulation from [34] in terms
of a rescaled time dτ/dt = 1/ρ. In this formulation Eqs. (1)
become

dρ

dτ
= ρ(2AR + BR(1 + cos2 θ ) + CR sin2 θ cos 2φ)

− 2(λ + �λ cos θ )ρ2,

dθ

dτ
= sin θ (cos θ (−BR + CR cos 2φ) − CI sin 2φ)

− 2�λρ sin θ,

dφ

dτ
= cos θ (BI − CI cos 2φ) − CR sin 2φ + 2�ωρ, (A1)

where the subscripts R and I indicate real and imaginary parts.
In order to determine equilibria for this set of equations, we
recast these equations in terms of the state vector

X = (X1, X2, X3, X4, X5) = (ρ, cos θ, sin θ, cos 2φ, sin 2φ).

With this new state vector, the governing dynamics constitutes
a system with constant coefficients, which implies that its
equilibria can be determined by solving the associated set of
polynomial equations,

−X1
[
2AR + BR

(
1 + X 2

2

) + CRX 2
3 X4

] − 2(λ + �λX2)X 2
1 = 0,

X3[X2(−BR + CRX4) − CI X5] − 2�λX1X3 = 0,

X2(BI − CI X4) − CRX5 + 2�ωX1 = 0,

X 2
2 + X 2

3 − 1 = 0,

X 2
4 + X 2

5 − 1 = 0.

(A2)

Here the last two equations arise from the conditions that
must be satisfied by the transformation of the sine and cosine
functions into the new variables. In this recast form, we have
a fully determined system of polynomial equations for the
five unknowns and we use homotopy methods to determine
all real, finite, and nontrivial solutions of the resulting system
using BERTINI [52].
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