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Dynamical buckling of a table-tennis ball impinging normally on a rigid target:
Experimental and numerical studies

Théophile Rémond ,1 Vincent Dolique,1 Franck Vittoz ,1 Sheedev Antony ,2 Renaud G. Rinaldi ,3

Lionel Manin,2 and Jean-Christophe Géminard 1

1LPENSL, CNRS, UMR 5672, ENS de Lyon, F-69342 Lyon, France
2LaMCoS, CNRS, UMR 5529, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
3MATEIS, CNRS, UMR 5521, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France

(Received 7 February 2022; accepted 22 June 2022; published 12 July 2022)

We report on the dynamical buckling of a spherical shell (a table-tennis ball) impinging in normal incidence
on a rigid surface (a glass plate). Experimentally, we observe and decipher the geometrical characteristics of the
shell profile in the contact region along with global metrics such as the contact duration and the coefficient of
restitution of the linear velocity. We determine, in particular, the onset of the ball buckling instability. We find
that, just like in quasi-statics, the shell buckles when the crushing exceeds about twice the thickness of the shell.
In addition, for launching conditions resulting in the ball elastic buckling, a drop in the restitution coefficient
is observed. A companion numerical finite elements study is set to monitor the different sources of energy and
reveals that the added energy loss is mainly due to the friction between the shell surface and the solid substrate.
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I. INTRODUCTION

The rebound of a table-tennis ball off a paddle is among
the common examples of the impact of a thin-walled hollow
sphere onto a solid body that is more or less rigid. Such
hollow structures are indeed interesting for many engineering
applications. Very common examples are vessels, containers,
submarines, aircraft, etc. These structures can sustain impor-
tant loads in spite of their small mass. However, they can
be subjected to dramatic instabilities such as buckling in re-
sponse to external loading, which compromises the integrity
of the structure [1].

It has long been known that, even at moderate incident
velocity, the shell of the table-tennis ball buckles on impact
with the paddle [2–4]. Thus, the ability of the paddle to give
or stop spin and/or linear velocity greatly depends on the
mechanical properties of the ball shell as well [5]. The spher-
ical shell is one of the simplest models to study the buckling
instability of curved structures. The study of the buckling
under a quasi-static load has been the subject of several nu-
merical, theoretical [6–10], and experimental studies [10–13].
The main result is that the onset of the instability is reached
when the displacement of the shell towards the surface is
about twice the shell thickness but slightly dependent on the
radius of the shell and on the Poisson ratio of the ball’s parent
material [3]. Note that a precise determination of the onset
can be used to assess the properties of the material of the shell
[14]. At larger deformation, far above the onset, the contact
region loses its initial axisymmetry [8], but that regime is out
of the scope of the present paper.

Here, we are interested in the dynamical counterpart of
these studies. By “dynamic regime,” we mean here a regime
where the viscous effects could play a role and/or the contact

time is comparable to the period of a vibration mode of the
spherical shell. Many authors have focused on the dynamical
crushing of spherical shells because of the particular interest
these structures present for building energy dampers [15–18].
That phenomenon involves mainly the plasticity of the struc-
ture that is used to best dissipate the energy. We shall consider
the opposite limit in which the initial energy is almost entirely
recovered after impact. More precisely, we will consider the
impact, in normal incidence, of a table-tennis ball on a rigid
and flat surface and focus on the restitution of the kinetic
energy in relation to the buckling of the shell. Former studies
reported that the buckling onset is reached even at moderate
(between 3.5 and 5 m s−1) impact velocity [2,3,19], but they
did not provide a direct determination of the shell profile
during the collision, which is the main contribution of the
present work.

During the impact, the initial kinetic energy of the ball is
mainly transferred into elastic energy associated with the shell
deformation and converted back into kinetic energy as the ball
bounces back from the surface, (almost) recovering its initial
spherical shape [3]. However, there is always energy loss
associated with the ball rebound, which leads to a reflected
velocity that is smaller than the incident velocity. There are
several potential sources of energy loss. First, the shell might
leave the surface without having entirely recovered its initial
shape and might take away a significant amount of energy
loaded in its remaining elastic deformation. Second, due to the
collision, the paddle and the substrate can vibrate, and part of
the initial energy can be mechanically radiated [20,21]. There
are at least two other potential sources of dissipation, related
to the intrinsic dissipative nature of the system. On the one
hand, the parent materials of the ball and of the paddle are
viscoelastic, and part of the energy might be transferred into
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FIG. 1. Sketch of the observation technique. The ball is observed
from below through the glass window, and its profile in the contact
region is assessed thanks to the use of the shadow of a needle cast
onto the ball surface.

heat. On the other hand, there might be a relative displacement
of the shell and paddle surfaces that are in contact during the
collision, and energy might be dissipated by friction [11,22].
One can wonder how the buckling of the shell alters the
respective contributions of these mechanisms in the decrease
of the kinetic energy of the ball before and after the collision.

II. EXPERIMENTAL STUDY

A. Experimental principle and setup

The experiment consists of observing the deformation of
a table-tennis ball colliding in normal incidence with a rigid
surface.

The homemade experimental setup makes it possible to
launch the ball at a chosen velocity, without spin, along the
vertical axis and then to observe the collision through the
horizontal and transparent surface (a firmly held 2.8-mm-thick
transparent glass window) it collides with (Fig. 1).

The ball (Cornilleau, P-ball 3 stars, 4 cm in diameter, mass
of 2.7 g, ABS plastic; see Table I) is launched downwards
using a striker consisting of a metal rod driven by a spring.
The system is initially armed by compressing the spring. The
ball is then put into place in a holder underneath. The striker is
subsequently released. The ball reaches the glass window with
a vertical incident velocity vi, which typically ranges from 1 to
12 m s−1, depending on the initial compression of the spring.

FIG. 2. Series of images of the ball surface during the collision
with the glass window. The dark line, the shadow of a needle cast
onto the ball surface, reveals the profile of the shell in the contact
region [vi = 9.7 m s−1]. Time 0 ms coincides with the onset of
contact.

In order to assess the profile of the ball in the contact
region, we used the light of a powerful LED (Luxeon Rebel
ES, LXML-PWN2, 230 lm) and two optical lenses (Thorlabs,
N-BK7 Bi-Convex Lenses, focal lengths of 50 and 25.4 mm)
to cast the shadow of a steel needle onto the ball surface,
along the vertical axis (the needle is oriented along the x
axis). The ball surface, in the contact region, is observed at
45◦ with a fast camera (Kron Technologies, Chronos 2.1-HD,
monochrome image sensor, 20 000 frames/s). For practical
reasons, we use a mirror angled at 22.5◦ with respect to the
vertical; the optical axis of the camera is horizontal. Images
recorded at different times during the test are displayed in
Fig. 2, and the shadow of the needle appears as a dark line
on the bright surface of the ball. Due to the geometry of this
experimental configuration, the profile of the ball surface is
obtained by applying to the image a

√
2 factor to the z axis.

TABLE I. Ball properties: Geometry and parent material.

Geometrical properties Material properties

Diameter Thickness Mass Density Poisson ratio Long time modulus Maxwell modulus Relaxation time Friction coefficient
2R h m ρb νb E∞ E1 τ1 μ

40 mm 0.5 mm 2.7 g 1070 kg m−3 0.35 1.5 GPa 0.5 GPa 0.001 s 0.75
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FIG. 3. Relevant characteristics of the shell profile. Once the
profile of the shell is obtained (dashed line which interpolates the
red line), we determine the positions of points A and C, which limit
the contact region, and point B at center. Points A and C are used
to assess the diameter D of the contact region, whereas the vertical
distance between point B and the line (AC) corresponds to the depth
d of the buckled region (vi = 9.7 m s−1, t = 0.355 ms in Fig. 2).

For each image, the profile of the shell is determined as
follows (Fig. 3). The image is stretched by a factor of

√
2

in the z direction (bicubic interpolation in IMAGEJ [23]). A
Gaussian filter is applied in order to reduce the noise. Then,
for each horizontal position x, the height of the shell above
the substrate z corresponds to the darkest point encountered
along the vertical axis. The resulting experimental profile z(x)
is then interpolated to a polynomial of order 8 (dashed line
in Fig. 3), symmetric with respect to point B (at the center
of the contact region, the position of the latter being a fitting
parameter). Points A and C are defined as the limits of the
contact region, whose coordinates are then obtained analyt-
ically. We subsequently determine the relevant geometrical
characteristics of the shell profile, in particular the diameter
D of the contact region and the depth d of the buckled region
(the height of point B above the glass window).

The velocities of the ball before, vi, and after, vr , it enters
into contact with the surface are measured using the same
image sequence (the same geometrical factor,

√
2, is applied).

Both velocities are evaluated at contact since the acceleration
due to gravity cannot be neglected. We characterize the energy
loss by measuring the restitution coefficient of the normal
velocity, ε ≡ vr

vi
. Accounting for the depicted experimental

setup, ε is a unitless parameter with values ranging between 0
(the ball is stopped) and 1 (no energy loss).

B. Experimental results

We use the experimental setup to study the dynamics of the
ball collision over the whole range of accessible velocities vi.

On the images (not shown here), we qualitatively observed
that the contact region remains flat and circular only at small
velocity vi, typically less than 5–6 m s−1. This is clearly
observed in Fig. 4(a), in which the depth d is reported as a
function of time t for different incident velocities vi during the
contact between the ball and the glass plate (contact duration
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FIG. 4. Diameter D and depth d of the buckle vs time t . In (b),
we observe that for velocities vi above typically 5 m s−1, the ball shell
loses contact with the glass plate at the center of the contact region.
From the diameter D of the contact region, we can easily estimate
that the contact time remains of the order of 0.6 ms.

of about 0.6 ms). Indeed, for vi = 4.4 m s−1, d remains almost
zero throughout the impact, whereas for vi = 6.6 m s−1, d
reaches a significant maximum of about half a millimeter.

We report in Fig. 4(b), the diameter D of the contact region
as a function of time t . We can estimate from the diameter D of
the contact region and from the ball radius R the displacement
of the ball towards the glass plate, or deflection δ. Indeed,
assuming a Hertz contact [24], we have

δ � D2

4R
. (1)

This relation is valid only when considering a Hertz contact,
before the buckling instability occurs. We shall use the result
to estimate the deflection δ below the buckling onset and
the buckling onset itself, which is correct. For the sake of
simplicity, above the onset, the relation is used to get a rough
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FIG. 5. (a) Depth of the buckle d vs deflection δ and (b) max-
imum depth dm vs incident velocity vi. Inset: Maximum depth of
the buckle dm vs maximum deflection δm. We observe that the ball
shell buckles at a deflection of about δc = 1.3 ± 0.2 mm, which
is reached, in our experiments, for an impact velocity larger than
vc = 5.5 ± 0.5 m s−1. Gray vertical shading indicates the buckling
onset.

estimate of δ. It is of particular interest to display the buckling
depth d as a function of δ. In Fig. 5(a), we observe that d
is not a simple function of δ but rather exhibits a hysteresis
loop. Initially, d suddenly increases above a threshold δc and
then slowly decreases when δ decreases back. In spite of this
hysteretic behavior, in Fig. 5(b), by reporting the maximum
buckling depth dm as a function of the incident velocity vi,
we observe a clear bifurcation that makes it possible to de-
termine precisely the onset, vc, of the buckling instability
according to the velocity. We obtain vc = 5.5 ± 0.5 m s−1.
In the inset of Fig. 5(b), we clearly observe that the ball
buckles for δc � 1.3 ± 0.2 mm, which must be compared to
the thickness of the shell h. In addition, we estimated, using
x-ray tomography images, that the thickness of the shell is
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FIG. 6. (a) Restitution coefficient ε and (b) contact time τ vs
incident velocity vi. The contact time τ shows a slow decrease
only at low impact velocities vi, and then when the ball buckles,
the contact time increases. By contrast, the restitution coefficient ε

continuously decreases when the impact velocity vi is increased, and
a clear change in the regime appears when the ball shell buckles (gray
vertical shading). We observe good agreement between numerical
and experimental values of both the restitution coefficient ε and the
contact time τ .

500 ± 20 μm. Thus, we find that the critical displacement
δc is indeed of the order of twice the thickness of the shell
h, in accordance with the previous results obtained in the
quasi-static regime (see the Appendix) [6,9,11].

In addition, we provide two additional pieces of informa-
tion by reporting the restitution coefficient ε and the contact
time τ as a function of the incident velocity vi (Fig. 6). The
restitution coefficient ε continuously decreases when the in-
cident velocity vi is increased, but a clear change in regime
is observed in the vicinity of the critical velocity vc [Fig. 6(a),
shaded gray region]. The contact time is assessed by consider-
ing the number of images in which the diameter D �= 0. Over
the range of incident velocities explored, one observes that
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the contact time τ decreases slowly until the critical velocity
vc is reached and then slightly increases [Fig. 6(b)]. For the
Hertz contact, the reaction force is F = −k δ3/2, where k ac-
counts for the stiffness of the ball shell. In this framework, the
contact time τ � 3.218( m

k )
2/5

v
−1/5
i , where m is the mass of

the ball and vi is the incident velocity, is expected to decrease
slowly when the incident velocity vi increases, as observed
experimentally as long as the ball shell does not buckle. The
subsequent increase of τ at large velocity is related to the
buckling of the ball shell. This nonmonotonic behavior of the
contact time τ as a function of the incident velocity vi was
observed in one previous study [3].

Finally, from the experimental value of the contact time
τ � 0.6 ms, one can estimate the stiffness of the ball (Hertz
contact), k � 2.5 106 N m−3/2 (taking m = 2.7 g and vi =
5.5 m s−1). Neglecting the dissipation, one can then ob-
tain, at the onset of buckling, the maximum deflection δc �
( 5

4
m
k )

2/5
v

4/5
i � 1.1 mm, which nicely agrees with the experi-

mental value in regard to the approximation made to obtain
this estimate.

In Sec. III, we explain how the numerical simulation of
the same system has been carried out, and in Sec. IV, we
compare the experimental and numerical results and discuss
our findings.

III. NUMERICAL SIMULATION

A. Numerical methods

Explicit three-dimensional (3D) finite element (FE) simu-
lations using the commercial software ABAQUS are performed
to numerically model the normal impact of the table-tennis
ball on the glass substrate [25]. The ball (see Table I for
properties) is modeled with 112 903 Shell elements SR4 with
five integration points through the thickness; 95 256 C3D8R
elements are used for the glass substrate (squared 3D volume).
The bottom surface of the glass substrate is fixed. At t = 0 s,
the ball and substrate are 0.3 mm apart, and the incident
velocity vi is assigned to the ball (initial condition). Hard
normal behavior and an isotropic friction coefficient μ = 0.75
(penalty) for the tangential behavior define the contact prop-
erties. It is worth noting that a quasi-static experiment and
a companion FE modeling that are further detailed in the
Appendix were used to adjust its value.

Now, regarding the material properties, the glass substrate
is considered purely elastic (Young’s modulus Eg = 70 GPa,
Poisson’s ratio νg = 0.35, and density ρg = 2500 kg m−3).
A simple viscoelastic model with a unique discrete Maxwell
element was chosen as the simplest model to depict the
response of the ball’s polymeric material (ABS). Indeed, vis-
cous dissipation and a modulus that is time dependent have
to be accounted for [22]. In addition to the density ρb =
1070 kg m−3 (back calculated using the ball’s dimensions
and mass) and Poisson’s ratio νb = 0.35 (typical for poly-
mer materials in a glassy regime), three additional material
parameters are then needed: the long time storage modulus
E∞, the characteristic time of relaxation τ1, and the elas-
tic modulus E1 associated with the Maxwell element. Just
like for the friction coefficient, quasi-static experiments were
used to adjust the long time storage modulus, and a value

of E∞ = 1.5 ± 0.1 GPa was identified (see the Appendix).
Additionally, τ1 was set equal to 0.001 s, and E1 was set
to 0.5 GPa so that the Maxwell element is active for a time
coinciding with the dynamical tests and the amplitude of the
relaxation mechanism (i.e., the stiffening) remains consistent
with the modulus variation that is often observed in the glassy
regime of amorphous thermoplastic polymers.

The simulations are set so that the total energy put into the
system equals the initial kinetic energy. With an aim to further
understand the mechanisms acting during contact, the varia-
tions of the contributions to the total energy are monitored:
the kinetic energy, the strain energy, the friction dissipation,
and the viscous dissipation. Typical profiles for these energies
are presented in Fig. 7 as a function of time for two chosen
incident velocities (vi = 6 m s−1 and vi = 11 m s−1). At any
given time t , the sum of the energies equals the initial kinetic
energy Eki (note here that the kinetic and elastic energies are
instantaneous values, whereas the friction and viscous contri-
butions are losses integrated over time). During contact, the
kinetic energy passes through a minimum, whereas the strain
energy passes through a maximum. Both friction and viscous
cumulated contributions are observed to grow with time. At
the end of contact, the strain energy almost vanishes for
all incident velocities within the accessible range. Thus, the
contribution to the dissipation of any subsequent vibrations
[clearly revealed at large incident velocity; Fig. 7(b)], which
are later damped by the viscosity, remains small. In any case,
this contribution does not play any role in our results because
we consider the final translational energy (the average of the
kinetic energy over time) after loss of contact, which already
takes this source of dissipation into account.

Based on these energy profiles, the contact time τ and the
restitution coefficient ε can be determined. On the one hand,
the contact time is assessed by tracking the onset and final
contact times. At onset, the initial kinetic energy Eki which
is constant prior to contact is seen to decrease. At the end
of contact, the friction dissipation is maximum and remains
constant afterwards. On the other hand, the linear coefficient
of restitution is obtained by taking the square root of the ratio
of the average kinetic energy after contact with the initial
kinetic energy of the ball Eki.

B. Numerical results

We report in Fig. 5(b) the maximum buckling depth dm

from the numerical simulation as a function of the incident
velocity vi and observe fairly good agreement with the ex-
perimental results. In addition, we display in Fig. 6(a) the
restitution coefficient ε as a function of the incident velocity
vi. The same drop in the values of the coefficient of restitution
is observed around the critical velocity vc. In Fig. 6(b), we
observe that the contact time τ decreases slowly until the
critical velocity vc and then slightly increases. In both cases,
the agreement with the experimental values is here again
good, particularly, if one considers that the rheological model
used for the ball material is, in this case, simplistic. Indeed,
generalized Maxwell model are often employed to capture the
distribution of relaxations mechanisms in polymers [26].

Considering the good agreement between experimental
and numerical data, we can consider that the numerical
simulations account, at least semiquantitatively, for the exper-
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FIG. 7. Different energy contributions vs time t during a normal
impact [(a) vi = 6 m s−1 and (b) vi = 11 m s−1]. The data are
computed from the FE numerical simulation. The kinetic energy
decreases to 0 mJ before bouncing back from the surface. There are
two sources of energy dissipation: the friction between the shell and
the surface in contact and the energy loss due to the relaxation of the
ball material, which has a viscoelastic behavior. At any given time,
the sum of the energies equals the initial kinetic energy Eki prior to
contact. At large velocity in (b), we clearly observe the oscillation
of the kinetic and strain energies associated with the mechanical
vibration of the shell induced by the impact.

imental observations. As described in Sec. III A they thus give
access to quantities that are not accessible experimentally, in
particular, the amounts of energy loaded in the elastic defor-
mation, dissipated by the deformation of the material or by
friction. In Sec. IV, we discuss our experimental findings in
the light of the numerical results.

IV. DISCUSSION

An elastic spherical shell which collides in normal inci-
dence with a rigid surface deforms and bounces back with

a reduced translational velocity, with a fraction of the initial
kinetic energy Eki being lost during the collision (Fig. 7).

Qualitatively, the deformation of the shell increases with
the incident velocity vi. Above a critical velocity vc �
5.5 m s−1, the surface of the shell elastically buckles in the
contact region, with the surface of the ball at the center leaving
contact with the substrate (Fig. 2). We observe experimentally
that the buckling instability occurs when the displacement of
the ball towards the solid substrate δ reaches a critical value
which is about twice the thickness of the ball shell (Fig. 5;
here, δc = 1.3 ± 0.2 mm for a shell thickness h of about 500
μm). This finding is compatible with the onset of the instabil-
ity that was previously determined in quasi-static experiments
[11], but δc is larger than twice the thickness of the shell.
This result is not surprising as the onset depends on both the
Poisson ratio and the friction with the substrate (which tends
to delay the onset). More interestingly, we measured the same
critical value in the quasi-static regime (see the Appendix),
which clearly demonstrates that the onset of the instability
does not significantly change when the impact velocity is
increased.

The amount of energy lost during the collision is usually
characterized by the restitution coefficient ε, which corre-
sponds to the ratio between the reflected and incident linear
velocities (Fig. 6). We observe that the restitution coefficient
exhibits two regimes as a function of the incident velocity
vi on both sides of the buckling transition. This change in
regime was already observed in previous experiments, but we
can here associate the transition with the buckling instability
[2,19].

At this point of the discussion, one can ask which physi-
cal mechanisms contribute to the dissipation. Answering this
question is aided by the numerical study (Sec. III). In the
numerical simulations, there are three mechanisms that can
account for a decrease in the translational velocity:

(i) The shell is still deformed (even elastically) while leav-
ing the solid surface. In this case, the amount of elastic energy
still loaded in the elastic deformation is subtracted from the
kinetic energy.

(ii) Due to the viscoelasticity of the shell’s parent mate-
rial, the deformation of the ball leads to energy dissipation.
This dissipation increases with both the amplitude and rate of
deformation. Part of the incident kinetic energy is dissipated
through heat.

(iii) At the contact between the shell and the solid substrate,
energy can be dissipated by friction, meaning that the surfaces
mentioned are displaced with respect to one another. This
source of dissipation depends on the detailed deformation of
the ball and on the normal force in the contact region.

In Fig. 8, we display the contributions listed above, relative
to the incident kinetic energy, as a function of the incident
velocity vi. For clarity, the viscous dissipation includes the
first two contributions listed above: the remaining elastic de-
formation (which will later be dissipated anyway) and the
material viscoelasticity.

One can first focus on the dissipation resulting from vis-
cous deformation (Fig. 8). One observes that viscous losses
remain almost constant relative to the initial kinetic energy,
which means that they increase almost quadratically with the
incident velocity. Surprisingly, there is no significant effect
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FIG. 8. Relative contributions of the viscous and frictional losses
as a function of the incident velocity vi. The relative frictional losses
increase quickly above the critical velocity vc, whereas the relative
viscous contribution remains constant.

of the buckling on this contribution (we remind here that
the shell buckles for vi � 5.5 m s−1). By contrast, the losses
resulting from the friction clearly increase when the shell
buckles. The frictional losses are moderate at small velocity
vi, much smaller than the viscous losses. At larger velocity
the frictional losses dominate. The relatively sudden increase
in the frictional losses due to the buckling of the shell is
responsible for the change in regime observed in the behavior
of the restitution coefficient ε as a function of the incident
velocity vi [Fig. 6(a)].

V. CONCLUSION AND PERSPECTIVE

We reported of a series of experiments and a numerical
study of the rebound of a spherical shell (a table-tennis ball)
impinging in normal incidence on a solid surface (a glass
plate). The main conclusions of the study are as follows:

(i) The spherical shell buckles even at relatively small
incident velocities, typically 5.5 m s−1, i.e., 20 km h−1.

(ii) The dynamical buckling onset is typically the same as
that previously determined in quasi-static experiments. Even
at large velocities, the shell buckles when the displacement of
the ball towards the solid substrate exceeds about twice the
thickness of the shell.

(iii) The restitution coefficient exhibits a change in regime
on both sides of the buckling instability. The dissipation is
enhanced when the shell buckles, and as a consequence, the
restitution coefficient decreases faster with the increase of the
incident velocity above the onset.

(iv) At low velocity the main losses are viscous, and the
friction losses, even though they are not negligible, remain
moderate.

(v) The dissipation by friction increases drastically when
the shell buckles, whereas viscous losses are not significantly
altered by the instability. The enhanced decrease in the resti-

tution coefficient above the onset is thus due to the enhanced
frictional losses.

We thus observed the buckling, measured the restitution
coefficient, and discussed the various sources of dissipation.
We limited our study to collisions with a rigid substrate in nor-
mal incidence. We are now following two different research
lines.

During games, the ball rarely impacts the racket normally,
and besides, the ball reaches high linear velocities (50 km h−1

or more) [27]. One fundamental question is then that of the
buckling instability in oblique incidence. The questions raised
are those of the geometry of the contact region, of the onset
of the buckling instability, of the restitution coefficient, and of
the transfer from a pure translation to translation and spin.

One major limitation of our study for someone aiming at
providing results that can apply to table tennis is the use of a
solid substrate. We are developing an experimental protocol
allowing us to observe the contact region in the case of the
collision with a soft substrate.

ACKNOWLEDGMENTS

T.R. gratefully acknowledges GDR Sport & Activité
Physique for its financial support. The authors also thank F.
Cabrera and M. Bourgoin for lending the fast camera to the
team.

APPENDIX: QUASI-STATIC MECHANICAL RESPONSE
OF THE BALL

We study the mechanical response of the ball by compress-
ing it in a quasi-static manner against a glass window and

FIG. 9. Sketch of the experimental device. The ball is pushed
against a glass window. The displacement is imposed, and the re-
sulting force is measured.
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FIG. 10. Force F vs displacement δ. (a) Experimental results and
interpolations with numerical simulations to estimate (b) the storage
modulus and (c) the friction coefficient.

monitoring both the imposed displacement and the resulting
applied force.

The experimental setup (Fig. 9) consists of a horizon-
tal glass mirror lying on three force sensors (Testwell,
KD40s ±200N) against which the ball is pushed through
a horizontal metallic ring. On the one hand, the use of
a thick glass mirror (6.5 mm) makes it possible to visu-
ally control the buckling process. On the other hand, the
use of the ring avoids any significant localized deforma-
tion of the ball at the top. The ring is displaced manually
along the vertical axis thanks to a micrometric translation
stage (Newport, M-UMR8.25). An inductive sensor (Baumer,
IPRM 12I9505/S14), fixed to the ring, provides an accurate
measure of the imposed displacement (precision to within
60 μm).

The experimental results are reported in Fig. 10 together
with the results of the numerical simulations (Sec. III B). We
observe two different deforming regimes as a consequence of
the buckling of the ball occurring for δc = 1.30 ± 0.10 mm,
which is noticeable and, as expected, of the order of twice
the thickness of the shell [6,11]. The interpolation of the
experimental data with the numerical simulations for δ < δc

gives an estimate of the long time storage modulus, E∞ =
1.5 ± 0.1 GPa, of the shell’s polymeric material [Fig. 10(b)].
For larger displacements δ, when δ > δc, the response is seen
to be strongly affected by friction, and a comparison with
the numerical results leads to an estimate of the frictional
coefficient of μ = 0.75 ± 0.05 [Fig. 10(c)].

Thanks to these compression tests, we estimated the
values of the long time storage modulus, E∞ = 1.5 GPa,
and of the frictional coefficient, μ = 0.75, which were fur-
ther used in the numerical simulations of the bouncing
dynamics.
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