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Bistability and chaos-assisted tunneling in dissipative quantum systems
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We revisit the problem of quantum bi- and multistability by considering the dissipative double resonance
model. For a large driving frequency, this system has a simpler phase structure than the driven dissipative
nonlinear oscillator, the paradigm model for classical and quantum bistability. This allows us to obtain an
analytical estimate for the lifetime of quantum limit cycles. On the other hand, for a small driving frequency, the
system is much richer than the nonlinear oscillator. This allows us to address a novel phenomenon of dissipation-
and chaos-assisted tunneling between quantum limits cycles.
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I. INTRODUCTION

Bistability is a widespread phenomenon, which one meets
in a variety of classical systems ranging from mechanical
systems and electric circuits to psychological and biological
systems. The paradigm mechanical system showing bistability
is the driven dissipative nonlinear oscillator, which has two
stationary solutions (limit cycles) in a certain parameter region
[1]. It is naively expected that the driven dissipative quantum
nonlinear oscillator also should show bistability. It was found,
however, that quantum bistability differs from the classical
one. Namely, in the quantum case only one of two limit cycles
is the stationary solution while the other cycle is a metastable
solution [2–6].

In this work we analyze the quantum bistability from a
more general perspective of the dissipative nonlinear reso-
nance [7]. Indeed, the two limit cycles in the driven dissipative
nonlinear oscillator originate from two nonlinear resonances
in the undamped case. Thus, one should meet bi- or multista-
bility in any dissipative system whose Hamiltonian dynamics
supports nonlinear resonances. We illustrate this statement by
analyzing the double resonance model (DRM), which is one
of the paradigm models in the field of classical and quantum
chaos [8–10]. For a large driving frequency, this system has
a very simple phase-space structure, which is well suited for
studying quantum limit cycles and their lifetimes. On the other
hand, for a small driving frequency, DRM shows a transition
to the chaotic regime where the remnants of the nonlinear
resonances are seen as stability islands embedded in a chaotic
sea. In this case, we find the phenomenon of dissipation- and
chaos-assisted tunneling between quantum limit cycles. This
relates the problem considered in this work to the problem of
chaos-assisted tunneling in the Hamiltonian systems, which
attracted much attention in the past two decades [11–15].
We show that dissipation drastically increases the rate of
chaos-assisted tunneling and makes it more predictable,
which may find useful applications in the field of quantum
control.

II. DOUBLE RESONANCE MODEL

The Hamiltonian of classical DRM reads

H = GI2

2
− V+ cos(θ − ωt ) − V− cos(θ + ωt ), (1)

where ω is the driving frequency, G the nonlinearity, and V+ =
V− = V is the perturbation strength. As a physical realization
of DRM one may consider a polar molecule in an alternating
electric field. Then G is given by the inverse moment of inertia
of the molecule and V by the product of the electric field
amplitude and the molecule dipole moment.

The system (1) has two primary nonlinear resonances of
the width δI = 4

√
V/G located at I± = ±ω/G. If the distance

between these resonances is much larger than their width,
then each of resonances is locally described by the effective
Hamiltonian obtained from (1) by setting V+ or V− to zero. As
an example, the left panel in Fig. 1 shows the stroboscopic
map of DRM for ω = 4 and the other parameters equal to
unity. The two primary nonlinear resonances are clearly seen.
One also finds two secondary nonlinear resonances at I = 0
and θ = 0, π , which are due to mutual influence of the pri-
mary resonances. If we decrease the driving frequency, this
mutual influence becomes stronger, which results in the ap-
pearance of chaotic separatrix layers, which eventually merge
into a chaotic sea, see left panel in Fig. 2 and Fig. 3. This
chaotic sea first absorbs the secondary resonances at ω ≈ 2
and then the remnant of two primary resonances at ω ≈ 0.5.

We proceed with the dissipative DRM whose dynamics are
governed by the following equations:

θ̇ = ∂H

∂I
, İ = −∂H

∂θ
− γ I, (2)

where γ is the relaxation constant (the rate of phase-volume
contraction). In the case of well-separated resonances dissi-
pation converts two primary resonances into the limit cycles,
I (t ) = I± and θ (t ) = θ0 ± ωt , where the relative phase θ0 is
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FIG. 1. Left: Phase portrait of the classical DRM for ω = 4, G =
1, and V+ = V− = 1. Right: The basins of four attractors for γ =
0.05. The red dots mark the positions of the attractors.

determined by the equation

V± sin(θ0) = γ I±, I± = ±ω/G. (3)

The secondary resonances transform into the fixed-point at-
tractors where I (t ) = 0 and θ (t ) = 0, π . Relaxation to these
attractors can be easily visualized by considering the ensem-
ble of classical particles with initial conditions uniformly
distributed over the phase space. This analysis shows that
relaxation to the fixed-point attractors goes in two steps: first,
the particles attract to the line I = 0, which then shrinks to two
points. The right panels in Fig. 1 and Fig. 2 show the basins of
the discussed attractors for the relaxation constant γ = 0.05.
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FIG. 2. The same as in Fig. 1 yet ω = 2.1.
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FIG. 3. The same as in Fig. 1 yet ω = 1.6.

III. QUANTUM ANALYSIS

The quantum counterpart of the Hamiltonian (1) reads [10]

Ĥ = GÎ2

2
− V+ cos(θ − ωt ) − V− cos(θ + ωt ),

Î = − ih̄
d

dθ
, (4)

where h̄ is the effective Planck constant. In the numerical
simulations we use the basis

|n〉 = (2π )−1/2einθ , n = 0,±1, . . . , (5)

where the Hamiltonian (4) is given by the three-diagonal
matrix. The governing master equation for the system density
matrix ρ̂(t ) has the form

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + Ĝ+(ρ̂) + Ĝ−(ρ̂), (6)

where the Lindblad relaxation operator G+(ρ̂),

Ĝ+(ρ̂) = − γ

2h̄
(â†âρ̂ − 2âρ̂â† + ρ̂â†â), (7)

ensures relaxation to the ground state |0〉 for positive I and the
operator G−(ρ̂) for negative I [16].

To find the stationary solution of the master equation (6)
we rewrite it in the form

d ρ̂

dt
= L̂(t )ρ̂, (8)

where L̂(t ) is the linear superoperator. Notice that the super-
operator periodically depends on time, L̂(t + 2π/ω) = L̂(t ).
Thus, by stationary solution we mean the solution where the
density matrix is periodic in time with the same period. Using
Eq. (8) we calculate the Floquet superoperator Û ,

Û = êxp

(∫ T

0
L̂(t )dt

)
, T = 2π

ω
(9)
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FIG. 4. Main panel: The spectrum of the Floquet superoperator
as the function of the driving frequency ω for h̄ = 0.5. Inset: A
fragment of the spectrum for h̄ = 0.25.

(here the hat of the exponent sign denotes the time ordering)
and diagonalize it,

Û ρ̂ ( j) = λ j ρ̂
( j). (10)

Numerically, this is done by truncating the density matrix to
a finite size N × N and constructing the column vector of
the length N2 by reordering the matrix elements ρn,m in the
columnwise manner. Then the superoperator Û is given by
the matrix U of the size N2 × N2 and the matrices ρ̂ ( j) are
obtained by reordering the eigenvectors of this matrix back to
the N × N square matrices.

The main panel in Fig. 4 shows the eigenvalues λ j by
the absolute value as the function of the driving frequency
ω for h̄ = 0.5. Our particular interest in this figure is the
stationary state associated with λ0 = 1 and the metastable
states associated with the next two levels, which becomes
almost degenerate for ω > 2.5. Notice that with a decrease
of the effective Planck constant h̄ these levels closely
approach the level λ0 in the certain interval of ω, see inset in
Fig. 4. In the next paragraph we discuss the stationary and
metastable states of the quantum dissipative DRM in more
detail.

Figure 5 shows the diagonal elements of the stationary
matrix ρ̂ (0) for four different values of the driving frequency.
It is seen that the stationary matrix well reproduces the phase-
space structure of the classical dissipative DRM. In particular,
one sees two limit cycles in Figs. 5(a)–5(c) and the fixed-point
attractor at I = 0 in Figs. 5(b)–5(d). There are no limit cycles
for ω = 3.0; however, they are found in the metastable states
ρ̂ (1) and ρ̂ (2), see Figs. 6(b)–6(c). Thus, by using the linear
superposition of the first three states one can construct the
density matrix, which corresponds either to the upper (plus
sign) or lower (minus sign) limit cycle, see Fig. 6(d). The time
evolution of this matrix obviously obeys the equation,

ρ̂(mT ) = ρ̂ (0) ± λm
1 ρ̂ (1) + λm

2 ρ̂ (2), (11)

where m is the discrete time. Since λ1 ≈ λ2 for ω > 2.5,
Eq. (11) describes the decay of the upper or lower cycle into
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FIG. 5. Diagonal elements of the stationary density matrix for
different values of the driving frequency (a) ω = 1.6, (b) ω = 2.1,
(c) ω = 2.5, and (d) ω = 3.0. The value of effective Planck constant
is h̄ = 0.25.

the fixed-point attractor. We mention that in the frequency
interval 2 < ω < 2.5 |λ1| is as close to unity as |λ1| ≈ 0.99
for h̄ = 0.5 and |λ1| ≈ 0.999 for h̄ = 0.25. This corresponds
to the lifetime of the metastable state of the order of one
hundred and one thousand driving periods, respectively.

IV. DECAY TIME OF THE METASTABLE STATES

Let us discuss the decay time of the limit cycles origi-
nated from primary nonlinear resonances. Assuming the case
of well-separated resonances (ω > 2.5) we can simplify the
problem by setting either V+ or V− to zero in the Hamiltonian
(1). To be certain, we consider the upper cycle, i.e., V− = 0.
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FIG. 6. Diagonal elements of the density matrices (a) ρ̂ (0),
(b) ρ̂ (1), and (c) ρ̂ (2), for ω = 3. (d) shows the linear superposition
of these matrices, which corresponds to the upper limit cycle.
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FIG. 7. Left: Phase portrait of the classical DRM for ω = 4.0,
G = 1, V+ = 1, and V− = 0. Right: The basins of two attractors for
γ = 0.05. The red dots mark the positions of the attractors. The
magenta line is the separatrix trajectory of the Hamiltonian (13).

In this case the system has only two attractors: the limit cycle
at I = I+ and an extended simple attractor at I ≈ 0, which is
given by the phase trajectory of the nonlinear resonance with
the mean action equal to zero, see Fig. 7. (Notice that the latter
attractor disappears when the phase trajectory becomes the
separatrix trajectory. For the parameters of Fig. 7 this happens
at ω ≈ 1.3.) The relaxation of the system to the limit cycle at
I = I+ is locally governed by the equations [7]

ϑ̇ = ∂Heff

∂J
, J̇ = −∂Heff

∂ϑ
− γ J, (12)

where J = I − I+, ϑ = θ − ωt , and the effective Hamiltonian

Heff = G
J2

2
− V+ cos ϑ + γ I+ϑ. (13)

The effective Hamiltonian (13) allows us to introduce the local
basin of the limit cycle, which we define as the phase volume S
encircled by the separatrix trajectory of the Hamiltonian (13).
It follows from Eq. (13) that the local basin shrinks to zero
if γ is increased above the critical value, which is deduced
from Eq. (3). Indeed, Eq. (3) has the real solution only if
|γ I+/V+| � 1. In the opposite limit of small γ the size of
the local basin is approximately given by S = (1/2π )

√
V/G.

We mention that the quantum version of Hamiltonian (13)
formally coincides with the Hamiltonian of the Wannier-Stark
system (a quantum particle in a periodic potential subject
to a static force). As known, the Wannier-Stark states are
metastable states [17]. This fact alone tells us that in the pres-
ence of dissipation the quantum nonlinear resonance should
have a finite lifetime as well. An estimate for the lifetime of
the limit cycle due to the under-barrier tunneling was given in
Ref. [7].

Since the effective Hamiltonian does not depend on time,
the quantum analysis of the problem can be done in terms
of the superoperator L̂ (i.e., without constructing the Floquet
operator). The main panel in Fig. 8 shows the real parts of
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FIG. 8. Main panel: The first 100 eigenvalues of the operator L̂
as the function of γ for V+ = 1 and V− = 0. The other parameters are
G = 1, ω = 4, and h̄ = 0.25. Bottom inset: Diagonal elements of the
matrices ρ̂ (0) (red solid line) and ρ̂ (1) (dashed blue line). Top inset:
The lifetime τ as the function of the inverse Planck constant.

the operator eigenvalues ε j for 1 � j � 100 as the function
of the relaxation constant γ . It is seen that for small γ the
eigenvalue ε1 is well separated from the other eigenvalues
whose real parts are approximately equal to −γ . Thus the
system dynamics for t � 2π/γ is determined by the equation

ρ̂(t ) = ρ̂ (0) + exp(−t/τ )ρ̂ (1), τ = 2π

|Re(λ1)| . (14)

The bottom inset in Fig. 8 shows the diagonal elements of
the matrices ρ̂ (0) and ρ̂ (1). Thus, Eq. (14) describes the decay
of the limit cycle within the characteristic time τ , which,
according to the depicted numerical results, is estimated as

τ ∼ 1

γ
exp

(
A

S

h̄

)
, (15)

where S is the phase volume of the local basin and A a
numerical factor. Notice that in the semiclassical limit h̄ → 0
the lifetime τ of the discussed quantum limit cycle becomes
exponentially large.

The exponential prefactor in Eq. (15) is typical for a tun-
neling process. Yet, there is an alternative interpretation of
the finite lifetime due to the intrinsic quantum noise [6]. This
noise formally appears in the problem if one unravels the
master equation for the density matrix into the state diffusion
model [18]. The noise kicks the system out of the basin of the
limit cycle attractor into the basin of the fixed-point attractor
that results in a gradual decay of the former. We find this
interpretation also useful to explain the phenomenon of the
dissipation- and chaos-assisted tunneling, which we discuss
in the next section.

V. DISSIPATION- AND CHAOS-ASSISTED TUNNELING

Let us discuss the case ω < 2 where the nondissipative
classical DRM has a large chaotic component with the em-
bedded stability islands, see the left panel in Fig. 2 and Fig. 3.
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FIG. 9. Left panel: Diagonal matrix elements of the density ma-
trix at t = 300T (solid lines) as compared to the classical distribution
function for the action variable (dashed lines). The system pa-
rameters are V− = V+ = 1, ω = 2.1, γ = 0, h̄ = 0.25. Right panel:
Diagonal matrix elements of the density matrix at t = 300T for
γ = 0.05. In this case, the stationary classical distribution function
is given by three δ-peaks of the hight 0.01,0.02,0.97 located at I =
−ω, 0, ω, respectively. Notice, that in the limit t → ∞ populations
of the quantum limit cycles equilibrate, while populations of the
classical limit cycles remain unchanged.

Similar to the case of well-separated resonances, the dissipa-
tion transforms these stability islands (which are remnants of
two primary nonlinear resonances) into limit cycles. How-
ever, due to unstable Hamiltonian dynamics, the basins of
these limit cycles acquire a fractal structure where the basins
penetrate each other in both the upper and lower half-planes
of the phase space. Thus, the intrinsic noise will presumably
equilibrate populations of the limit cycles.

The above conjecture is fully supported by the straightfor-
ward numerical simulation of the system dynamics according
to master equation (6). As the initial condition, we choose
population of the single level with the quantum number n0 =
I+/h̄. [In the classical case this initial condition corresponds
to the ensemble of particles with I (t = 0) = I+ which are
uniformly distributed over the phase θ .] The solid red line
in the left panel in Fig. 9 shows the diagonal elements of the
quasistationary density matrix for γ = 0. This quasistationary
distribution is well approximated by the classical distribution
for the ensemble of classical particles, see the blue dashed
line. Here the right peak is associated with particles captured
into the upper stability island and the background with parti-
cles in the chaotic component. Notice the absence of the left
peak, which is due to the fact that classical particles cannot
escape out or penetrate in a stability island. These processes,
however, are allowed for a quantum particle, where the effect
of tunneling is seen in Fig. 9(a) as higher than in the classical
case background and smaller (narrower) stability island peak.

Now we switch on dissipation. For γ 	= 0 the overwhelm-
ing majority of classical particles from the initial ensemble are
attracted to the upper limit cycle and stay there forever. In the
quantum case, however, we observe probability leakage from
the upper to lower cycle, see the red solid line in the right
panel in Fig. 9. This equilibration process is described by the
equation similar to Eq. (14) where, however, ρ̂ (0) and ρ̂ (1) are
now symmetric and antisymmetric matrices with respect to
the inversion n → −n. In the course of time, the antisymmet-
ric solution ρ̂ (1) decay results in two slightly breathing (with
the frequency ω) peaks of the equal heights. We stress that
relaxation to the stationary state is orders of magnitude faster
than in the case ω > 2.5, where the classical DRM has no
chaotic component.

VI. CONCLUSION

We analyzed quantum limit cycles in the dissipative DRM.
One of the two main results of the work is Eq. (15), which
gives lifetime τ of the quantum limit cycle as the function
of the effective Planck constant. It should be stressed that
Eq. (15) is valid only in the case of large driving frequency
ω where the limit cycles are far from each other. In the
case of small driving frequency, the decay of limit cycles
into the fixed-point attractors at I = 0 is substituted by the
dissipation- and chaos-assisted tunneling between limit cy-
cles. It is found that dissipation greatly enhances the tunneling
rate as compared to the rate of chaos-assisted tunneling in the
nondissipative DRM.

In the present work we restrict the analysis of the dissi-
pative DRM to the values of the driving frequency ω > 1.5,
where the relaxation time τ to the stationary state is a smooth
function of ω. If we go to smaller ω, the classical DRM shows
a sequence of bifurcations where the number of attractors and
their types (including chaotic attractors [19]) abruptly change.
As a consequence, the relaxation time τ = τ (ω) shows erratic
fluctuations and it would be interesting to look at the parame-
ter region ω < 1.5 more attentively.

The other direction of research is analysis of the quantum
dissipative DRM by using the pseudoclassical approaches
[20,21], which substitute the master equation for the den-
sity matrix by the Fokker-Planck equation for the classical
distribution function. These methods allow one to consider
much smaller effective Planck’s constants and, thus, to study
quantum-classical correspondence in more detail.
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