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Fluctuation properties of the eigenfrequencies and scattering matrix of closed and open
unidirectional graphs with chaotic wave dynamics
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We present experimental and numerical results for the fluctuation properties in the eigenfrequency spectra and
of the scattering matrix of closed and open unidirectional quantum graphs, respectively. Unidirectional quantum
graphs, that are composed of bonds connected by reflectionless vertices, were introduced by Akila and Gutkin
[Akila and Gutkin, J. Phys. A: Math. Theor. 48, 345101 (2015)]. The nearest-neighbor spacing distribution
of their eigenvalues was shown to comply with random-matrix theory predictions for typical chaotic systems
with completely violated time-reversal invariance. The occurrence of short periodic orbits confined to a fraction
of the system, that lead in conventional quantum graphs to deviations of the long-range spectral correlations
from the behavior expected for typical chaotic systems, is suppressed in unidirectional ones. Therefore, we
pose the question whether such graphs may serve as a more appropriate model for closed and open chaotic
systems with violated time-reversal invariance than conventional ones. We compare the fluctuation properties
of their eigenvalues and scattering matrix elements and observe especially in the long-range correlations larger
deviations from random-matrix theory predictions for the unidirectional graphs. These are attributed to a loss of
complexity of the underlying dynamic, induced by the unidirectionality.
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I. INTRODUCTION

Quantum graphs [1–7], originally introduced by Pauling
to model organic molecules [8], serve as a model for a large
variety of systems, a few examples being quantum wires
[9,10], optical waveguides [11], and mesoscopic quantum
systems [12,13]. They consist of networks of bonds that are
connected at vertices. The propagation of waves along the
bonds of a quantum graph is governed by the one-dimensional
Schrödinger equation and thus simple. Nevertheless, closed
quantum graphs with incommensurable bond lengths behave
like typical systems with chaotic classical dynamic. The
complexity of their wave dynamics is determined by the in-
commensurability of the bond lengths and by the boundary
conditions imposed on the wave functions entering and exit-
ing a vertex. These are expressed in terms of unitary vertex
matrices [2,6,10,14,15]. The ergodic dynamic results from
the interference of the waves entering and exiting a vertex
through the various bonds connected to it. Indeed, in Ref. [16]
it is proven rigorously that the fluctuation properties in their
eigenvalue spectra are described by the Gaussian ensembles
of random-matrix theory (RMT) [17], in accordance with the
Bohigas-Gianonni-Schmit (BGS) conjecture [18–21]. More-
over, the trace formula obtained in the semiclassical limit for
their spectral density, which is given in terms of a sum over the
associated periodic orbits, is exact [22]. Also the two-point

*dietz@lzu.edu.cn

correlation functions of the scattering (S) matrix describing
chaotic scattering on the corresponding open graphs, obtained
by coupling a graph to its environment through leads, i.e.,
bonds that extend to infinity, were shown to coincide with the
corresponding RMT results [23–27].

The manifestation of characteristics of a classical dynamic
in the spectral properties of the corresponding quantum sys-
tem, like nuclei, atoms, molecules, quantum wires, and dots
or other complex systems [28–36], is well understood and
has been demonstrated, e.g., in numerous theoretical, numeri-
cal, and experimental studies based on billiard systems. The
experimental modeling of quantum billiards [4,20,37,38] is
performed with flat microwave resonators [39–45] and relies
on the equivalence of the associated wave equations. Sim-
ilarly, quantum graphs with Neumann or, generally, δ-type
boundary conditions at the vertices [1–3,5] may be simulated
with microwave networks [46] composed of coaxial cables
coupled by joints at the vertices. These are wave dynamical
systems; however, the BGS conjecture also applies to wave-
chaotic systems [38,47]. It has been confirmed numerically
already in Ref. [2] and experimentally in Refs. [46,48,49] that
the fluctuation properties in the spectra of quantum graphs
with preserved time-reversal (T ) invariance, that is, invariance

with respect to an antiunitary operator T̂ with T̂
2 = 1, and

with violated T invariance coincide with those of random ma-
trices from the Gaussian orthogonal ensemble (GOE) and the
Gaussian unitary ensemble (GUE), respectively. In the follow-
ing we refer to these quantum graphs and microwave networks
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as conventional GOE and GUE graphs, respectively. Another
advantage of microwave networks is that they can be em-
ployed to model experimentally quantum systems that are
invariant with respect to the antiunitary operator where T̂ 2 =
−1 [50–54], whose spectral fluctuations were shown to co-
incide with those of random matrices from the Gaussian
symplectic ensemble (GSE). The properties of open quantum
graphs with wave chaotic dynamics have been investigated in
[55–59].

Yet, there exist time-reversal-invariant quantum systems,
with chaotic classical counterpart, whose spectral properties
do not comply with those predicted by the BGS conjecture;
that is, they do not coincide with those of random matri-
ces from the GOE, but exhibit GUE statistics instead. A
prominent example involves quantum billiards whose shapes
possess a discrete rotational symmetry [60–64]. The univer-
sality class may be effected in the same way by certain
dynamical properties, like unidirectionality of the classical
dynamics which leads to a separation of the phase space into
two ergodic components corresponding to the two distinct
directions of propagation. Examples for billiards with this
unidirectionality property are the constant-width and Monza
billiards whose shapes can be designed such that the clas-
sical dynamics is fully chaotic [65–68]. In both cases the
spectral properties coincide with GUE after extraction of a
one-dimensional family of marginally stable bouncing-ball
orbits that bounce back and forth perpendicularly between two
opposite parts of the boundary.

In Ref. [69] unidirectional quantum graphs constructed
from reflectionless vertices [14] are introduced, in which wave
propagation is only allowed either in one direction or the
opposite one. The nearest-neighbor spacing distribution of the
eigenvalues of such quantum graphs and of nearly unidirec-
tional ones is shown to coincide with that of random matrices
from the GUE if the bond lengths are incommensurable. We
investigate experimentally and also numerically to what extent
the properties of closed unidirectional quantum graphs com-
ply with GUE predictions and whether open ones may serve as
models for quantum chaotic scattering systems with violated
T invariance.

These studies are motivated by the aim to construct per-
fect quantum graphs exhibiting the fluctuation properties of
random matrices from the GUE. Indeed, conventional quan-
tum graphs have the drawback that they exhibit nongeneric
features, originating from the backscattering at the vertices
that leads to a confinement of waves propagating through
the graphs to individual bonds or to a fraction of the graph
[2,70,71] and thus to a nonergodic contribution to the dynam-
ics. Their presence induces deviations from RMT predictions,
since they do not experience the complexity of the underlying
wave dynamics, which results from the scattering into the
bonds attached to the vertices. Note that in the proof of the
equivalence of the spectral properties of quantum graphs and
of random matrices of the Gaussian ensembles provided in
Refs. [16,24–26] such eigenstates were excluded.

Modes which are localized on individual bonds or a frac-
tion of a quantum graph are nonuniversal in the sense that
the associated eigenenergies depend on the lengths of the
associated bonds [53]. Their effect on the spectral properties
is, e.g., comparable to that of bouncing-ball orbits in a sta-

dium billiard [72]. However, they comply with the particular
boundary conditions at the vertices obeyed by the waves in
conventional microwave networks and are thus unavoidable
there. Since backscattering is suppressed in unidirectional
quantum graphs, these nonuniversal effects are expected to
be absent in them. Unidirectionality is achieved by an ap-
propriate choice of the boundary conditions at the vertices
or, equivalently, by the definition of the unitary matrices
controlling the propagation of the waves across the vertices
[14]. Namely, waves may enter a vertex only through part of
the attached bonds and exit through the remaining ones and
backward propagation is prohibited [69]. We would like to
stress that there are other possible constructions for quantum
graphs consisting of reflectionless bonds or exhibiting GUE
statistics [6,14]; however, these either generate a simple wave
dynamics or are not realizable experimentally.

Conventional microwave networks modeling GUE quan-
tum graphs are obtained by introducing a directionality at
one of the vertices [48,49], allowing waves to enter a vertex
through all attached bonds, however, to exit through, respec-
tively, one of them [73]. Thus, despite the presence of one
directional vertex, waves may propagate in both directions
on their bonds, in distinction to unidirectional graphs. Note
that when constructing a microwave network exclusively from
such directional vertices the number of possible paths for
wave propagation will be drastically reduced so that in the
worst case its spectrum consists of just one or a small number
of fundamental eigenfrequencies and their overtones [74].

In a unidirectional quantum graph all vertices are required
to possess the unidirectionality property, whereas in a conven-
tional GUE network only one of the vertices needs to exhibit
directionality. For an understanding of the effect of the com-
plexity of the wave dynamics on the spectral properties we
increased the number of directional vertices while keeping the
total number of vertices fixed, thereby decreasing the number
of itineraries along which waves may propagate through the
graph. This feature is reflected in their length spectra, which
are obtained from the Fourier transform of the spectral density
from wavenumber to length [2,71] and exhibit peaks at the
lengths of periodic orbits.

Deviations in the spectral properties caused by nonuniver-
sal contributions, like by the shortest periodic orbits [72,75],
become in particular visible in the long-range spectral fluctu-
ation properties. We investigate them in terms of the number
variance and the spectral rigidity [17] deduced from the two-
point cluster function and the power spectrum [76–78], which
is given in terms of the spectral form factor, i.e., the Fourier
transform of the two-level cluster function [17]. In order to en-
sure that the deviations observed for the fluctuation properties
in the experimental eigenfrequency spectra are intrinsic and
not due to the fact that the frequency range, where the analogy
between the Helmholtz equation of the coaxial cables and
the one-dimensional Schrödinger equation holds, comprises
only a few hundreds of eigenfrequencies, we, in addition,
performed numerical simulations using several thousands of
eigenvalues of the corresponding quantum graphs.

We briefly introduce in Sec. II quantum graphs, microwave
networks, and the scattering formalism used to describe the
fluctuation properties of the S matrix associated with their
open counterparts. In Sec. III we present results for the spec-
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tral properties of unidirectional quantum graphs and compare
them to those of GUE quantum graphs and graphs containing
directional vertices and in Sec. IV those of the S matrix asso-
ciated with the measurement process. Finally, our findings are
discussed in Sec. V.

II. CONVENTIONAL, PARTLY DIRECTIONAL, AND
UNIDIRECTIONAL QUANTUM GRAPHS AND

MICROWAVE NETWORKS

A quantum graph consists of V vertices i = 1, . . . ,V that
are connected by B bonds. It is characterized by the connectiv-
ity matrix Ĉ with diagonal elements Cii = 0 and off-diagonal
elements |Ci j | = 1 if vertices i and j are connected and Ci j =
0 otherwise, and the lengths of the bonds denoted by Li j . The
wave function components ψi j (x) on these bonds are solutions
of the one-dimensional Schrödinger equation

d2

dx2
ψi j (x) + k2ψi j (x) = 0, (1)

where the coordinate x varies along the bond from x = 0 at
vertex i to x = Li j at vertex j. They are subject to boundary
conditions imposed at vertices i and j that ensure continuity,

ψi j (x = 0) = ϕi, ψi j (x = Li j ) = ϕ j, i < j, (2)

that is, at the vertices i all wave functions entering or exiting
from it have to take the same value ϕi. A further boundary
condition results from the requirement that for closed quan-
tum graphs at each vertex the current should be conserved.
We restrict here to Kirchhoff boundary conditions, which can
be modeled experimentally. They constitute a special case of
δ-type boundary conditions [2,4,5,10],

−
∑
j<i

Cji
d

dx
ψ ji(x = Li j ) +

∑
j>i

Ci j
d

dx
ψi j (x = 0) = λiϕi.

(3)

Based on these boundary conditions at each vertex i a unitary
matrix σ̂

(i)
ji,im with dimension given by its valency vi can be

defined, which reflects the continuation of a wave function
entering it from the vertex m and proceeding towards vertex
j,

σ
(i)
ji,im =

⎛
⎝−δ j,m + 1

vi

⎡
⎣1 + 1 − i�i√

1 + �2
i

⎤
⎦

⎞
⎠Ci jCim,

�i = λi

vik
. (4)

The eigenwavenumbers of a quantum graph with these bound-
ary conditions are determined by solving the equation [2]

det ĥ(k) = 0, (5)

with

hi j (k) =
{−∑

m �=i cos (kLim) Cim
sin (kLim ) − λi

k , i = j

Ci j

sin(kLi j )
, i �= j.

(6)

The components of the associated eigenvectors yield the val-
ues of the wave functions at the vertices i, ϕi, and thus
the eigenfunctions [2]. The case λi = 0, which corresponds

to Neumann boundary conditions, can be modeled with mi-
crowave networks [46]. It has been shown in Refs. [16,26]
that for this case, and generally, for finite values of the λi a
quantum graph exhibits spectral properties of a typical wave-
chaotic system, if the bond lengths are incommensurable. To
realize a quantum graph with induced T invariance, a mag-
netic field is introduced at part or all of the bonds, yielding for
the Schrödinger equation(

−i
d

dx
− Ai j

)2

ψi j (x) + k2ψi j (x) = 0, (7)

with Ai j = −Aji denoting the corresponding magnetic vector
potential. In the numerical simulations we choose Ai j = π/2.
The eigenvalue equation of such a graph is obtained from
Eq. (6) by multiplying the corresponding matrix elements hi j

with a phase factor e−iAi j Li j [2].
Our main objects of interest are quantum graphs and mi-

crowave networks that contain vertices inducing a certain
directionality. For their construction we do not specify bound-
ary conditions. Instead we introduce a unitary matrix Û (i),
which defines the propagation of waves through the vertex
i and imposes local vertex conditions which ensure self-
adjointness, that is, continuity and conservation of the current.
To determine the vertex scattering matrix which meets these
requirements, we proceed as in Ref. [7], yielding

σ̂ (i) = [Û (i) − κ1]−1[1 − κÛ (i)] (8)

with

κ = 1 − k

1 + k
. (9)

The microwave networks are constructed from coaxial mi-
crowave cables (HASCO SMA-RG402) that are coupled by
joints that correspond to the vertices. For all quantum graph
and network designs considered in the present article the
valency of the vertices is four. To realize quantum graphs
with preserved T invariance, we used homemade joints [79].
The corresponding scattering matrix depends on frequency,
however, is well approximated by a type A joint:

ŜJ = 1

2

⎛
⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞
⎟⎠. (10)

Replacing in Eq. (8) Û by ŜJ yields for the vertex matrix σ̂ J of
the corresponding quantum graph that for Neumann boundary
conditions given in Eq. (4) [46], i.e., σ̂ J = ŜJ .

A coaxial cable consists of an inner and a concentric
outer conductor and the space between them is filled ho-
mogeneously with Teflon with an experimentally determined
dielectric constant ε � 2.06. Below the cutoff frequency for
the first transverse electric (TE11) mode only the fundamental
transverse electromagnetic (TEM) mode can propagate be-
tween the conductors [80,81]. The one-dimensional telegraph
equation of these Lecher waves propagating between the inner
and outer conductors along such a coaxial cable is given in
terms of the difference Vi j (x) between the potentials at the
conductors’ surfaces,

d2

dx2
Vi j (x) + ω2ε

c2
Vi j (x) = 0, i < j. (11)
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FIG. 1. Photograph of the microwave network simulating the
quantum graph shown in Fig. 2. Microwave power is coupled in and
out at the antenna ports P1 and P2 marked by 6 and 7 that are coupled
to the vector network analyzer. Unidirectionality is achieved with
hybrids. Furthermore, isolators ISO 01 and ISO 02 are introduced
at the ports, to ensure unidirectionality of the microwaves coupled
in and out of the microwave network. To attain an ensemble of
unidirectional quantum graphs the lengths of two bonds are changed
by using phasers PS 01 and PS 02. Here, the length of one bond is
increased and that of another one is decreased by the same amount,
to keep the spectral density unchanged.

Here, ε is the dielectric constant of the medium, ω = 2π f is
the angular frequency with f the microwave frequency, and
c is the velocity of light. Equation (11) is exact for lossless
coaxial cables, that is, for vanishing Ohmic resistance. At
the vertices Vi j (x) obeys the continuity equation and for con-
ventional joints Eq. (3) with λi = 0. Thus, below the cutoff
frequency the wave equations (11) governing the Vi j (x) are
mathematically identical to the Schrödinger equation (1) of
a quantum graph with Neumann boundary condition at the
vertices [2,4] when identifying

√
ε ω

c of the microwave net-
work with the wavenumber k of the quantum graph. Hence
the eigenfrequencies fi of a microwave network yield the
eigenwavenumbers ki = 2π fi

c of the quantum graph of cor-
responding geometry whose bond lengths are obtained by
multiplying those of the coaxial cables by

√
ε yielding their

optical lengths. The eigenfrequencies of a microwave net-
work are determined experimentally by attaching antennas to
ports marked by 6 and 7 in Fig. 1, which are coupled to a
vector network analyzer (Keysight N5227A), and measuring
the transmission and reflection amplitudes as function of the
microwave frequency f [53]. The microwave networks are
slightly opened through the antennas. Therefore, we employed
in addition to the secular equation (6) the scattering formalism
for open quantum graphs [4,6,82] for the quantization of the
quantum graphs, which is more appropriate for the description
of the experimental situation. The quantum graph is converted
into a scattering system by attaching leads to it at vertices 6
and 7 in Fig. 2 that extend to infinity. These are modeled by the
antenna ports in the corresponding microwave network. The S
matrix describing the scattering process of the waves entering
the graph through these leads from infinity and exiting from it
through the same (reflection) or the other lead (transmission)
is accounted for by a (2B × 2B)-dimensional bond S matrix

FIG. 2. Schematic view of the unidirectional quantum graph. The
direction of wave propagation at each vertex is indicated by arrows.
An ensemble of such graphs is realized by increasing the length
of one bond and decreasing it at another one by the same amount
(marked by PS 01 and PS 02). The quantum graph is attached to
leads at the vertices marked by 6 and 7.

ŜB(k) [4,82], where B denotes the number of bonds. Within
this scattering approach the eigenvalues of the closed quantum
graph are given by the solutions of the secular equation [2]

ζB(k) = det[1 − ŜB(k)] = 0, (12)

where

ŜB(k) = D̂(k)T̂ (13)

in the 2B space of directed bonds, and

D̂i j,nm = δi,nδ j,meikLi j , (14)

T̂ji,nm = δn,iCj,iCn,mσ̂
(i)
ji,nm. (15)

Applying the expansion

ln det[1 − ŜB(k)] = −
∞∑

p=1

1

p
trŜp

B(k) (16)

yields that ln ζB(k) equals a sum over terms whose phases
equal klp, with lp = ∑p

n=1 Linin+1 , in ∈ {1, 2, . . . ,V}, ip+1 =
i1 denoting the lengths of the possible loops along p succes-
sive connected vertices through the graph [2], implying that
the secular equation provides a direct link between the spec-
tral properties of a quantum graph and the complexity of its
dynamics [6]. Indeed, starting from the secular equation (12),
an exact trace formula has been derived in Ref. [2] for the
spectral density of quantum graphs constructed from vertices
with δ-type boundary conditions (3),

ρfluc(k) = 1

π

∑
p∈Pn

lp cos (r[klp + πμp])

er(npγp/2)
(17)

with

e−npγp/2 =
μp∏

s=1

∣∣∣∣
(

1 − 2

vs

)∣∣∣∣
np−μp∏

s=1

∣∣∣∣ 2

vs

∣∣∣∣. (18)
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The sum is over periodic orbits, that emerge from a repeated
looping of the primitive periodic orbits p ∈ Pn consisting of
np vertices, with n = rnp denoting the period after r repeti-
tions. The lengths lp of the primitive periodic orbits are given
by the sum over the lengths of the bonds that connect its np

vertices and μp denotes the number of vertices with vi � 2,
where backscattering occurs. In Ref. [6] trace formulas are de-
rived beyond the orthogonal and unitary symmetry class and
universality of the spectral properties and thus applicability of
RMT is proven based on the semiclassical and supersymmetry
approach for incommensurable quantum graphs. Agreement
of the spectral properties of such quantum graphs with RMT
predictions originates from the ergodicity of the phases of the
matrix in Eq. (14) that constitute those in the trace formula of
the spectral density and spectral functions like, e.g., the two-
point correlation function, deduced from it. We will provide
examples, where phase ergodicity is destroyed and we ascribe
deviations from RMT predictions to this, as outlined below.

We performed experiments with the unidirectional mi-
crowave network shown in Fig. 1 and numerical computations
for the corresponding quantum graph shown in Fig. 2 and also
with variants of them, obtained by using joints that do not have
the directionality property indicated in Fig. 2. The valency of
all joints in Figs. 1 and 2 equals four, except for the vertices
where the antennas (respectively leads) are attached. We real-
ize a conventional microwave network modeling the spectral
properties and scattering properties of a quantum graph with
violated T invariance by replacing in the corresponding GOE
network one of the type A joints in Eq. (10) by two coupled
circulators (Pasternack PE8403). As illustrated in Fig. 3, the
transmission and reflection spectra of a coupled circulator are
well described by a type B joint,

ŜC =

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠, (19)

in a finite frequency range 7 � f � 14 GHz. The vertex scat-
tering matrix of the corresponding quantum graph is obtained
by replacing Û in Eq. (8) by ŜC , yielding

σ̂C =

⎛
⎜⎜⎝

−κ κ2 κ 1
1 −κ κ2 κ

κ 1 −κ κ2

κ2 κ 1 −κ

⎞
⎟⎟⎠. (20)

Thus, the vertex matrix of the corresponding quantum graph
depends on k, and approximates the scattering matrix of the
microwave network well only for values of k close to one,
where k can be rescaled according to the experimental con-
ditions. Yet, it has been shown experimentally [48] that a
microwave network containing a circulator serves as a good
model for quantum graphs in which T -invariance violation
is induced by introducing a magnetic field in the bonds
corresponding to the coaxial cables that are attached to the
circulator [see Eq. (7)]. Accordingly, we performed numer-
ical computations with such quantum graphs and compared
them with the experimental results for the GUE microwave
networks with one type B joint. For the realization of the uni-
directional graph shown in Fig. 2 we use hybrids (Pasternack
PE2CP11602052). As shown in Fig. 4 they are well described

FIG. 3. Transmission spectra |Sab| of the coupled circulators for
b = 1, a = 2 and b = 2, a = 1 (black line and crosses), b = 2, a = 3
and b = 3, a = 2 (green dots and line), b = 3, a = 4 and b = 4, a =
3 (orange dots and line), b = 4, a = 1 and b = 1, a = 4 (red line and
dots), b = 1, a = 3, b = 3, a = 1 (violet crosses and line) and b =
2, a = 4 and b = 4, a = 2 (blue line and crosses). Since reflection
is suppressed at all vertices, the spectra |Saa| are not shown. Thus, in
the frequency range [7,15] GHz the transmission and reflection prop-
erties of the coupled circulators are well described by the scattering
matrix Eq. (19).

by the scattering matrix (type C joint)

Ŝ
H = 1√

2

⎛
⎜⎝

0 0 1 1
0 0 −1 1
1 −1 0 0
1 1 0 0

⎞
⎟⎠. (21)

The vertex scattering matrix of the corresponding quantum
graph coincides with this scattering matrix; i.e., σ̂ H = ŜH .

FIG. 4. Transmission and reflection spectra |Sab| and |Saa| of the
hybrid for a = 1, b = 2 (black crosses and plus), a = 2, b = 3 (red
dots and line), a = 3, b = 4 (blue crosses and line), a = 4, b = 1 and
a = 1, b = 4 (red dots and line), a = 1, b = 3 (violet dots and line),
and a = 2, b = 4 (green dots and crosses). Since |Sab| = |Sba| and
|Saa| � |Sbb| not all spectra are shown. Thus, the transmission and
reflection properties of the hybrids are well captured by the vertex
matrix in Eq. (21).
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Thus, the wave equations of microwave networks with hy-
brids as joints coincide with that of the quantum graph with
corresponding geometry and vertex matrix given in Eq. (21).

The bond S matrix of the microwave network depicted in
Fig. 1 without the isolators ISO 01 and ISO 02, or the quantum
graph shown schematically in Fig. 2, can be brought to a
block-diagonal form [69]

ŜB(k) =
(

Ŝ+
B (k) 0̂

0̂ Ŝ−
B (k)

)
, (22)

where each block matrix accounts for one direction of flow.
The solutions of Eq. (12) coincide for Ŝ±

B (k); that is, the
eigenvalues of a unidirectional graph allowing both directions
of flow are pairwise degenerate.

The total optical length of the coaxial cables used in all
experiments and the geometric lengths of the bonds in the
corresponding quantum graphs equaled L � 4.418 m. How-
ever, the optical lengths of the conventional joints, coupled
circulators, and hybrids differ considerably from each other.
Accordingly, the total optical lengths of the microwave net-
works and thus the average spectral density ρ̄(k), which is
given by Weyl’s formula,

ρ̄( f ) = 2L
c

, (23)

changes when replacing a joint by one with differing transmis-
sion properties. In the numerical simulations we accounted for
these changes of the bond lengths.

An ensemble of quantum graphs and microwave networks
was realized as in Refs. [49,53] by varying the lengths of two
bonds in Nmax = 50 steps by an increment �l = 0.83 mm. In
the microwave networks this is done with two phase shifters
(ATM P1507D), denoted by PS 01 and PS 02 in Fig. 1.
A phase shift �ϕ induces a k-dependent change �l̃ of the
length,

�ϕ = k�l̃ = 2πν

c
�l̃. (24)

In order to keep the spectral density fixed, the length of one
bond was increased and that of the other one was decreased
by the same amount.

The measurement of spectra for an ensemble of graphs
facilitates the identification of the eigenfrequencies fi of the
microwave networks. These correspond to the positions of
the minima exhibited by the reflection amplitude |S11( f )|
when measured as a function of the microwave frequency f .
They are broadened because of the unavoidable absorption
of microwaves in the coaxial cables and thus may overlap,
which complicates the identification of eigenfrequencies. The
problem of absorption can be circumvented in experiments
with flat, cylindrical microwave resonators simulating quan-
tum billiards [39,40,42,83] by using superconducting cavities
[40,47,84]. This is not possible with microwave networks,
because the coaxial cables contain Teflon. In the experiments
with the GUE graphs about 6% of the number of levels
predicted by Weyl’s law were missing. As mentioned above,
the eigenfrequencies of a unidirectional graph admitting both
directions, that is, incoming waves at ports 1 and 2 or incom-
ing waves at ports 3 and 4 of the hybrid shown in Fig. 4,
are pairwise degenerate. In order to avoid these degeneracies,

which hamper the identification of the eigenfrequencies, we
added isolators (Ditom DMI6018), denoted by ISO 01 and
ISO 02 in Fig. 1, to the ports marked by 6 and 7 so that the
microwaves coupled in and out follow one direction of the
unidirectional flow. Due to the halved resonance density, we
were able to detect all eigenfrequencies in the frequency range
[6,12] GHz. Here, we exploited the level dynamic [53].

Similarly, the fluctuation properties of the bond scattering
matrix (13) are expected to comply with those of quantum
chaotic scattering systems. It, indeed, is demonstrated in
Refs. [24–26] that the correlation functions of the S-matrix
elements of open quantum graphs coincide with the corre-
sponding RMT results [23,27] for quantum chaotic scattering
systems. Actually, the S matrix describing this scattering pro-
cess can be brought to the form

ŜV (k) = 1 − 2πŴ T (ĥ(k) + iπŴŴ T )−1Ŵ , (25)

which is similar to that derived on the basis of the S-matrix
formalism for compound nucleus reactions [85]. That S ma-
trix, in fact, has been shown to be mathematically identical
to that for microwave resonators [86]. This analogy has been
employed in a sequence of experiments [87–92] to investigate
universal properties of the S matrix for compound-nucleus re-
actions and, generally, for quantum scattering processes with
intrinsic chaotic dynamics, that is, to verify analytical results
derived on the basis of the supersymmetry and the RMT
approach [91,93–95]. In Sec. IV we review our results on
the fluctuation properties of the S matrix of the unidirectional
graph shown in Fig. 2 and of the microwave network with the
same geometry, but constructed from four type A and one type
B joints, and compare them to those deduced from the RMT
scattering approach. Furthermore, we reduced the complexity
of the dynamics of the microwave network by replacing an
increasing number of type A joints by type B joints.

III. SPECTRAL PROPERTIES OF UNIDIRECTIONAL
MICROWAVE NETWORKS

We computed fluctuation properties in the eigenfrequency
spectra of the unidirectional microwave network shown in
Fig. 1 and of the corresponding unidirectional graph shown
in Fig. 2, constructed from type C vertices with vertex matrix
given in Eq. (21) and of the GUE microwave network of the
same geometry, where the joint marked by 2 in Fig. 2 was
replaced by a type B joint and the others by conventional type
A ones with the scattering matrices given in Eqs. (10) and (19),
respectively. For its numerical simulation we used a quantum
graph with type A vertices, governed by the Schrödinger equa-
tion (7) along the bonds that are attached to the vertex marked
by 2 in Fig. 2 and by Eq. (1) otherwise. The spectral properties
were compared with RMT results for random matrices from
the GUE. For this we removed system-specific properties by
unfolding the eigenfrequencies fn to mean spacing unity, εn =
ρ̄ fn, where the average spectral density is given in Eq. (23).

We analyzed short-range correlations in the eigenvalue
spectra of the quantum graphs and microwave networks
in terms of the nearest-neighbor spacing distribution P(s)
of adjacent spacings si = εi+1 − εi and its cumulant I (s) =∫ s

0 ds′P(s′), which has the advantage that it does not depend
on the binning size of the histograms yielding P(s). Another
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measure for short-range correlations is the distribution of the
ratios [96,97] of consecutive spacings between next-nearest
neighbors, r j = ε j+1−ε j

ε j−ε j−1
. Ratios are dimensionless so the

nonunfolded eigenvalues can be used [96–98]. Furthermore,
we considered the variance �2(L) = 〈(N (L) − 〈N (L)〉)2〉 of
the number of unfolded eigenvalues N (L) in an interval of
length L, and the rigidity �3(L) = 〈mina,b

∫ e+L/2
e−L/2 de[N (e) −

a − be]2〉 as measures for long-range correlations. Here, 〈·〉
denotes the average over an ensemble of random matrices
or of microwave-network or quantum-graph realizations. Fur-
thermore, we analyzed the power spectrum which is given
in terms of the Fourier transform of the deviation of the qth
nearest-neighbor spacing from its mean value q, δq = εq+1 −
ε1 − q, from q to τ ,

s(τ ) =
〈∣∣∣∣∣ 1√

N

N−1∑
q=0

δq exp (−2π iτq)

∣∣∣∣∣
2〉

, (26)

for a sequence of N levels, where 0 � τ � 1. It exhibits for
τ 
 1 a power law dependence 〈s(τ )〉 ∝ τ−α [76,77], where
for regular systems α = 2 and for chaotic ones α = 1 inde-
pendently of whether T invariance is preserved or not [34,99–
103]. It was studied experimentally for microwave networks
with preserved and violated T invariance and with symplectic
symmetry [49,54].

In Fig. 5 we compare the spectral properties of the
unidirectional microwave networks (top), obtained from 50
sequences of 136 eigenfrequencies (red solid lines), and of
the GUE microwave network (bottom), obtained from 17 se-
quences consisting of 197 eigenfrequencies (red solid lines),
with those of the unidirectional and GUE quantum graph (blue
dashed lines), where we took into account up to 6500 eigen-
values to check the effect of the lengths of the spectra on the
spectral properties. The numerical and experimental results
agree well for the unidirectional graph, whereas for the GUE
graph they agree well after extraction of 6% of the eigenval-
ues. The latter are compared to the analytical results for GUE
sequences [49,104] with 6% missing levels (green dash-dotted
lines), the former to the predictions for the GUE (black dash-
dotted lines). For both cases the short-range correlations agree
well with the corresponding RMT results. However, for the
unidirectional graph, deviations from the GUE curves (black
dash-dotted lines) are observed in the number variance already
around L ≈ 1.5 and for the rigidity around L = 4, whereas for
the GUE graph, deviations from the GUE curve accounting for
missing levels (green dash-dotted line) are observed around
L = 3–4, and around L = 9 for the numerical results (blue
dashed line) only, respectively. These deviations cannot result
from too short sequences, because the numerical results show
the same deviations as the experimental graphs. For a better
understanding of their origin we computed 6500 eigenvalues
for the GOE graph and graphs with varying number of joints
described by the vertex matrix in Eq. (19) and by Eq. (10)
otherwise, to simulate microwave networks of corresponding
geometry. We would like to emphasize that these numerical
simulations only provide an approximation for a quantum
graph with the vertices described by the corresponding vertex
scattering matrix in Eq. (20). Yet, our intention is not to
give an exact theoretical description but to obtain insight into

FIG. 5. Comparison of the spectral properties of the experi-
mentally (red solid lines) and the numerically (blue dashed lines)
obtained results for the unidirectional quantum graph (top), and for
the microwave network constructed from one type A and conven-
tional type B joints otherwise and the GUE quantum graph (bottom).
The green dash-dotted lines in the latter show the analytical result for
incomplete GUE spectra with 6% missing levels. The black dashed
and dash-dotted lines exhibit the results for random matrices from
the GOE and GUE, respectively.

the effect of type B joints on the spectral properties of the
microwave networks.

In Fig. 6 we show the spectral properties for the GOE
graph (orange solid lines), and for graphs with one (red), two
(green), three (blue), and four (violet) type B joints described
by Eq. (19) and by type A joints with Eq. (10), otherwise.
Furthermore, we show again the numerical result for the unidi-
rectional graph (turquoise histogram and circles). The largest
deviations from the GUE results are observed for the latter.
In the other cases the spectral properties approach those of the
unidirectional one with increasing number of type B joints that
introduce a directionality as illustrated in Fig. 3. Correspond-
ing results for the power spectrum are shown in Figs. 7 and
8. Large deviations of the experimental and numerical results
from the RMT prediction are observed for the unidirectional
graph and for an increasing number of type B joints. The ratio
distributions, which provide another measure for short-range
correlations, are exhibited in Fig. 9. They agree well with the
GUE results for the unidirectional and the GUE graphs.
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FIG. 6. Comparison of the spectral properties of 6500 numeri-
cally obtained eigenvalues of the nonunidirectional quantum graph
(orange) with five conventional joints, graphs with one (red), two
(green), three (blue), and four (violet) type B joints and conventional
type A joints otherwise, and the unidirectional (turquoise) quantum
graph with five type C joints, respectively. The black dashed and
dash-dotted lines exhibit the results for random matrices from the
GOE and GUE, respectively.

In summary, agreement with GUE predictions worsens
with increasing number of type B joints characterized by the
vertex matrix in Eq. (19), which induces a directionality and
the spectral properties approach those of the unidirectional
graph. This may be attributed to an increasing loss of com-
plexity of the wave dynamics. Indeed, when replacing all
joints in Fig. 2 by vertices governed by Eq. (19) there are only
three itineraries along which waves may propagate through
the network of bonds. Accordingly, the number of primitive
periodic orbits contributing to the trace formula deduced from
the secular equation (12) decreases with increasing number
of type B joints, thus yielding a deprivation of ergodicity
of the phases entering it and the two-point correlation func-
tion deduced from it, which yields the number variance and
rigidity [6]. As a consequence the eigenfrequency spectrum is
reduced to a small number of fundamental modes for four and
five type B joints, as indicated by the dominant peak in the
nearest-neighbor spacing distribution for four type B joints,

FIG. 7. Comparison of the power spectrum of the experimentally
(red) and the numerically (blue) obtained results for the unidirec-
tional (left) quantum graph, and the graph with one type B joint
and GUE graph of corresponding geometry (right). The green dash-
dotted line in the right part shows the analytical result for the
incomplete GUE spectra with 6% missing levels. The black solid and
dashed lines exhibit the results for random matrices from the GOE
and GUE, respectively.

FIG. 8. Comparison of the power spectrum obtained from the
6500 numerically computed eigenvalues of the GOE graph (orange)
with five conventional joints, graphs with one (red), two (green),
three (blue), and four (violet) type B joints and conventional type
A joints otherwise, and the unidirectional (turquoise) quantum graph
with five type C joints, respectively. The black solid and dashed lines
exhibit the results for random matrices from the GOE and GUE,
respectively.

which implies that the spectrum contains a dominant sequence
of equidistant eigenfrequencies.

To corroborate this conclusion we analyzed length spectra.
The upper part of Fig. 10 shows the length spectrum obtained
from the eigenfrequencies of the unidirectional microwave
network (green solid lines) in comparison to that obtained
from the first 400 eigenvalues of the corresponding quantum
graph (red line) and of the GOE graph. The lower part shows
the length spectra of the GOE and unidirectional graphs ob-
tained for 6500 eigenvalues and the results deduced from the
semiclassical trace formula in Eq. (17) for periodic orbits

FIG. 9. Comparison of the ratio distributions (upper panels) and
the cumulative ratio distributions (lower parts) of the experimentally
(red) and the numerically (blue) obtained results for the unidirec-
tional (left) and GUE (right) quantum graph. The black solid and
dash-dotted lines exhibit the results for random matrices from the
GOE and GUE, respectively.
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FIG. 10. Length spectra σ |ρ̃(l )| obtained from the unfolded
eigenfrequencies of the microwave network shown in Fig. 1 (green),
the GOE quantum graph with conventional joints (black lines) and
the unidirectional quantum graph (red solid and dashed lines) shown
in Fig. 2, for 400 and 6500 numerically obtained eigenvalues with
σ = 1 and σ = −1, respectively, in comparison to the length spectra
with σ = −1 deduced from the trace formula for periodic orbits of
period np = 2 (magenta dashed line) and np = 3 (turquoise dashed
line), respectively.

bouncing back and forth on individual bonds with np = 2
(magenta dashed line) and of periodic orbits along loops
consisting of np = 3 (turquoise dashed line) vertices. Com-
paring the length spectra shows that periodic orbits confined
to a single bond are missing in the unidirectional graph and
microwave network that are held responsible for the devi-
ations from RMT predictions [71]. Therefore, we expected
that agreement of the spectral properties of unidirectional
graphs with the RMT predictions is better than for conven-
tional graphs. However, due to the unidirectionality also some
periodic orbits with larger np values may not occur, as illus-
trated for np = 3 in Fig. 10 implying a loss of complexity
of the wave dynamics in the graph [14]. From our findings
for the spectral properties we may conclude that unidirec-

FIG. 11. Length spectra, from bottom to top of the GOE quantum
graph with five conventional joints (black line) and of the graphs with
one (red), two (green), three (magenta), and four (turquoise) type B
joints and conventional type A joints otherwise.

FIG. 12. Autocorrelation functions deduced from the measured
reflection (left) and transmission (right) spectra of the unidirectional
microwave network (red dots and lines) shown in Fig. 1 in compari-
son to the RMT result (black dots and lines) for τabs = 2.

tional graphs may not generate a wave dynamics of sufficient
complexity in the quantum graphs, in the sense that agree-
ment with GUE statistics is only observed in the short-range
correlations. Deviations of correlations between the eigen-
frequencies or eigenvalues from GUE behavior are observed
already at distances larger than a few mean spacings L.

To illustrate the decrease of complexity, i.e., of the number
of possible itineraries of waves in networks constructed from
an increasing number of vertices governed by Eq. (19), we
compare in Fig. 11 length spectra of the graphs with the geom-
etry shown in Fig. 2 with five conventional type A joints (black
line), and with one (red), two (green), three (magenta), and
four (turquoise) type B joints and conventional type A joints
otherwise. It is clearly visible that with increasing number
of joints that induce a directionality, the number of periodic
orbits decreases considerably, implying that the complexity of
the wave dynamics decreases.

IV. FLUCTUATION PROPERTIES
OF THE SCATTERING MATRIX

The S-matrix approach [85] used for the derivation of
RMT-based analytical results for the fluctuation properties
of the S matrix associated with a quantum-chaotic scatter-
ing system [23,27,91,93–95] was developed by Mahaux and
Weidenmüller in the context of compound nuclear reactions,

FIG. 13. Left: Distribution of the measured reflection amplitudes
|S11| (black) and |S22| (red) of the microwave network shown in
Fig. 1 compared to those obtained for the corresponding quantum
graph shown in Fig. 2 (green and blue lines, respectively). Right:
Same for the transmission spectra |S12| and |S21|. The solid black
line shows the bivariate Gaussian distribution expected for perfect
coupling to the continuum in the Ericson region of strongly overlap-
ping resonances.
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FIG. 14. Left: Distribution of the measured reflection amplitudes
|S11| (black) and |S22| (red) of the microwave network shown in Fig. 1
with no isolators compared to those obtained for the corresponding
quantum graph shown in Fig. 2 (green and blue lines, respectively).
Right: Same for the transmission spectra |S12| and |S21|. The solid
black line shows the bivariate Gaussian distribution expected for
perfect coupling to the continuum in the Ericson region of strongly
overlapping resonances.

yielding

Ŝ(k)ba = δba − 2π i
N∑

μ,ν=1

Ŵ ∗
μb[(k1 − Ĥ eff )−1]μνŴνa. (27)

We apply it to microwave networks and open quantum
graphs. In a microwave network a and b refer to the antenna
channels and Ĥ eff = Ĥ − iπŴŴ † with Ĥ referring to the k-
independent RMT Hamiltonian and (k1 − Ĥ ) simulating the
spectral fluctuation properties of the closed quantum graph,
i.e., of ĥ(k) in Eq. (6). For a quantum graph with preserved
or violated T invariance Ĥ is replaced by a random (N × N)-
dimensional matrix from the GOE or GUE, respectively. The
matrix elements Wμa and Wμb, μ = 1, . . . , N , describe the
coupling of the antenna modes to the microwave networks
or of the leads to the quantum graph and may be chosen
as real Gaussian distributed numbers [105,106]. Absorption
at the joints or in the coaxial cables is modeled [91,93] by
� fictitious channels Wμc. Since the frequency-averaged S-
matrix was diagonal in all microwave network realizations,
〈Sba〉 = 〈Saa〉δba, direct processes are negligible. This property
is accounted for in the RMT model through the orthogonal-
ity property

∑N
μ=1 WμcWμc′ = Nw2

cδcc′ . The eigenvectors of
a real symmetric random matrix from the GOE fulfill these
properties. Accordingly we chose � of them as column vec-

FIG. 15. Left: Distribution of the measured reflection amplitudes
|S11| (black) and |S22| (red) of the microwave network shown in
Fig. 1 with no isolators compared to those obtained from the RMT
model in Eq. (27) with τabs = 2 (turquoise line). Right: Same for the
transmission spectra |S12| and |S21|. The solid black line shows the
bivariate Gaussian distribution expected for perfect coupling to the
continuum in the Ericson region of strongly overlapping resonances.

FIG. 16. Same as Fig. 15 for the phases of the S-matrix elements.

tors of Ŵ . The quantities wi are the input parameters of the
RMT model in Eq. (27) through the transmission coefficients

Tc = 1 − |〈Scc〉|2, (28)

which provide a measure for the unitarity deficit of the average

S matrix 〈S〉 and are related to w2
c via Tc = 4π2w2

c /d
(1+π2w2

c /d )2 with

d =
√

2
N 〈H2

μμ〉 π
N denoting the mean resonance spacing.

The transmission coefficients Ta and Tb associated with
antennas a and b are determined from the measured re-
flection spectra yielding with Eq. (28) Ta,b � 0.95 for all
measurements, whereas those related to the fictitious chan-
nels accounted for through the parameter τabs = �Tc [93]
are determined by fitting analytical results for the two-point
correlation function of the S-matrix elements,

Cab(ε) = 〈Sab( f ) S∗
ab( f + ε)〉 − |〈Sab( f )〉|2, (29)

to the corresponding experimentally determined ones. These
are derived in Refs. [23,27] for the GOE and GUE, respec-
tively, and for the case of partial T violation in Ref. [93]. We
performed for the unidirectional microwave network measure-
ments of the transmission and reflection spectra with isolators
added to the ports, which allow only one direction of wave
propagation, and without them, yielding the S matrix for a
superposition of the two possible directions of propagation. A
fit to the associated two-point correlation functions yielded for
both cases τabs = 2, whereas for the microwave network with
one type B joint best agreement between the experimental and
RMT results was achieved for τabs = 4. When increasing the

FIG. 17. Left: Distribution of the measured reflection amplitudes
|S11| of a microwave network with the same geometry as schemati-
cally shown in Fig. 2 with one (black), four (red), and five (green)
type B joints and the remainder from conventional type A joints.
The dashed lines show the numerical results for the corresponding
graphs. Right: Same for the transmission spectra |S12|. For the case
with four type B joints we also show |S21| (violet), because it differs
from |S12| whereas in the other cases the transmission spectra are
similar. The solid black line shows the bivariate Gaussian distribution
expected for perfect coupling to the continuum in the Ericson region
of strongly overlapping resonances.
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FIG. 18. Autocorrelation functions deduced from the measured
reflection (left) and transmission (right) spectra of the GUE mi-
crowave network (red) with the geometry shown in Fig. 2 with four
conventional type A joints and one type B joint in comparison to the
RMT result for τabs = 4.

number of type B joints, agreement with RMT predictions
becomes worse. The autocorrelation functions obtained from
the experimental data (red) are compared in Fig. 12 for the
unidirectional microwave network to the corresponding RMT
results. In order to verify the experimental results we also
computed the S matrix numerically based on Eq. (12) and
compared the results of its fluctuation properties to those
obtained from the experimental data. To get a good descrip-
tion we had to take into account the absorption present in
microwave networks. For this it was sufficient to add a small
imaginary part to the wavenumber k in Eq. (14), thus yielding
a subunitary bond scattering matrix.

In Fig. 13 we compare the results obtained for the
reflection-scattering (left) and transmission-scattering (right)
amplitudes for the unidirectional quantum graphs admitting
only one direction of wave propagation, respectively, to those
obtained with the microwave network shown in Fig. 1. We
attribute small deviations observed in the right panel for large
values of the transmission-scattering amplitudes to the effect
of the isolators which cannot fully avoid wave propagation in
the other direction. In Fig. 14 we compare the results obtained
for the reflection-scattering (left) and transmission-scattering
(right) amplitudes for the unidirectional quantum graph ad-
mitting both directions of wave propagation to those obtained
with the microwave network shown in Fig. 1 after removal

FIG. 19. Left: Distribution of the measured reflection amplitudes
|S11| of a microwave network with the same geometry as schemati-
cally shown in Fig. 2 with one (black), four (red), and five (green)
type B joints and type A joints otherwise. The dashed turquoise lines
show the RMT results for τabs = 4. Right: Same for the transmission
spectra |S12|. For the case with four type B joints we also show
|S21| (violet), because it differs from |S12| whereas in the other cases
the transmission spectra are similar. The solid black line shows the
bivariate Gaussian distribution expected for perfect coupling to the
continuum in the Ericson region of strongly overlapping resonances.

FIG. 20. Same as Fig. 19 for the phases of the S-matrix elements
for the case with four conventional type A joints and one type B joint.

of the isolators ISO 01 and ISO 02. Agreement between the
numerical and experimental results is good after adding a
small imaginary part to the wavenumber which has the same
size as in the case where only one direction of propagation is
possible. We may conclude that this modeling of absorption
is appropriate. In Figs. 15 and 16 we compare the distribu-
tions for the modulus and phase of the diagonal (left) and
off-diagonal (right) S-matrix elements with the RMT results
for the GUE where we used the values of the transmission
coefficients and of τabs obtained from Eq. (28) and the fit to
the correlation functions in Eq. (29). Agreement is best for the
distribution of the modulus of the diagonal elements, whereas
clear deviations are observed for the off-diagonal elements.
Other choices of the values for T1,2 and τabs yielded similar de-
viations. For the case with isolators, that is, with one allowed
direction of propagation, we did not find any agreement with
RMT results for the GUE. We conclude that the fluctuation
properties of the S matrix associated with open unidirectional
quantum graphs do not follow RMT predictions for typical
quantum chaotic scattering systems. In order to demonstrate
that these deviations are due to the unidirectionality, that is,
they may be attributed to a loss of complexity due to the
associated restrictions on the possible directions of wave prop-
agation in the graphs (respectively networks), we investigated
the fluctuation properties of open graphs with the geometry in
Fig. 2, constructed from conventional type A and type B joints
governed by Eqs. (10) and (19), respectively. In Fig. 17 we
compare the distributions of the modulus of the diagonal (left)
and off-diagonal (right) S-matrix elements for one (black),
four (red), and five (green) type B joints, obtained from the
experimental (solid lines) and numerical data (dashed lines).
We find best agreement with RMT predictions for the GUE
graph, that is, for the case with four conventional type A
joints and one type B joint. The good agreement between
the experimental and numerical distributions demonstrates
that the numerical graphs provide a good description of the
corresponding microwave network. Results for the correlation
functions and the distributions of modulus and phase of the
diagonal and off-diagonal S-matrix elements are shown in
Figs. 18–20.

V. CONCLUSIONS

We analyze both experimentally and numerically the fluc-
tuation properties in the eigenfrequency spectra and of the S
matrix of closed and open unidirectional quantum graphs and
compare them to those of conventional GUE graphs of the
same geometry. Both types of graphs were constructed from
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vertices of valency four, as illustrated in Fig. 2 for the uni-
directional one. Unidirectionality is experimentally achieved
with hybrids that are described by the vertex matrix given
in Eq. (21) whereas microwave networks modeling conven-
tional GUE quantum graphs are constructed from one pair
of coupled circulators governed by Eq. (19) and conventional
joints characterized by Eq. (10) otherwise. We demonstrate
that conventional closed and open GUE graphs exhibit the
spectral properties and fluctuations of the S matrix expected
for typical chaotic systems with violated time-reversal in-
variance, except for deviations in the long-range correlations
visible, e.g., for the number variance for level distances larger
than L = 3–4 mean spacings. With increasing number of type
B joints and for the unidirectional graph, for which all joints
need to be replaced by type C vertices, deviations of the same
size as for the conventional GUE graphs are observed in the
long-range spectral properties, however, already at distances
of L ≈ 1.5 mean spacings. The short-range correlations of
the unidirectional and the GUE graph and of the graphs with
less than four type B joints agree well with those of random
matrices from the GUE. Yet, the distributions of the S-matrix
elements of the corresponding open unidirectional graph and
graphs with four type B joints clearly deviate from those
of a typical quantum chaotic scattering system. We attribute
these observations to the constraints arising from the required
directionality and unidirectionality, respectively, which lead to
a restriction of the number of possible itineraries through the
graph and thus to a loss of complexity of the wave dynamics
of the quantum graph. Note that in Ref. [49] GUE graphs

were modeled experimentally by attaching a circulator to each
conventional joint, so that directionality was imposed only at
a part of the bonds attached to them. Still, contributions due to
backscattering at vertices were negligible as compared to the
impact of missing levels on the spectral properties. Indeed,
perfect agreement with missing level statistics was found. We
constructed the conventional GUE graph with one type B joint
such that the graphs obtained from it by increasing the number
of directional vertices simulate the situation of unidirectional
graphs as closely as possible in order to corroborate our
supposition that deviations from GUE statistics observed in
the long-range correlations of unidirectional quantum graphs
may be attributed to a loss of complexity. Note that Ref. [69]
focuses on short-range correlations, and analytical results are
derived for the nearest-neighbor spacing distributions that
were shown to provide a very good description for unidirec-
tional and nearly unidirectional quantum graphs. We also find
good agreement for the short-range correlations and devia-
tions in the long-range correlations for distances larger than
L ≈ 1.5 mean spacings, so that our findings are not contradic-
tory to theirs.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 11775100, No.
11961131009, and No. 12047501. B.D. and W.Z. acknowl-
edge financial support from the Institute for Basic Science in
Korea through the Project No. IBS-R024-D1. B.D. thanks Uzy
Smilansky for fruitful discussions and his constructive advice.

[1] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
[2] T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).
[3] P. Pakonski, K. Zyczkowski, and M. Kus, J. Phys. A: Math.

Gen. 34, 9303 (2001).
[4] C. Texier and G. Montambaux, J. Phys. A: Math. Gen. 34,

10307 (2001).
[5] P. Kuchment, Waves Random Media 14, S107 (2004).
[6] S. Gnutzmann and U. Smilansky, Adv. Phys. 55, 527 (2006).
[7] G. Berkolaiko and P. Kuchment, Introduction to Quantum

Graphs (American Mathematical Society, Providence, RI,
2013).

[8] L. Pauling, J. Chem. Phys. 4, 673 (1936).
[9] J. A. Sánchez-Gil, V. Freilikher, I. Yurkevich,

and A. A. Maradudin, Phys. Rev. Lett. 80, 948
(1998).

[10] V. Kostrykin and R. Schrader, J. Phys. A: Math. Gen. 32, 595
(1999).

[11] S. W. L. R. Mittra, Analytical Techniques in the Theory of
Guided Waves (Macmillan, New York, 1971).

[12] D. Kowal, U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys.
Rev. B 42, 9009 (1990).

[13] Y. Imry, Introduction to Mesoscopic Systems (Oxford Univer-
sity Press, Oxford, UK, 1996).

[14] J. M. Harrison, U. Smilansky, and B. Winn, J. Phys. A: Math.
Theor. 40, 14181 (2007).

[15] M. Ławniczak, J. Lipovský, and L. Sirko, Phys. Rev. Lett. 122,
140503 (2019).

[16] S. Gnutzmann and A. Altland, Phys. Rev. Lett. 93, 194101
(2004).

[17] M. L. Mehta, Random Matrices (Academic Press, London,
1990).

[18] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.
52, 1 (1984).

[19] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.
Rep. 299, 189 (1998).

[20] F. Haake, S. Gnutzmann, and M. Kuś, Quantum Signatures of
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