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Stability limits for modes held in alternating trapping-expulsive potentials
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We elaborate a scheme of trapping-expulsion management (TEM), in the form of the quadratic potential
periodically switching between confinement and expulsion, as a means of stabilization of two-dimensional
dynamical states against the backdrop of the critical collapse driven by the cubic self-attraction with strength
g. The TEM scheme may be implemented, as spatially or temporally periodic modulations, in optics or BEC,
respectively. The consideration is carried out by dint of numerical simulations and variational approximation
(VA). In terms of the VA, the dynamics amounts to a nonlinear Ermakov equation, which, in turn, is tantamount
to a linear Mathieu equation. Stability boundaries are found as functions of g and parameters of the periodic
modulation of the trapping potential. Below the usual collapse threshold, which is known, in the numerical form,
as g < g(num)

c ≈ 5.85 (in the standard notation), the stability is limited by the onset of the parametric resonance.
This stability limit, including the setup with the self-repulsive sign of the cubic term (g < 0), is accurately
predicted by the VA. At g > g(num)

c , the collapse threshold is found with the help of full numerical simulations.
The relative increase of gc above g(num)

c is ≈1.5%. It is a meaningful result, even if its size is small, because the
collapse threshold is a universal constant which is difficult to change.
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I. INTRODUCTION

It is well known that two- and three-dimensional (2D and
3D) multidimensional solitons, maintained by the ubiquitous
cubic self-attraction, are subject to severe instabilities, due
to the fact that the same nonlinearity drives the critical and
supercritical collapse, in the 2D and 3D cases, respectively
[1–3]. The search for physically relevant settings which make
it possible to stabilize self-trapped multidimensional states
is a relevant problem, especially in the context of nonlinear
optics and matter-wave patterns in Bose-Einstein condensates
(BECs). Methods elaborated for this purpose include the use
of quadratic interactions [4], higher-order defocusing nonlin-
earity, which may be represented by quintic terms, that occur
in optics [5–11], and quartic ones, that account for the stabi-
lization of quantum droplets by quantum fluctuations in binary
BEC [12–14]), spin-orbit coupling (SOC) acting on binary
condensates [15–18], etc. [19,20], see reviews [21–26] . Ex-
perimentally, soon after the theoretical prediction of quantum
droplets, they have been created in BEC with local [27–31]
and nonlocal [32–35] interactions.

Straightforward means for the stabilization of 2D self-
attractive fields with zero vorticity [i.e., fundamental states
(FSs)] and vorticity S = 1 against the critical collapse is
provided by the harmonic-oscillator (HO) trapping potential
[36–43]. In particular, it has been found that the 2D collapse
instability of all FS modes is completely removed by the
HO potential, while the vortex modes remain unstable against

spontaneous splitting, only the ones with S = 1 and the norm
falling below a certain threshold value being stabilized by the
trapping potential. In addition to that, in an interval of values
of the norm above the threshold there are stable dynamical
states, in the form of vortices with S = 1 which periodically
split in two fragments and recombine back, keeping the angu-
lar momentum.

On the other hand, expulsive quadratic (anti-HO) poten-
tials also appear in a variety of physically relevant setups
[44–53]. In guided-wave optics, expulsive potentials occur in
antiwaveguiding systems, which are used to design various
data-processing photonic schemes [54–57]. The latter appli-
cation makes it relevant to consider the propagation of optical
solitons through a waveguide built of alternating trapping and
expulsive segments [58]. A similar setting is possible in BEC,
with the external potential periodically [75] or temporarily
[59,60] switching between the HO and anti-HO forms. It may
be realized experimentally, using the usual optical trapping
setup for BEC [61,62], pumped by modulated light, which
periodically switches between red- and blue-detuned frequen-
cies. Search for stable solitons existing under the joint action
of the cubic self-attractive nonlinearity and periodically alter-
nating trapping-expulsive potential places such settings in the
class of systems which maintain solitons by means of various
management techniques [63], a commonly known example
being dispersion management of temporal solitons in optical
fibers [64].
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However, previous works considered the interplay of the
self-focusing and periodically flipping HO–anti-HO potential
only in 1D geometry. The objective of the present work is to
develop this analysis for 2D solitons. It is a challenging prob-
lem because of the possibility of the critical collapse (blowup)
in such a case. This circumstance links the present problem
to the setting based on the nonlinearity management for 2D
solitons in free space (in the absence of the trapping potential),
which was originally introduced in optics, considering the
propagation of (2 + 1)D spatial solitons in bulk waveguides
built as alternation of layers with self-focusing and defocusing
Kerr nonlinearity [65]. Later it was extended for BEC in the
quasi-2D geometry, with the sign of the contact nonlinearity
periodically switching between attraction and repulsion under
the action of the Feshbach resonance controlled by a periodi-
cally varying magnetic field [66–68].

In the case of the critical collapse, modelled by the 2D
nonlinear Schrödinger equation (alias the Gross-Pitaevskii
equation (GPE), in terms of the mean-field description of
BEC [69]), a crucially important role is played by Townes
solitons (TSs) [70], which realize the separatrix between de-
caying and collapsing solutions of the GPE in 2D. As any
separatrix solution [71,72], the TSs are unstable against small
perturbations. In the free space, the TS family is degenerate
in the sense that all solitons belonging to it have a single
value of the norm, NTS. This value represents a threshold
necessary for the onset of the collapse, as, at the late stage
of the blowup, the collapsing mode becomes very narrow,
hence the collapse ends up as in the nearly free space, even
if an external potential is present. The system with the fully
unstable TS family has no ground state (it is replaced by
the collapsing one). In fact, the stabilization of the TSs by
the trapping potential [36,38,41] or SOC [15,18] is underlain
by the fact that the potential or SOC lifts the degeneracy,
making it possible to create FS modes with N < NTS, which
are stable because the collapse does not take place in this
case. However, such results did not demonstrate a possibility
to stabilize states with N > NTS. An essential result of the
present work is that the application of the “trapping-expulsive
management” (TEM) makes it possible to construct stable FS
modes, in an oscillatory form, whose norm exceeds NTS by a
small but meaningful margin, ≈1.5%, while usually NTS is a
universal constant, which cannot be changed. Another major
objective of the work is to identify robustness boundaries of
the FS modes under the action of the TEM at N < NTS against
the action of a different potentially destabilizing factor—not
the collapse but the parametric resonance (PR), which may
occur when an internal mode of the FS trapped in the potential
resonates with the TEM frequency.

The rest of this paper is structured as follows. The model is
introduced in Sec. II. In that section, physical parameters for
the realization of the model in BEC and optics are evaluated,
too. The variational approximation (VA), which provides a
relevant method to predict the stability of the FSs in the
present model, is also elaborated in Sec. II. The VA replaces
the GPE by a second-order nonlinear ODE (ordinary differ-
ential equation) of the Ermakov’s type (see details below).
The latter equation is simulated numerically, but the onset of
the instability, caused by the PR, is correctly predicted in an
analytical form, as the Ermakov equation is tantamount to the

linear Mathieu equation. Results of the systematic numerical
investigation, which demonstrate stability boundaries of the
FSs against the critical collapse and PR alike, are summarized
in Sec. III. In particular, the VA predicts the PR-instability
boundary very accurately, including the system with the self-
repulsive nonlinearity. The paper is concluded by Sec. IV.

II. THE MODEL AND VARIATIONAL APPROXIMATION

We adopt the single-component GPE, written in the scaled
2D form for the mean-field BEC wave function, ψ :

i
∂ψ

∂t
= −1

2
∇2ψ − g|ψ |2ψ + 1

2
κ (t )r2ψ, (1)

where g > 0 is the constant coefficient of the cubic self-
attraction and r is the radial coordinate. TEM is introduced
by making the strength of the quadratic potential a function
of time, which includes dc (constant) and ac (variable) com-
ponents, periodically flipping between positive and negative
values:

κ (t ) = κdc + κac cos (ωt ). (2)

The case of basic interest is

κac > κdc > 0, (3)

as this condition maintains the sign-changing structure of
function (2). The case of

0 < κac < κdc (4)

is briefly considered below, too.
In terms of optics, temporal variable t in Eqs. (1) and

(2) is replaced by the propagation distance, z, g > 0 is the
scaled Kerr coefficient, and coefficient κ (z) represents the
guiding-antiguiding structure in the bulk material. In that case,
a more realistic form of the periodic modulation is piecewise
constant, with spatial period 2π/ω, while the cos term in
Eq. (2) represents its first harmonic.

In spite of the presence of the time dependence in Eq. (1),
it conserves two dynamical invariants, viz., the norm, propor-
tional to the number of atoms in BEC (or the integral power,
in terms of optics),

N =
∫∫

dxdy|ψ (x, y)|2, (5)

and the angular momentum,

M = i
∫∫

dxdyψ∗
(

y
∂

∂x
− x

∂

∂y

)
ψ, (6)

where ∗ stands for the complex conjugate. In this work, only
states with M = 0 are considered. The norm and angular mo-
mentum correspond, respectively, to the invariance of Eq. (1)
with respect to a phase shift of the wave function and rotation
of coordinate system (x, y).

As concerns the realization of the present model in BEC,
an estimate for the atomic condensate of 7Li atoms, with
the scattering length � −0.1 nm accounting for the attrac-
tive interactions, and the confinement length in the transverse
direction � 1 μm (which implies the trapping frequency �
10 kHz), shows that the length and time units in the scaled
variables used in Eq. (1) correspond, respectively, to � 10 μm
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(which implies the trapping frequency � 10 kHz) and 100 ms
in physical units, cf. Ref. [19]. In this case, the critical number
of atoms leading to the collapse is estimated as 6 × 103.

In terms of optical waveguides, the use of the carrier wave-
length 600 nm in silica leads to a conclusion that the units of
the propagation distance and transverse coordinates in scaled
equation (1) typically correspond to � 1 mm and 15 μm, re-
spectively, in physical units (cf. Ref. [20]). The corresponding
total power of the optical beam may be estimated as � 3 MW.

The main issue addressed in this work is to identify con-
ditions under which the TEM scheme based on Eqs. (1) and
(2) is able to hold ψ in a robust dynamical state, preventing
both the collapse and decay. As mentioned above, this issue
is somewhat similar to the problem of identifying conditions
for holding a stable 2D soliton by the GPE with periodically
sign-flipping self-interaction coefficient, representing the non-
linearity management:

i
∂ψ

∂t
= −1

2
∇2ψ − g(t )|ψ |2ψ, (7)

with g(t ) = g0 + g1 cos(ωt ), g1 > g0 > 0, cf. Eqs. (2) and (3)
[66–68]. The stability area for 2D quasi-Townes solitons with
zero vorticity [i.e., FSs, for which Eq. (6) yields M = 0] was
identified in the latter model, while all states with nonzero
vorticity are unstable (in a two-component system with cross-
attraction, a vortex soliton in one component may be stabilized
by the FS in the other one [73]). Here we do not consider
vortex states governed by Eq. (1), as they should be a subject
of a separate work.

Equation (1) can be derived from the Lagrangian,

L = 1

2

∫∫
dxdy

[
i

(
ψ∗ ∂ψ

∂t
+ c.c.

)

− |∇ψ |2 + g|ψ |4 − κ (t )r2|ψ |2
]
, (8)

where c.c. stands for the complex-conjugate expression. Fol-
lowing Ref. [74], the VA can be based on the usual Gaussian
ansatz,

ψans(r, t ) = A(t ) exp

[
− r2

2W 2(t )
+ iφ(t ) + ib(t )r2

]
, (9)

where real variational parameters are amplitude A(t ), width
W (t ), radial chirp b(t ), and phase φ(t ). The conserved norm
(5) of the ansatz is

N = πA2W 2. (10)

The substitution of ansatz (9) in Lagrangian (8) and inte-
gration yields the VA Lagrangian:

LVA = −NW 2 db

dt
− N

(
2W 2b2 + 1

2W 2

)

+ gN2

4πW 2
− 1

2
κ (t )NW 2. (11)

To derive this expression, Eq. (10) was used to eliminate A2 in
favor of W . The first variational (Euler-Lagrange) equation,
δLVA/δb = 0, applied to Lagrangian (11), yields a relation

which expresses the chirp in terms of W (t ):

b = 1

2W

dW

dt
. (12)

The second Euler-Lagrange equation, ∂LVA/∂W = 0, pro-
duces the final dynamical equation, in which Eq. (12) was
used to eliminate b:

d2W

dt2
=

(
1 − gN

2π

)
1

W 3
− [κdc + κac cos(ωt )]W. (13)

The TEM term ∼κac plays the role of the parametric drive in
Eq. (13).

The coefficient in front of term 1/W 3 in Eq. (13) vanishes
at the critical point,

(gN )(VA)
c = 2π. (14)

This value is well known as the VA prediction for the TS norm
[74], whose numerically found value is � 7% smaller than
(14):

(gN )(num)
c ≈ 5.85. (15)

From now on, we fix, by means of rescaling,

N ≡ 1, κdc ≡ 1 (16)

(unless κdc = 0 is fixed in some cases, see below), hence
Eqs. (14) and (15) determine the critical values of the
self-attraction strength, above which the critical collapse is
initiated in the system,

g(VA)
c = 2π, g(num)

c ≈ 5.85. (17)

In the case of g < g(VA)
c , the constant solution [alias the

fixed point (FP)] of the stationary version of Eq. (13), with
κac = 0, is

WFP =
(

1− g

2π

)1/4

, (18)

where normalization (16) is taken into regard. This solution
is obviously stable, as it realizes a minimum of the respective
Hamiltonian, in the case of κac = 0. The frequency of small
oscillations around the FP does not depend on g,

	FP = 2, (19)

as long as it falls below the critical value, g < 2π , see Eq. (17).
This analysis can be readily extended to the case of κac �=

0, provided that the modulation frequency ω is large, by means
of the averaging method, cf. Ref. [75]. In this case, an approx-
imate solution to Eq. (13) is looked for as

W (t ) = W (0)(t ) + W (1) cos(ωt ), (20)

where W (0)(t ) is a slowly varying term, and the harmonic
balance yields

W (1) = (κac/ω
2)W (0). (21)

Then, the substitution of expressions (20) and (21) in Eq. (13)
leads to an effective equation for the slow evolution of W (0)(t ):

d2W (0)

dt2
=

(
1 − gN

2π

)
1

[W (0)]3
−

(
1 + κ2

ac

2ω2

)
W (0). (22)
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The respective FP value changes from the one given by
Eq. (18) to

WFP ≈
(

1− g

2π

)1/4(
1 − κ2

ac

8ω2

)
, (23)

and frequency (19) of small oscillations around the FP is
replaced by

	FP ≈ 2

(
1 + κ2

ac

4ω2

)
, (24)

where the smallness of ω−2 is taken into regard. On the other
hand, the correction induced by rapid oscillations does not
affect the VA-predicted collapse threshold given by Eq. (17)

The nonexistence of solution (18) at g > 2π in the case
of κac = 0 signals the transition to the collapse. In this case,
the onset of the collapse is described by a simple solution of
Eq. (13) with κdc,ac = 0 (recall N = 1 is fixed):

W (z) = W0

√
1 − t/tcoll, (25)

where W0 is the initial width, and the VA-predicted collapse
time is

tcoll = 2W 2
0√

g/(2π ) − 1
. (26)

If the action of the ac component in Eq. (13) gives rise
to instability through excitation of the PR, then development
of the instability implies that the amplitude of oscillations
of W (t ) grows, hence the term ∼ W −3 in Eq. (13) becomes
negligible. The corresponding linear equation is the classical
Mathieu equation [76]:

d2W

dt2
= −[κdc + κac cos(ωt )]W. (27)

The commonly known instability chart of Eq. (27) in the plane
of (κac, ω) (see, e.g., Ref. [78]) is determined by the funda-
mental and higher-order PRs [77]. In the limit of κac → 0,
the PRs of orders m = 0, 1, 2, . . . take place at values of the
driving frequency

ω
(n)
PR = 2/(1 + m), (28)

the fundamental (strongest) PR corresponding to m = 0, i.e.,
ω

(0)
PR = 2.

The relation between Eqs. (13) and (27) is not surprising,
as Eq. (13) belongs to the class of the Ermakov’s equa-
tions [79–84]. In this context, it is well known that a general
solution of Eq. (13), W (t ), may be exactly expressed in terms
of two independent solutions, w1(t ) and w2(t ), of the Mathieu
equation (27), and their constant Wronskian, as follows:

W 2(t )√
1 − g/(2π )

= w2
1 (t ) +

(
w2(t )

Wronskian{w1(t ),w2(t )}
)2

.

(29)
Thus, Eq. (29) corroborates that the onset of the instability in
solutions of the Mathieu equation implies, in the exact form,
that the solutions of the Ermakov equation (13) also becomes
unstable.

III. NUMERICAL RESULTS

A. The formulation of the problems

First, stationary solutions of Eq. (1), without the ac drive
(κac = 0) and with g < g(num)

c ≈ 5.85 [see Eq. (17)], were
produced numerically by means of the well-known imaginary-
time integration method [85–87]. Then, using the stationary
solutions as inputs, we performed simulations of GPE (1) in
the full form, including the ac drive by means of the standard
split-step fast-Fourier-transform algorithm [87]. The drive’s
parameters, κac and ω, were varied with the aim to identify
stable and unstable dynamical states in the course of the
long-time evolution. One of the main objectives of this work
being to explore the possibility of finding stable ac-driven
FSs at g > g(num)

crit , when no stationary solution exists in the
absence of the ac drive, the input in this case was taken as the
normalized Gaussian,

ψ (r, t = 0) =
√

1/π exp(−r2/2). (30)

The simulations were performed in the domain of size 12 ×
12, with the spatial mesh size 
x = 
y = 0.03 (i.e., the inte-
gration domain was covered by the mesh composed of 400 ×
400 points) and the time step 
t = 0.0001. A boundary ab-
sorber was inserted in the simulations to prevent irrelevant
perturbation of the dynamical state by waves reflected from
the domain’s boundary.

The dynamics of the FS mode under the action of TEM
may be adequately characterized by time dependencies of
its height and width, i.e., the (peak) density at the center,
|ψ (r = 0, t )|2, and the monopole moment, which determines
the average radial size of the mode,

〈r〉(t ) = N−1
∫∫

|ψ (x, y)|2
√

x2 + y2dxdy (31)

[in fact, we set N ≡ 1, see Eq. (16)]. Also essential are spectra
of the Fourier transform of the central density and radial size,
computed as

n̂(	) =
∣∣∣∣
∫ T

0
e−i	t |ψ (r = 0, t )|2dt

∣∣∣∣,

r̂(	) =
∣∣∣∣
∫ T

0
e−i	t 〈r〉(t )dt

∣∣∣∣, (32)

for a long simulation interval T . Note that, in terms of the VA
ansatz, represented above by Eqs. (9), (10), and (16), these
characteristics are given by

|ψ (r = 0, t )|2 = (πW 2)−1, 〈r〉 = (
√

π/2)W. (33)

The boundary of the PR-induced instability, produced by
systematic simulations of GPE (1), is then compared to its
counterpart predicted by the VA, based on simulations of
the Ermakov equation (13). Those long-time simulations start
with the input taken as per Eq. (18).

B. The stability boundary of the FS against the PR
under the action of the TEM

First, Fig. 1 represents a typical example of fully robust
evolution of the FS under the action of TEM, with ω = 4 and
κac = 2 exceeding 1, hence the sign of the quadratic potential
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FIG. 1. An example of stable dynamics of the FS governed by Eqs. (1) and (16), with g = 1, κac = 2, and ω = 4. (a) The input density
pattern (34), taken as per the stationary solution of Eq. (1) with κ ≡ 1. (b) The spatial Fourier transform of (a), defined according to Eq. (35).
[(c) and (d)] The evolution of the density profile and its spatial Fourier transform. [(e) and (f)] The corresponding evolution of the peak density,
|ψ (r = 0, t )|2 ≡ n(t ), and monopole moment (radial size), defined as per Eq. (31). Dashed horizontal lines in panels (e) and (f) show average
values of the corresponding variables. [(g) and (h)] The temporal Fourier transform of the peak density, n̂(	), and radial size, r̂(	), calculated
as per Eq. (32) with T = 500. Panels (i)–(l) demonstrate the results corresponding to those in (e)–(h), as produced by the VA.

in Eq. (1) indeed periodically flips, according to Eq. (2). This
figure is produced for g = 1, which is far from the critical
value (17). Figures 1(a) and 1(b) display the pattern of the
local density in the input [stationary solution of Eq. (1) with
κac = 0],

n(x, y) = |ψ (x, y)|2, (34)

and its Fourier transform,

n̂(kx, ky) =
∫∫

exp[−i(kxx + kyy)]n(x, y)dxdy

≡ 2π

∫ ∞

0
n(r)J0(kr)rdr, (35)

where it is taken into regard that n depends only on the ra-

dial coordinate, k =
√

k2
x + k2

y , and J0 is the Bessel function.

Further, the periodic evolution of the density and its Fourier
transform in the numerically generated solution with κac = 2
is displayed in Figs. 1(c) and 1(d), respectively.

Naturally, the peak density, n(r = 0), and radial size (31)
of the solution with κac = 2 feature antiphase oscillations in
Figs. 1(e) and 1(f). The spectrum of the oscillations, displayed
in Figs. 1(g) and 1(h), features the main peak at the driving

frequency, ω = 4, a weak subharmonic peak at ω = 2, a weak
one at the double frequency, ω = 8, and an additional very
weak but visible peak at the combinational sesquilateral har-
monic, ω = 6. Furthermore, comparison of Figs. 1(i)–1(l) and
1(e)–1(h) demonstrates close agreement between the simula-
tions of the full GPE and their VA-produced counterparts. It
has been also checked that, in the case of the stability, full
simulations of the underlying GPE always conserve the total
norm (10) of the wave function.

The structure of the oscillatory states shown in Fig. 1 is
typical for relatively large values of the driving frequency ω.
At small values of ω, it may be essentially different: In addi-
tion to the main low-frequency peak at 	 = ω, the spectrum
features a somewhat weaker but conspicuous one at a much
larger frequency, 	 � 2, which is easily predicted by Eq. (19),
in the case when ω is small. Examples of this are displayed in
Fig. 2, in which the top and middle rows show, respectively,
the time dependence of the FS’s radial size, 〈r〉(t ), and its
spectral counterpart, r̂(	), as obtained from the simulations of
GPE (1). In addition, the bottom row shows r̂(	) as produced
by the VA. Typical examples of the low-frequency cases, with
(ω, κac) = (0.5, 0.2) and (ω, κac) = (0.1, 0.2), are presented,
respectively, in columns (C1)–(C3) and (D1)–(D3). Note that
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FIG. 2. Panels (A1)–(D1): The radial size [monopole moment, see Eq. (31)] vs. time, produced by the simulations of Eq. (1). (A2)–(D2):
The respective spectra. (A3)–(D3): The spectra as produced by the VA. The parameters are (κac, ω) = (2, 6) in (A1)–(A3); (2,4) in (B1)–(B3);
(0.2,0.5) in (C1)–(C3); and (0.2,0.1) in (D1)–(D3). In all plots, (g, κdc) = (1, 1). At ω > 2, the main peak in the spectra, produced by the GPE
and VA alike, is at 	 = ω. At ω < 2, there is an additional major spectral peak close to 	 = 2 [it is split in subpeaks in panels (D2) and (D3)].

the peak at 	 � 2 in panels (D2) and (D3) is split into
subcomponents by combinations of the main one with those
corresponding to the small driving frequency ω [a weak com-
binational peak at 	 = 2 + ω is observed as well in panels
(C2) and (C3)]. The oscillatory states displayed in columns
(C1)–(C3) and (D1)–(D3) are akin to breathers which are
represented, in the framework of the VA, by oscillatory
solutions of Eq. (13) in the absence of the ac drive, i.e., with
κac = 0.

For the comparison’s sake, columns (A1)–(A3) and (B1)–
(B3) in Fig. 2 represent typical high-frequency cases, with
(ω, κac) = (2, 6) and (ω, κac) = (2, 4), respectively. Note that
the corresponding spectra also include peaks at 	 ≈ 2, al-
though small-amplitude ones. Furthermore, a small but visible
shift of these peaks to values of 	 slightly larger than 2 in
Figs. 2(B2) and 2(B3) is readily explained by Eq. (24).

A typical example of the PR-driven instability of the ac-
driven FS is displayed in Fig. 3. This example is produced
for ω = 2, which directly corresponds to the fundamental PR,
as given by Eq. (28) with n = 0. It is seen that both full
simulations of the underlying GPE (1) and the corresponding
numerical solution of the variational equation (13) lead to
decay of the trapped FS, which takes place after several os-
cillations with an increasing amplitude, in the interval of time

which is identified, approximately, as 0 < t < 7.5. At t ≈ 7.5,
the expanding FS hits the region where the above-mentioned
edge absorber is installed. The GPE simulations can be ex-
tended to larger times, but the results are then essentially
affected by the loss inflicted by the absorber. In any case,
the onset of the PR-induced instability is adequately revealed
by the GPE simulations at the stage which is not affected by
the absorber. The same is true as concerns the onset of the
instability at other values of parameters.

Results produced by the systematic simulations of GPE
(1) at different values of parameters ω, κac, and g (including
both g > 0 and g < 0, i.e., the self-attractive and repulsive
nonlinearity) are collected in the form of the stability diagrams
shown in Fig. 4. The ac-driven FS is stable beneath the bound-
aries shown in the left bottom corner of the plots and above
boundaries in their top parts. First, point ω = 2 at which the
instability area emerges is explained by the fundamental PR,
which is predicted by Eq. (28) with n = 0. Further, a relatively
short segment of the bottom boundary at ω ≈ 1 is explained as
a manifestation of the next-order PR corresponding to n = 1
in Eq. (28). The instability does not occur at very large values
of ω. This case can be considered by means of the above-
mentioned averaging method, which does not demonstrate any
source of instability, cf. Ref. [75].
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FIG. 3. A typical example of the evolution of an unstable FS under the action of TEM with parameters (g, κac, ω) = (5, 2, 2). Results of
simulations of the VA-produced Ermakov equation (13) and of GPE (1) are displayed, respectively, in panels (a) and then (b) and (c). In panel
(a) it is seen that, after several oscillations of the width with an increasing amplitude, fast expansion of the wave function commences. Panels
(b) and (c) display essentially the same outcome of the evolution, by means of the time dependence of 〈r〉(t ) and density profile.

Figure 4 shows that the dependence of the stability bound-
aries on the strength and sign of the nonlinearity [in particular,
in Fig. 4(a), which shows the results for g = ±5] is very
weak, including values of g in Fig. 4(b) which are close to
the collapse threshold, cf. Eq. (17). In this connection, it
is relevant to recall that, in the framework of the nonlinear
Ermakov equation (13), the boundary of the PR-induced in-
stability indeed does not depend on the nonlinearity strength,
being identical to that in the linear Mathieu equation (27).
Actually, an essential result demonstrated by Fig. 4 is that
the full GPE (1), for which the VA equations (13) and (27)
are only an approximation, produces a visible but very weak
dependence of the boundary on g, i.e., the approximation is
quite accurate, in this sense.

Note that the stability diagrams displayed in Fig. 4 include
not only values κac > 1, for which the sign of the quadratic po-
tential in Eq. (1) periodically flips, but also κac < 1, for which
the potential always keeps the trapping sign. Accordingly, the
system is more robust in the latter case [usually, only this case
is considered in the framework of the Mathieu equation (27)].

Indeed, the bottom stability area in all panels of Fig. 4 exists
solely at κac < 1.

The stability boundaries, as produced by the systematic
simulations of the GPE (1) and by the numerical solution
of the VA-produced Ermakov equation (13), are compared in
Fig. 5, by juxtaposing them in the plane of (κac, ω) for g = 0,
1, and ±5. It is seen that the VA always provides a reasonable
agreement with the full GPE, and becomes very accurate for
larger values of g.

C. The boundary of the critical collapse

A typical example of the solution which quickly devel-
ops the collapse at g = 7, that definitely exceeds the largest
value admitting the stability of the FS, is displayed in Fig. 6.
The blowup of the solution is obvious. In particular, its VA-
predicted width shrinks to zero at the collapse moment, cf. the
VA-predicted solution for the collapse in the absence of the
HO potential, given by Eqs. (25) and (26). In this case, the

FIG. 4. The stability diagram in the (κac, ω) plane for the ac-driven FS, as produced by systematic simulations of GPE (1). The instability
takes place between the top and bottom boundaries. (a) A set of boundaries for g = ±5 and g = 0, 1, which includes both the self-attractive
and repulsive signs of the nonlinearity, as well as the linear system (g = 0). (b) A set of the stability diagrams for values of g close to the
threshold of the critical collapse, at which the instability is still determined by the PR (not by the proximity to the collapse).
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FIG. 5. Stability boundaries in the plane of (κac, ω), as produced by the simulations of the GPE in the form of Eqs. (1) and (2), and by the
numerical solution of the VA-predicted Ermakov equation (13). The nonlinearity coefficient is g = 0 in (a) (i.e., the system is linear), g = 5 in
(b), and g = −5 in (c).

collapse takes place after the evolution time

t (VA)
collapse ≈ 0.64; t (numer)

collapse ≈ 0.76 (36)

in the framework of the VA or GPE simulations, respectively,
which is essentially smaller than the TEM period, 2π/ω ≈
1.57, i.e., the time modulation of the trapping potential does
not essentially affect the onset of the collapse.

Because, as mentioned above, the difference between
the numerically exact and VA-predicted values of the self-
attraction strength at the point of the onset of the critical
collapse, in the absence of TEM, is conspicuous, [g(VA)

c −
g(num)

c ]/g(VA)
c � 7%, as per Eq. (17), the VA is not appropriate

for accurate identification of the shift of gc under the action of
TEM. This was done by means of systematic simulations of
GPE (1) with the HO strength taken according to Eq. (2). An
example of the implementation of this approach is displayed
in Fig. 7. It shows that the time-average (mean) values of the
peak density and radial size of the ac-driven SF monotonously
grow and decrease, respectively, with the increase of g, pass-
ing the value g(num)

c ≈ 5.85, which corresponds to the usual TS
[see Eq. (17)], and attaining the critical point at gc ≈ 5.938, at
which the solution suffers the blowup.

The development of the collapse at a point which is almost
exactly tantamount to the critical one is displayed in Fig. 8.
Due to the action of the TEM, the collapse takes place after a
few cycles of compression and expansion of the FS.

In Fig. 9 we plot the boundary of the onset of the collapse
in the plane of (κac, ω), for three value of the self-attraction
strength g exceeding the usual critical value ≈ 5.85 [see
Eq. (17)], as produced by the systematic simulations of
Eqs. (1) and (2). A characteristic difference between the
boundary determined by the onset of the critical collapse,
and the boundary of the PR-induced instability plotted in the
same parametric plane at g < gc (cf. Figs. 4 and 5), is that the
collapse boundary shrinks to one or two segments, no stable
FS existing outside of them.

Finally, the most important characteristic of the partial
stabilization of the FS modes by TEM at

g > g(num)
c ≈ 5.85 (37)

is presented by Fig. 10, which shows the critical value gc of
the self-attraction strength, at which the solutions suffer the
blowup, vs. ω and κac. Similarly to the situation observed in
Fig. 9, the dependencies feature gaps, in which the blowup
commences at essentially lower values of g. The largest value
of gc produced by the systematic simulations is (gc)max ≈
5.938.

Note that the results summarized in Figs. 9 and 10 are
obtained for both cases of κac < 1 and κac > 1. Generally, the
latter case is more favorable for the expansion of the stability
region into the nontrivial area (37), unless ω is too small (in
particular, Fig. 9 shows no stability regions at κac < 1). These

FIG. 6. A typical example of the evolution of a collapsing FS obtained for parameters (g, κac, ω) = (7, 2, 4). (a) The shrinking width, W (t ),
as predicted by the VA, i.e., by the Ermakov equation (13). [(b) and (c)] The shrinkage of the FS as produced by the simulations of GPE (1).
The plots in panels (a), (b), and (c) are cut, respectively, at times indicated in Eq. (36).
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FIG. 7. Dependencies of mean (time-average) values of the density at the central point (a) and radial size (b), produced by simulations of
Eq. (1) and (2) with κac = 2 and ω = 4, on the self-attraction strength, g. The dependencies terminate at the collapse point, gc ≈ 5.938. This
value exceeds the standard one, gc ≈ 5.85, corresponding to the usual TSs, see Eq. (17).

trends can be understood, as Eq. (2) with κac > 1 implies
the periodic switching from the trapping (HO) potential to
the expulsive (anti-HO) one. Naturally, the anti-HO potential
tends to arrest the evolution toward the blowup at r = 0.
This feature can be demonstrated in an approximate form
by the fact that Eq. (13) (in which N = 1 is set, as above),
with κdc + κac cos(ωt ) replaced by a constant negative value
of κ , admits an FP solution in the case when g exceeds the
respective critical value, g(VA)

c = 2π [see Eq. (17)]:

WFP =
[

− 1

κ

(
g

2π
− 1

)]1/4

, (38)

cf. stationary solution (18). Of course, the FP given by
Eq. (38) is, by itself, unstable, unlike its counterpart (18),
but its appearance helps to understand how TEM makes the
FS more robust against the collapse. On the other hand, this
mechanism is not efficient for low ac-driving frequencies ω,
as the corresponding time ∼π/ω, needed for the switch be-
tween the HO and anti-HO potentials, may be larger than the
collapse time, which is approximately given by Eq. (26).

A typical example of an FS found in the nontrivial sta-
bility area (37), viz., at g = 5.90, is displayed in Fig. 11.

The dynamical structure of such states is generally similar to
that presented in Fig. 2 for g = 1. Characteristic examples,
for the same cases of the low- and high-frequency ac drive
as those in Fig. 2, are displayed in Fig. 12. Like in Fig. 2,
the spectrum features two main peaks, at 	 = ω and 	 � 2.
The latter one, predicted by Eqs. (19) and (24), features a
split shape in the case of the low-frequency drive. On the
other hand, a difference is that the time dependencies of the
peak density and radial size, as well as the respective spectra,
demonstrate robust but irregular oscillations in Fig. 12, unlike
the quasiregular dynamical regimes revealed by Fig. 2.

A noteworthy peculiarity of Figs. 10(a) and 10(b) is that
the nontrivial stability region (37) exists, up to g ≈ 5.93, even
in the limit cases of ω = 0 and κac = 0, when the ac drive is
not present. In this case, simulations of Eq. (1), with the input
taken as a stationary FS numerically found at g � g(num)

c ≈
5.85, lead to the collapse, as it might be expected. However,
the input (30) produces oscillatory states (breathers) which,
unlike the collapsing quasistationary states, may indeed keep
their dynamical stability up to g ≈ 5.93. An example of such
a dynamical regime, produced by the simulations of Eq. (1)
with g = 5.90 and κac = 0, is presented in Fig. 13. In partic-
ular, the power spectrum observed in Fig. 13(c) is typical for

FIG. 8. Panels (a) and (b) display the same as in Figs. 6(b) and 6(c) but for parameters (g, κac, ω) = (5.938, 2, 4).
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FIG. 9. Stability diagrams in the plane of (κac, ω) at values of the self-attraction strength, g, exceeding the usual critical value, g(num)
c ≈ 5.85,

see Eq. (17). Stable FSs are produced by simulations of Eqs. (1) and (2) in green areas. Fixed values of g are 5.933 in (a), 5.935 in (b), and
5.937 in (c).

oscillations in autonomous nonlinear dynamical systems, be-
ing different from that for the ac-driven system, cf. Fig. 11(e).

IV. CONCLUSION

The aim of this work is to elaborate a scheme of TEM,
which helps to stabilize 2D FS (fundamental-state) modes un-
der the action of the cubic self-attraction, that gives rise to the
critical collapse in the 2D space, thus making the usual TSs
completely unstable. The TEM scheme works by applying the
quadratic potential with the periodically flipping sign, so that
it switches between the trapping HO and expulsive anti-HO
forms. The TEM scenario can be realized in nonlinear optics
and in BEC. The analysis of the FS dynamics under the action
of TEM is performed by means of systematics simulations, in
the combination with the VA. The VA reduces the FS dynam-
ics to an equation of the Ermakov type. Stability boundaries
for the FS trapped in the periodically switching potential
have been identified, as functions of strength g of the cubic
self-attraction, and amplitude and frequency of the ac (time-
periodic) part of the potential’s strength. Below the standard
(Townes) collapse threshold, which means g < g(num)

c ≈ 5.85
in the notation adopted here, the stability area is bounded by

the onset of the fundamental or higher-order PR. This bound-
ary is well approximated by the VA, including the system
with the self-repulsive nonlinearity, g < 0, and the linear one
(g = 0). At g > gc, the collapse boundary is identified for FSs
by means of systematic simulations of the underlying GPE.
The largest value of the self-attraction strength, which admits
the stability against the critical collapse in the system, is g ≈
5.938, exceeding the standard one, g(num)

c ≈ 5.85, by ≈1.5%.
This increase, although relatively small, is a significant result,
as the standard collapse threshold is usually strictly fixed. The
extension of the stability region above g(num)

c ≈ 5.85 takes
place also in the absence of the TEM. It is explained by the
fact that a breather, in the form of an oscillatory FS, may
keep its stability against the collapse at values of g which are
somewhat larger than 5.85.

The obtained results can be verified in experiments, and,
as concerns the implementation in optics, they may find
applications to the design of photonic devices based on
waveguide-antiwaveguide schemes.

A natural direction for the continuation of the work is
the development of the analysis for 2D states with intrinsic
vorticity, which will be reported elsewhere. Another possi-
bility is the consideration of TEM in the 1D system with

FIG. 10. (a) The critical value, gc, of the self-attraction strength, g, at which the trapped FS is destroyed by the blowup, vs. the driving
frequency, ω, at several fixed values of ac-drive’s amplitude, κac. (b) The same for gc as a function of κac at fixed values of ω. Gaps in which
the dependencies are not displayed are regions in which gc falls to essentially lower values.
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FIG. 11. A typical stable FS found in region (37), at parameters (g, κdc, κac, ω) = (5.90, 1, 2, 4). The solution is produced by simulations
of Eq. (1) with input (30). (a) The spatiotemporal density profile. (b) The cross section of the spatial profile, |ψ (y = 0, x)|2 at t = 100. [(c) and
(d)] The evolution of the peak power, |ψ (x = y = 0, t )|2, and effective radius (31). [(e) and (f)] Spectra of the Fourier transform of the same
variables, defined as per Eq. (32).

the quintic self-attraction, which gives rise to the TSs and
critical collapse in 1D [88–90]. It may also be interesting
to consider the 2D model which includes, as an additional
stabilizing ingredient, a permanent anharmonic (quartic) term
in the trapping potential. Such a term was considered in the
context of BEC in various settings [91–94].
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