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Mutual information in changing environments: Nonlinear interactions, out-of-equilibrium systems,
and continuously varying diffusivities
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Biochemistry, ecology, and neuroscience are examples of prominent fields aiming at describing interacting
systems that exhibit nontrivial couplings to complex, ever-changing environments. We have recently shown that
linear interactions and a switching environment are encoded separately in the mutual information of the overall
system. Here we first generalize these findings to a broad class of nonlinear interacting models. We find that
a new term in the mutual information appears, quantifying the interplay between nonlinear interactions and
environmental changes, and leading to either constructive or destructive information interference. Furthermore,
we show that a higher mutual information emerges in out-of-equilibrium environments with respect to an
equilibrium scenario. Finally, we generalize our framework to the case of continuously varying environments. We
find that environmental changes can be mapped exactly into an effective spatially varying diffusion coefficient,
shedding light on modeling of biophysical systems in inhomogeneous media.
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I. INTRODUCTION

An accurate description of real-world systems should cap-
ture both their internal interactions and their couplings with
noisy, ever-changing environments. The main difficulty stems
from the fact that often environmental changes are not directly
observable, hence leading to the necessity of more simplified
yet informative approaches. The more simplistic one might
be to ignore environmental effects. However, it is now well
understood that these are fundamental ingredients in many
different fields, from biology to neuroscience [1–8]. A slightly
more complete understanding of real-world systems would
come from the estimation of effective couplings, in princi-
ple affected also by the presence of a changing environment
[9–11]. Although this idea might lead to descriptive models,
it makes it impossible to understand whether the observed
behaviors originate from internal interactions or are sheer
consequences of a shared environment.

Examples of interacting systems affected by an ever-
changing environment pervades nature. Species in ecological
networks interact among them, being constantly affected by
sudden changes in their surrounding ecosystems (e.g., cli-
matic, artificial) [2]. Similarly, neurons form an intricate
network of connections and are affected by external stimuli,
either externally controlled or unknown and not observable
[8]. Other examples are proteins in the cytoplasm, subjects
to ceaseless chemical reactions [12], tracers in active crowded
baths [13,14], and particles diffusing in inhomogeneous media
[15]. In all these scenarios, the environment can be considered
independent from the internal degrees of freedom and acting
on a different timescale.

*Present address: Max Planck Institute for the Physics of Complex
Systems, 01187 Dresden, Germany (busiello@pks.mpg.de).

In this intricate scenario, information theory might be the
leading framework to determine the role of different coupling
sources in shaping complex systems’ behaviors. In particular,
a key quantity is the mutual information associated with two
stationary processes x1(t ) and x2(t ),

I =
∫

dx1dx2 p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
, (1)

which is nothing but the Kullback-Leibler divergence be-
tween p(x1, x2), the joint stationary probability distribution,
and p(x1)p(x2), the product of their marginalized stationary
distributions [16]. I quantifies the overall dependency between
x1 and x2. Recently, we showed that the mutual information of
systems with linear interactions and a switching discrete-state
environment receive disentangled contributions from environ-
mental and internal interactions [17]. This result revealed that
the properties of the information content of complex systems
can be particularly informative, and that tools from informa-
tion theory may greatly help to capture their essential features
[18].

Here we generalize our previous results to more complex
systems, highlighting criticalities and potentialities of the pro-
posed approach. First, we show that the presence of nonlinear
interactions may give rise to a new interference term in the
mutual information. This additional contribution may lead to
both an increase and a decrease of the mutual information with
respect to the sum of the contributions associated with the
environment and the internal interactions. A careful analysis
of the system under investigation here reveals the phenomeno-
logical origin of this constructive or destructive information
interference.

Then we show that in systems placed out-of-equilibrium
by the presence of a multiplicative noise (e.g., a thermal
gradient), in the absence of interactions, the environmental in-
formation increases with the magnitude of the nonequilibrium
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term. Finally, we consider the case in which the environment
is described by a continuous process [15,19]. We show that
the effect of the environment at stationarity can be mapped
into a heterogeneous diffusion coefficient, i.e., an effective
inhomogeneous medium. Thus, the presence of changing
environments cannot always be mapped into effective interac-
tions among degrees of freedom, as one may naively believe,
but sometimes it manifests into indirect spatial couplings. This
result highlights a potential warning for inference methods
trying to estimate interactions from measured data.

II. TIMESCALE SEPARATION APPROACH

Consider a system of N possibly interacting particles that
share the same changing environment, whose effect is to mod-
ify the overall diffusion coefficient. In general, we assume that
we have a finite number M of environmental states, i.e., the
diffusion coefficient of the system only takes discrete values.
We will eventually relax this condition.

This framework is analogous to the one introduced in
Ref. [17]. It is described by the following Fokker-Planck
equation,

∂t pi(x, t ) =
N∑

μ=1

∂μ[Fμ(x)pi(x, t )] +
N∑

μ=1

∂2
μ[Di pi(x, t )]

+
M∑

j=1

[Wj→i p j (x, t ) − Wi→ j pi(x, t )], (2)

where x = (x1, . . . , xN ) indicates all internal degrees of free-
dom, Fμ(x) is the μth component of a generic force field,
Wi→ j is the transition rate from the ith to the jth environmen-
tal state, and Di is the diffusion coefficient associated with
such states. We are interested in the stationary solution of
Eq. (2), whose finding is, in general, a particularly challenging
task. Therefore, we resort to a timescale separation approach
in which the environment can be either much faster or much
slower than all timescales at which the internal dynamics
operates.

Let us assume that τ is the fastest timescale associated
with the force field F, whereas the jump process between the
environmental states occurs on a typical timescale τenv. For
instance, if M = 2 we would have τenv = (W1→2 + W2→1)−1.
Then, we first consider the limit τ/τenv := δ � 1 and seek a
formal solution of the form

pi(x, t ) = p(0)
i (x, t ) + δ p(1)

i (x, t ) + O(δ2). (3)

Rescaling the time by the slowest timescale, that is t → t/τenv,
we end up with

∂t p(0)
i = 1

δ

N∑
μ=1

{
∂μ

[
F̃μ(x)p(0)

i

] + ∂2
μ

[
D̃i p

(0)
i

]}

+
N∑

μ=1

{
∂μ

[
F̃μ(x)p(1)

i

] + ∂2
μ

[
D̃i p

(1)
i

]}

+
M∑

j=1

[
W̃j→i p

(0)
j − W̃i→ j p(0)

i

] + O(δ),

where F̃μ := τFμ, D̃i := τDi, and W̃i→ j := τenvWi→ j . The
leading δ−1 order corresponds to the stationary solution of the
Fokker-Planck equation associated with the fastest dynamics
alone. Here, this is equal to the distribution Pst

i (x) that solves
the interacting dynamics at a fixed environmental state Di:

0 =
N∑

μ=1

{
∂μ

[
Fμ(x)Pst

i (x)
] + ∂2

μ

[
DiP

st
i (x)

]}
. (4)

We can always assume that the zeroth-order solution of Eq. (2)
can be written as p(0)

i (x, t ) = πi(t )Pst
i (x) (see also Ref. [20]).

Then, by integrating over x, the O(1) order gives

∂tπi(t ) =
M∑

j=1

[W̃j→iπ j (t ) − W̃i→ jπi(t )].

Hence, the zeroth order for the steady state reads

pslow(x) :=
M∑

i=1

p(0)
i (x)|δ�1 =

M∑
i=1

[
πiP

st
i (x)

]
, (5)

where πi are the stationary probabilities of the jump process
alone, and the subscript slow” refers to the fact the environ-
ment is the slowest process in this limit. Equation (5) is a
mixture distribution, where the mixture components are the
stationary solutions obtained with a fixed environmental state
i, Pst

i (x).
These calculations can be easily carried out in the opposite

limit, τenv/τ = δ−1 � 1, i.e., when the environment is much
faster than the internal processes. In this case, the stationary
joint probability distribution pfast (x) that solves Eq. (2) is
given by the solution of

0 =
N∑

μ=1

{
∂μ[Fμ(x)pfast (x)] + ∂2

μ

[(∑
i

πiDi

)
pfast (x)

]}
.

(6)

The system feels an effective diffusion coefficient
∑

i πiDi,
which is the stationary ensemble average of all environmental
states, as a consequence of the presence of the environment.

III. MUTUAL INFORMATION: DEPENDENCIES
AND BOUNDS

For the sake of simplicity, here we focus on the case
of two particles moving in a one-dimensional (1D) space,
x = (x1, x2), and two environmental states, specified by the
diffusion coefficients D− and D+. In what follows, the envi-
ronmental states will be indexed by i ∈ {−,+}. Accordingly,
w± is the rate of transition into the state i = ±. The multi-
dimensional generalization is straightforward. In Ref. [17],
we showed that, in the presence of linear interactions the
mutual information associated with the stationary solution of
Eq. (2) can be exactly disentangled into two independent con-
tributions. The first one depends solely on the environmental
dimensionless parameters, D−/D+ and w−/w+. The second,
instead, only depends on the internal interactions between the
two particles. Hence, the dependencies between x1 and x2 in-
duced by the environment and by the internal interactions are
fully disentangled. Notably, in this case Eq. (5) corresponds to
a Gaussian mixture, which allows for analytical calculations.
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We now relax the assumption of linear interactions and
explore the effects of nonlinear couplings. In particular, we
already know that the mutual information in the fast-jumps
limit, Eq. (6), only contains the contribution from the inter-
nal interactions, since the environment results in a constant
effective diffusion. Conversely, the slow-jumps limit is much
more intriguing. In this case, both environment and internal
couplings will contribute to the mutual information between
x1 and x2, Eq. (1), but their interplay is far from being easy to
predict.

As a general remark, we notice that the mutual information
can only depend on dimensionless quantities since it is itself
dimensionless. These, in turn, may depend on environmental
features, internal parameters, or combinations of both. In the
slow-jumps limit, by inspecting Eq. (5), the parameter w+/w−
can only enter through π± = w±/(w± + w∓). Then, the sta-
tionary solution of the dynamics at a fixed environment, Pst

± ,
determines all the other dimensionless parameters in play.

Moreover, the slow-jumps limit allows us to consider some
simple bounds [16] on the entropy of a mixture distribution,
and thus on the mutual information. Let H12 be the joint
entropy associated to the probability distribution pslow(x1, x2)
defined by Eq. (5), and let Hi

12 be the entropy of its ith
component Pst

i (x1, x2). This joint entropy is bounded by (see
Appendix A)∑

i

πiH
i
12 � H12 �

∑
i

πi
[
Hi

12 − log πi
]
. (7)

Analogous bounds can be cast for H1 and H2, i.e., the en-
tropies of the marginal distributions pslow(x1) and pslow(x2),
respectively. Then, a lower (upper) bound on the mutual in-
formation, I = H1 + H2 − H12, can be found by taking these
lower (upper) bounds on H1 and H2 and the upper (lower)
one on H12, Eq. (7). Therefore, the mutual information of the
mixture distribution, Eq. (5), is bounded by∑

i

πiI
i − Hjumps � I �

∑
i

πiI
i + 2Hjumps, (8)

where Hjumps = −∑
i πi log πi is the entropy associated with

the environmental jumps, and Ii = Hi
1 + Hi

2 − Hi
12 is the mu-

tual information associated with the ith component Pst
i (x1, x2)

of the joint distribution.
These bounds can be greatly improved [17,21], provided

our ability to compute some suitable information distances
both between the components of the mixture distribution
in Eq. (5) and the components of the two corresponding
marginalizations. However, besides the Gaussian case, this
is often challenging. Generally speaking, Eq. (8) shows that
the mutual information cannot be larger than the sum of the
weighted average of the mutual information in the different
environmental states and twice the entropy of the jumps.
Albeit loose, this upper bound shows that, in principle, the
system may contain more information than the sum of the
contributions stemming from the environment and the inter-
nal interactions. Therefore, on the one hand, we expect and
later show that the presence of nonlinear interactions might
undermine the exact disentangling holding for the linear case.
On the other hand, in what follows we also report situa-
tions in which the presence of nonlinearities boost, or even
suppress, the overall mutual information due to internal and

environmental couplings. These observations effectively hin-
der our ability to pinpoint the presence of interactions in
complex systems, but reveal surprising properties of the as-
sociated information quantities.

IV. ENVIRONMENTAL CONTRIBUTION WITH
NONLINEAR RELAXATION

Let us start with a nonlinear, yet noninteracting, case. Each
particle diffuses in the 1D potential

U (xμ) = x4
μ

4τ
, (9)

depicted in Fig. 1(a). Hence, the drift term in Eq. (2) is
simply given by the potential gradient Fμ(xμ) = −∂μU (xμ) =
−x3

μ/τ , resulting in a nonlinear relaxation. Notice that, in this
case, the only dimensionless parameters are given by w−/w+
and D−/D+.

In the slow-jumps limit, this term leads to the following
mixture components:

Pst
i (x1, x2) =

√
Diτπ2

2

�
(

3
4

)
�

(
1
4

) exp

(
−x4

1 + x4
2

4Diτ

)
, (10)

which are the solutions of Eq. (4). The corresponding
marginal distributions are

Pst
i (xμ) = �

(
3
4

)
π (Diτ )1/4

e− x4
μ

4Diτ (11)

and, clearly, Pst
i (x1, x2) = Pst

i (x1)Pst
i (x2) since the particles

are not interacting. The joint mixture distribution, defined in
Eq. (5), and its factorization,

2∏
μ=1

pslow(xμ) =
2∏

μ=1

{ ∑
i={+,−}

[
πiP

st
i (xμ)

]}
,

are plotted in Figs. 1(b) and 1(c). Notably, the effects of
the environment on the joint distribution, with respect to the
factorized probability distribution, reflect into a suppression
of the tails along the axes. We are interested in the mutual
information I of the joint probability distribution pslow(x1, x2).
Since there are no interaction between x1 and x2, the only con-
tribution to I can come from the shared environment. Hence,
for simplicity, we name this mutual information Ienv.

As for the linear case [17], we are able to compute the
pairwise distance bounds [21] on Ienv analytically, starting
from Eqs. (10) and (11) (see Appendix B). In particular, we
find that the lower bound obeys

I low
env

(
D−
D+

,
w−
w+

)
= −π+ log

[
π+ + h1

C

(D−
D+

)
π−

]2

π+ + h2
D

(D−
D+

)
π−

− π− log

[
h1

C

(D+
D−

)
π+ + π−

]2

h2
D

(D+
D−

)
π+ + π−

(12)

where h1
C (x) = (4x)1/8/(1 + x)1/4 and h1

D(x) = (x − 1 −
log x)/4 are, respectively, the 1/2-Chernoff and Kullback-
Leibler divergence between the − and + components of the
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FIG. 1. The environmental contribution to the mutual information as a function of D−/D+ and w−/w+ in a quartic potential and in the
slow-jumps limit. For all plots, τ = 1. (a) The quartic potential considered here. [(b) and (c)] Contour plots of the joint probability distribution
and its factorization, respectively, for D+ = 10, D− = 10−2, w− = w+. Notice that the marginalized probability has much longer tails along the
axis x = 0 and y = 0. (d) The colored surface is the result of a Monte Carlo integration with importance sampling of the mutual information.
In the D−/D+ → 0 limit, Ienv approaches Hjumps, the black dashed line, which is also its maximum value. (e) Compared with the linear case,
the nonlinear relaxation reflects into a considerably slower convergence toward Hjumps of the mutual information.

marginal distribution. The divergences between the analogous
components of the joint distribution are, respectively, h2

C (x) =
2h1

C (x) and h2
D(x) = 2h1

D(x). The upper bound Iup
env is identical

to Eq. (12), with the exchange hC ↔ hD.
Crucially, these bounds converge to the same limits of the

linear case, namely,

Ienv

(
D−
D+

,
w−
w+

)
=

{
Hjumps if D−/D+ � 1
0 if D−/D+ ≈ 1 , (13)

but their convergence rate is slower than the one obtained in
the linear regime [see Fig. 1(e)]. This is perhaps unsurprising,
since the nonlinear relaxation increases the typical autocorre-
lation timescale and thus reduces the impact of environmental
changes. In Fig. 1(d), we show the mutual information in this
slow-jumps limit, computed via importance sampling [22]. In
particular, we sample the components of the joint distribution
starting from the potential in Eq. (9) via Hamiltonian Monte-
carlo [23,24]. Then, each component is weighted according to
the stationary distribution of the environment, for any given
w−/w+, to obtain samples of Eq. (5). In Fig. 1(e) we see that,
at a given value of D−/D+, the mutual information due to
the environment is typically smaller than the case of linear
relaxation.

It is possible to show that, for any potential of the form
U (xμ) ∝ x2n

μ , with n a positive integer, the bounds in Eq. (12)
always saturate to Hjump when D−/D+ → 0 and vanish when
D− → D+ (see Appendix B). This result, which is consistent
with the one presented for linear interactions in Ref. [17],
remarks that, when the variability of the environment is max-
imal, any two noninteracting degrees of freedom share the

information contained into the Shannon entropy associated
with the external jump process, Hjumps. Importantly, in all
these noninteracting cases, the only dimensionless parameters
we can build are once more w−/w+, which determines the
persistence of the two environmental states, and D−/D+, de-
scribing how similar the environmental states are. Although
the probability distributions in Eq. (11) and Eq. (10) do not
depend only on such combinations, the mutual information
does (see also Ref. [17]).

V. MUTUAL INFORMATION IN NONLINEAR
POTENTIALS

We now consider nonlinear interactions between the two
particles. To keep things analytically tractable, we assume that
the drift term in Eq. (2) can be written as the gradient of a
potential of the form

V (x1, x2) =
∑

μ

U (xμ) + Vint (x1, x2), (14)

where U (xμ) = x4
μ/4τ , so that the solution of Eq. (4) is given

by Pst
i (x1, x2) ∝ exp[−V (x1, x2)/Di]. Hence, we are focusing

on equilibrium systems with nonlinear relaxation and nonlin-
ear interactions. In particular, Vint depends on parameters that
may combine with τ and Di to form a set of dimensionless
parameters {ψ}. In what follows, it will be useful to distin-
guish between those combinations that include Di, which we
call {ψi}, and those that only depend on the parameters of the
potential V , termed {ψint}.
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For convenience, let us identify all the different contri-
butions to the mutual information of the overall system.
First, we call Ienv the mutual information stemming from the
shared environment alone, which we obtained in the previous
section. It can only depend on the environmental dimen-
sionless parameters, D−/D+ and w−/w+. Second, we call
I int ({ψint}, {ψi}) the mutual information stemming from the
components Pst

i (x1, x2) of the joint distribution, which can
only depend on {ψint} and on {ψi}. Given that such ith de-
pendence may be present, we write in full generality

Ipot ({ψ}) =
∑

i

πiI
int ({ψint}, {ψi}). (15)

This term stems from the presence of internal interactions,
since in the absence of Vint such components are factorizable
and their mutual information is zero. Notice that this form is
consistent with the first term of the upper bound in Eq. (8)
and, if no dimensionless parameter depends on i, it reduces
to Ipot = I int ({ψint}) which is the correct expression for linear
interactions [17].

Therefore, we choose to decompose the mutual informa-
tion of the overall system as

I

(
w−
w+

,
D−
D+

, {ψ}
)

= Ienv

(
w−
w+

,
D−
D+

)
+ Ipot ({ψ})

+ �

(
w−
w+

,
D−
D+

, {ψ}
)

, (16)

where the term � quantifies the contributions due to the pres-
ence of both the environment and the interactions at once. In
general, this is not a mutual information, i.e., it needs not to
be positive, and may depend on all dimensionless parameters.
For these reasons, we name this term as information interfer-
ence. In Ref. [17], we showed that this term is always zero
in the case of linear interactions. However, we often cannot
find analytical expressions for all the terms in Eq. (16), and
we have to resort to numerical integration.

Hence, unless otherwise specified, the mutual information
in Eq. (16) is obtained as outlined in the previous section.
We employ Hamiltonian Montecarlo to sample the joint dis-
tribution associated with the potential in Eq. (14), and we
weight these samples according to the corresponding mixture
distribution, Eq. (5). Then, the mutual information integral
is evaluated by importance sampling. Crucially, importance
sampling requires the knowledge of the analytical expressions
of both the joint and the marginal mixture components [22],
which we need to compute for every choice of the potential.
Hence, we need to solve Eq. (4) to find the expression for
Pst

i (x1, x2), as well as its marginalization.

A. Destructive information interference

We first study the case

V (x1, x2) = x4
1 + x4

2

4τ
− g

x2
1x2

2

2
:= Vsw(x1, x2), (17)

where for stability g > 0. This single-well potential, depicted
in Fig. 2(a), has one stable minima at (x1, x2) = (0, 0). In

the slow-jumps limit, the mixture components of the joint
distributions follows a Boltzmann-like distribution

Pst
i (x1, x2) = 1

Nsw
e−Vsw(x1,x2 )/Di , (18)

where the normalization Nsw can be computed analytically.
The corresponding marginal components are

Pst
i (xμ) =

√
gx2

μτ

2N 2
sw

K 1
4

(
g2x4

μτ

8Di

)
e(−2+g2τ 2 )

x4
μ

8Diτ , (19)

where Kn(x) is the modified Bessel function of the second
kind. We plot the corresponding mixture distributions in see
Figs. 2(b) and 2(c).

With this choice of the potential, the only dimensionless
parameters appearing in the mutual information are D−/D+,
w−/w+, and gτ . The first two belong to the environment,
while the last one is the sole quantity characterizing the in-
teractions. That is, we expect that Ipot = I int

sw (gτ ), although
it is not possible to find an exact expression for this term.
Notice that we only have to inspect the dynamics for a fixed
environment to determine the dimensionless relevant quan-
tities, and add w−/w+ that modulates the mixture in the
slow-jumps limit. In other words, and as for the linear case,
the mutual information of the joint distribution, Isw, cannot
depend separately on D− and D+ thus being independent of
the environmental state.

Consequently, we write Isw as

Isw

(
w−
w+

,
D−
D+

, τg

)
= Ienv

(
w−
w+

,
D−
D+

)
+ I int

sw (τg)

+ �sw

(
w−
w+

,
D−
D+

, τg

)
. (20)

Let us investigate separately the impact of interactions and
environmental changes in this example. First, the effect of
the interactions in the joint probability distribution reflects
into the appearance of tails along the axes x1 = 0 and x2 = 0
[see Figs. 2(b) and 2(c)]. The higher is g, the longer the
tails. Conversely, the environment affects the joint distribu-
tion by suppressing such tails as the difference between D−
and D+ becomes more pronounced. Since these two terms
operate in opposite ways, the mutual information takes con-
trasting contributions. As a consequence of this interplay
between changing environment and nonlinear interactions, in
Figs. 2(d)–2(f), we see the mutual information of the over-
all system, Isw, is always smaller than the sum of Ienv and
I int
sw , and can also be smaller than Ienv for some values of

(w−/w+, D−/D+). This means that �sw � 0 in the entire
space, and �sw < −I int

sw in some regions of the parameter
space [see Fig. 2(f)]. Naively speaking, nonlinear interactions
can mask environmental information, by counteracting the de-
pendency induced by a switching environment and effectively
reducing the information that x1 and x2 share. We name this
phenomenon destructive information interference.

However, the limiting behaviors of Isw can be understood
as discussed in Ref. [17], and the disentangling is possible
provided some knowledge of the environmental states in these
regimes. Indeed, when D−/D+ → 1, the only contribution to
the mutual information comes from the interactions alone,
I int
sw (τg). Similarly, in the opposite limit D−/D+ → 0, the
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FIG. 2. The total mutual information Isw in the single-well case, as a function of D−/D+ and w−/w+, in the slow-jumps limit. For all plots,
τg = 10. (a) The single-well potential considered here. [(b) and (c)] Contour plots of the joint probability distribution and its factorization,
respectively, for D+ = 10, D− = 10−2, w− = w+. The marginalized probability has much longer tails along the axis x = 0 and y = 0, which
tend to be suppressed by the environment. However, these tails are still present in the joint probability as a consequence of the interactions.
(d) The colored surface is the result of a Monte Carlo integration with importance sampling of Isw, whereas the gray surface represent the
environmental contribution alone Ienv. (e) Isw (black dots) can be smaller than Ienv (gray dashed line) and, in general, it is lower than the sum of
I int
sw and Ienv (red dashed line). (f) In fact, the term �sw is always negative, showing that the effects of the environment and of the interactions

are reciprocally masked at low-enough values of D−/D+. For D−/D+ → 0, 1 we find �sw = 0, hence the environmental and the interactions
contributions are disentangled.

numerical integration shows that the two contributions to the
mutual information are exactly disentangled, i.e.,

Isw

(
w−
w+

,
D−
D+

, τg

)
=

{
Hjumps + I int

sw (τg) if D−
D+

� 1

I int
sw (τg) if D−

D+
≈ 1

,

(21)
that means that in both limits �sw → 0. In Fig. 2(e), we
compare this fully disentangled form (in red) with the mu-
tual information at fixed w−/w+ and for different values
of D−/D+ (black dots). We see that indeed this disentan-
gling is only achieved in the limits in Eq. (21), whereas at
intermediate values of D−/D+ destructive interference re-
duces Isw.

B. Constructive information interference

In the previous section, we argued that the destructive
information interference stems from the fact that interactions
and environment operate on the same axes in opposite ways.
Indeed, we now show that a rotation of the interaction term
in Eq. (17) of an angle π/4 generates instead a cooperation
of the two terms that can boost the overall mutual informa-
tion. In analogy with the previous case, this feature is named
constructive information interference.

Thus, the potential governing the system, shown in
Fig. 3(a), is

Vswr (x1, x2) = x4
1 + x4

2

4τ
− g

||Rπ/4(x, y)||2
2

, (22)

where Rθ is the rotation matrix of angle θ , || · ||2 is the L2

norm and g > 0.
In this scenario, the joint and marginal mixture components

in the slow-jumps limit can be again found analytically, and
are given by

Pst
i (x1, x2) = 1

Nswr
e−Vswr (x1,x2 )/Di (23)

and

Pst
i (xμ) =

√
gπ2

2α

|xμ|[I− 1
4

(
βix4

μ

) + I 1
4

(
βix4

μ

)]
2Nswr

e
x4
μ (g2−128α)

128αDi ,

(24)

where In(x) is the modified Bessel function of the first kind,
α = τ−1/4 + g/8 and βi = g2/(128αDi ).

As in the previous case, the dimensionless parameters ap-
pearing in the mutual information are w−/w+, D−/D+, and
gτ . This implies once more that in Eq. (16) we have Ipot =
I int
swr (gτ ). Hence, the interference term in Eq. (16), �swr, will

again depend on all of them. However, in this case, the role
of the interactions is to introduce tails along the bisectors of
the (x1, x2) plane, whereas the environment keeps acting on
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FIG. 3. The total mutual information Iswr in the rotated single-well case, as a function of D−/D+ and w−/w+, in the slow-jumps limit.
For all plots, τg = 10. (a) The rotated single-well potential considered here. [(b) and (c)] Contour plots of the joint probability distribution
and its factorization, respectively, for D+ = 10, D− = 10−2, w− = w+. The marginalized probability has much longer tails along the axis
x = 0 and y = 0, which are suppressed in the joint probability as a consequence of the environment. Contrary to the single-well case, the
interactions here trigger the presence of tails along the bisectors of the (x, y) plane. (d) The colored surface is the result of a Monte Carlo
integration with importance sampling of Iswr, whereas the gray surface represent the environmental contribution alone Ienv. (e) Iswr (black dots)
is always greater than Ienv (gray dashed line) and, in general, it is greater than the sum of I int

swr and Ienv (red dashed line). (f) The term �swr is
always positive, and in particular it is different from zero at high enough values of D−/D+. For D−/D+ → 0, 1 we end up with �swr = 0 as
expected.

the x1 = 0 and x2 = 0 axes. Hence, nonlinear interactions do
not counteract the dependency induced by the environment.
As a consequence, as shown in Figs. 3(d) and 3(e), the mutual
information of the overall system is very close to the sum of
the environmental and the interaction terms, i.e., �swr ≈ 0.
Moreover, there is a region in the parameter space in which
�swr > 0, meaning that x1 and x2 share more information
than the one coming from the changing environment and their
sheer couplings.

We remark that the limiting behaviors of the mutual in-
formation exhibit an exact disentangling, as before. Thus,
when D−/D+ → 0, �swr → 0, and Ienv → Hjumps, while for
D− → D+ only I int

swr survives.

C. Information peaks in bistable systems

As a last example, here we consider the slightly more
complex case of a bistable system. In particular, we have the
following potential:

Vdw(x1, x2) = x4
1 + x4

2

4τ
− gxy, (25)

where g > 0. This potential, depicted in Fig. 4(a), has two
stable minima at (x1, x2) = (±√

gτ ,±√
gτ ). The joint and the

marginal mixture components in the slow-jumps limit are

Pst
i (x1, x2) = 1

Ndw
e−Vdw(x1,x2 )/Di (26)

and

Pst
i (xμ) =

[(
D9

i τ
) 1

4 �

(
1

4

)
0F2

(
1

2
,

3

4
; αix

4
μ

)
+ g2x2

μ(Diτ )
3
4

× �

(
3

4

)
0F2

(
5

4
,

3

2
; αix

4
μ

)]
e− x4

μ

4Diτ√
2D2

i Ndw

, (27)

where pFq(a1, . . . , ap; b1, . . . , bq; x) is the generalized hyper-
geometric function, αi = g4τ/(64D3

i ), and Ndw can be found
analytically. As we can see in Figs. 4(b) and 4(c), the joint
probability distribution has two peaks corresponding to the
two minima of the potential, whereas the factorized distribu-
tion presents four peaks with connections among them that
reflect the influence of a switching environment.

The first crucial difference between this case and the pre-
vious ones is that the dimensionless parameters appearing
in the mutual information mix environmental and interaction
features. Indeed, they are w−/w+, D−/τg2, and D+/τg2, with
D−/D+ resulting from a combination of the last two parame-
ters. Hence, differently from the previous cases, we can write
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FIG. 4. The total mutual information Idw in the double-well case, as a function of the adimensional parameters D±/(τg2), in the slow-jumps
limit. For all plots, w−/w+ = 1, τ = g = 1. (a) The double-well potential considered here. [(b) and (c)] Contour plots of the joint probability
distribution and its factorization, respectively, for D+ = 10, D− = 10−2. The joint probability has two peaks, corresponding to the two minima
of the potential. On the contrary, the marginalized probability is markedly different, with four peaks. (d) The colored surface is the result of a
Monte Carlo integration with importance sampling of Idw, whereas the gray surface represent the environmental contribution alone Ienv, in the
plane (D−/τg2, D+/τg2). (e) The mutual information I int

dw of the interactions only. At large D, we expect the two minima to be less relevant,
and indeed the mutual information vanishes. At small D, instead, I int

dw is markedly different from zero since the particles are typically trapped in
one of the two minima. At intermediate values the mutual information peaks due to an interplay between trapping and diffusion. (e) The term
�dw can be either positive and negative, meaning that, at different values of D±/(τg2), we find both constructive and destructive interference.
Clearly, when D− ≈ D+, we have �dw ≈ 0.

Eq. (16) as

Idw

(
w−
w+

,
D−
τg2

,
D+
τg2

)
= Ienv

(
w−
w+

,
D−
D+

)
+

∑
i

πiI
int
dw

(
Di

τg2

)

+ �dw

(
w−
w+

,
D−
τg2

,
D+
τg2

)
(28)

and we plot it in Fig. 4(d).
The dependence on the diffusion coefficient of the inter-

action term, I int
dw, shown in Fig. 4(e), can be explained on an

intuitive basis. Indeed, the distance between Pst
i (x1, x2) and

its factorization receives the most contributions from the fact
that the latter has four peaks, due to the implicit assumption of
independence between x1 and x2. However, when D is large,
the system can easily escape the potential minima, and thus
they will not contribute to I int

dw, which vanishes as D grows.
Conversely, small values of D weight more the potential

minima, since the system is substantially trapped in them. In
this limit, I int

dw converges to a nonzero value due to the fact that
only two of the peaks of the factorized distribution are present
in the joint distribution. Finally, we observe an emerging peak
of I int

dw at a finite value of D. This optimal diffusion naively
allows the system to explore both minima from time to time,
still being trapped for a consistent amount of time during each
stochastic realization.

In Fig. 4(f), we report �dw for the specific case w− = w+.
All other choices do not qualitatively change the picture. In
this scenario, �dw can be either positive and negative, ex-
hibiting a nontrivial pattern of constructive and destructive
information interference. This pattern, although hard to under-
stand analytically, is intuitively a consequence of the system
switching from a state in which it is trapped in one single
minimum, to a state in which it can freely explore larger
regions of the (x1, x2) plane.

We also remark that in this case it is difficult to define
the usual limiting behaviors of the mutual information of
the overall system in which the disentangling is recovered.
Indeed, D−/D+ is not the only relevant parameter of the sys-
tem and the limit D−/D+ → 0 is not particularly informative
anymore.

VI. MUTUAL INFORMATION IN NONEQUILIBRIUM
ENVIRONMENTS

So far, we investigated systems coupled with an ever-
changing environment that eventually relax to equilibrium.
However, nature usually operates out-of-equilibrium, and
most of the environments of biochemical, neural, and eco-
logical systems are in nonequilibrium conditions. To study
a minimal model encompassing this additional feature, we
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FIG. 5. Mutual information in the presence of multiplicative
noise. [(a) and (b)] The joint and the marginal probability distribu-
tions in the slow-jumps limit. (c) As we increase the temperature
gradient �T , the mutual information increases. Here the different
curves are for �T = {0.15, 0.29, 0.43, 0.57}, T0 = τ = 1, γ+ = 1.5,
and γ− = 0.5.

consider the following dynamics:

ẋμ = − 1

τ
xμ + γi(t )

√
2T (xμ)ξμ, (29)

with i(t ) is a realization of the stochastic process govern-
ing the environment, μ = 1, 2, and T (xμ) = T0 + xμ�T is a
linear temperature gradient, for the sake of simplicity. This
picture can capture the key features of a diffusing molecule
that can live in two conformational states [25–28]. Alter-
natively, it can be a simple way to describe proteins in an
environment with patches of different density (e.g., liquid
condensates [12,29]) subject to an external gradient. Since dif-
fusion and temperature are connected by the Einstein relation,
D(x) ∝ γ T (x), here the environment may act as a modifica-
tion of the viscosity, in the case of patches of different density,
or the motility, when the switching describes two different
conformational states. These diffusive properties are encoded
into γi(t ) that can take two values, γ− and γ+, replacing the
role of D− and D+ of the previous models.

The peculiarity of this model is the presence of a mul-
tiplicative noise proportional to xμ. Since there are no
interactions, the joint component is just the product of the
two mixture components. Here xμ ∈ [−T0/�T,+∞], and
�T <

√
T0/γ τ to ensure flat derivatives at the boundaries,

so that no particles can escape the system. Hence, the mixture
components read:

Pi(xμ) = N e− 1
τ

xμ
γ�T

(
1 + �T

T0
xμ

) 1
τ

T0/�T
γ�T −1

. (30)

In Figs. 5(a) and 5(b), we respectively show the joint and
factorized distributions of this system, that are both symmetric
with respect to the bisector x1 = x2. In this case, we compute
the mutual information of pslow(x1, x2) as a standard numer-
ical integral, which we plot in Fig. 5(c), as a function of

w−/w+ for increasing �T . We can effectively conclude that
the presence of a multiplicative noise increase the shared in-
formation between two (noninteracting) degrees of freedom.

Finally, as in the presence of a non multiplicative noise, the
mutual information vanishes when γ− → γ+, whereas it con-
verges to Hjumps for γ−/γ+ → 0, hence preserving the limiting
behaviors that are crucial to perform an exact disentangling
[17].

VII. MUTUAL INFORMATION IN CONTINUOUS
ENVIRONMENTS

Finally, we consider the case in which two particles are
not interacting, but share the same continuous environment
[15,19]. To fix the ideas, let us consider the paradigmatic
example of two Ornstein-Uhlenbeck processes,

{
ẋμ = −xμ/τX + √

2D ξμ

Ḋ = −D/τD + √
2θ ξD

, (31)

where the only adimensional parameter of the system is now
τX /τD, which governs the timescale separation of the two
dynamics. Hence, contrary to the case of a discrete-state
environment, we cannot define the separation between envi-
ronmental states (previously quantified by D−/D+) nor their
relative persistence, which was given by w−/w+.

The corresponding stationary Fokker-Planck equation is
given by

0 =
2∑

μ=1

[
∂μ

(
xμ

τX
p(x, D)

)
+ D2∂2

μ p(x, D)

]

+ ∂D

[
D

τD
p(x, D)

]
+ θ∂2

D p(x, D) (32)

and, as before, we are interested in the marginalization
p(x, t ) = ∫

dDp(x, D, t ). Notably, if we explicitly marginal-
ize Eq. (32), then at stationarity we obtain

0 =
2∑

μ=1

[
∂μ

(
xμ

τX
p(x)

)
+ ∂2

μ(D̂2(x)p(x))

]
, (33)

where D̂2(x) = ∫
dD D2 p(D|x) is an effective spatial dif-

fusion coefficient. Therefore, we can interpret the effective
dependencies induced by the environment as arising from an
inhomogeneous medium, rather than associated with effective
couplings between x1 and x2. It is also worth noting that, in
principle, space-dependent diffusion coefficients, interpreted
in the Ito sense, might always emerge from the variations of an
external stochastic environment, which is also the sole respon-
sible for a nonzero mutual information. This result might shed
some light on the controversial topic of the Ito-Stratonovich
dilemma in diffusing chemical systems. A similar perspective,
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FIG. 6. The mutual information associated to the Langevin equa-
tions in Eq. (31). [(a) and (b)] Plots of the joint and the factorized
distribution in the limit of a much slower environment, τX /τD � 1.
(c) Mutual information at different values of τX /τD estimated through
a k-nearest-neighbors estimator. As expected, in the limit τX /τD � 1
the mutual information converges to Eq. (36), whereas it vanishes in
the opposite limit.

where the internal states play an analogous role of a changing
environment, is presented in Ref. [28].

In the limit in which the environment is either much faster
or much slower than the internal relaxation, i.e., respectively
τX /τD � 1 and τX /τD � 1, we can repeat the calculations of
Sec. I. In the presence of a slower environment, we find the
following stationary joint probability distribution

pslow(x1, x2) =
∫ +∞

−∞
dD pst (D)pst (x1, x2|D)

= 1

2π

√(
x2

1 + x2
2

)
θτDτX

e
−

√
x2+y2

θτDτX , (34)

where pst (D) ∼ N (0, τDθ ) is the stationary distribution of the
diffusion coefficient and pst (x1, x2|D) ∼ N (0, τX D2) is the
stationary distribution of (x1, x2) at fixed D. Eq. (34) can be
marginalized exactly over one of the two degrees of freedom,
in order to evaluate the mutual information. The marginaliza-
tion leads to

pslow(xμ) = 1

π
√

θτDτX
K0

( |xμ|√
θτDτX

)
. (35)

These probability distributions are plotted in Figs. 6(a) and
6(b). The joint probability in Eq. (34) is not factorizable,
and thus we expect that in this limit the mutual information
of pslow(x1, x2), Islow

cont , will be different from zero due to the
shared environment. Since in this case there are no dimen-
sionless parameters characterizing environmental dynamics,
we also expect no parametric dependence. Indeed, we can
immediately rewrite the mutual information integral after the
change of variable (x1, x2) = √

θτDτX (s cos φ, s sin φ) as

Islow
cont = γE + log

π

2
− 1

− 1

π

∫ ∞

0
ds e−s

∫ 2π

0
dφ log K0(s| cos φ|), (36)

where γE is the Euler’s constant. The numerical value is
Islow
cont ≈ 0.148.

In the opposite limit, τX /τD � 1, since 〈D〉pst (D) = 0 we
trivially find that pfast (x1, x2) = ∏

μ δ(xμ). Therefore, the mu-
tual information vanishes in this limit. At intermediate values
of τX /τD, we cannot solve Eq. (32) exactly. Therefore, to
obtain samples from the stationary joint distribution, we sim-
ulate the Langevin equations Eq. (31). Then, from these
samples, we estimate the mutual information through the k-
nearest-neighbors estimator proposed in [30,31]. The results
are plotted in Fig. 6(c). As expected, the mutual information
changes smoothly with τX /τD and, in the limit τX /τD → 0,
approaches Eq. (36).

VIII. CONCLUSIONS

In this work, we showed that tackling the information
properties of complex systems in changing environment is a
feasible task, even in the presence of nonlinear interactions,
nonequilibrium conditions, and continuously varying environ-
ments.

In particular, in the presence of nonlinear couplings, the re-
sulting information structure can be interpreted as an interplay
between the effects of internal interactions and environmental
changes. This interplay can be generically quantified by an
information interference term, which surprisingly cancels ex-
actly in the case of linear interactions [17].

Moreover, we showed that continuously varying envi-
ronments can be mapped into an effective spatial diffusion
coefficient. This result might be a crucial step to understand
under which conditions a shared changing environment gen-
erates effective couplings, and in which ones it does not.
Additionally, the emergence of an effective space-dependent
diffusion from external couplings might shed some light on
the Ito-Stratonovich dilemma when describing biological and
biochemical systems in inhomogeneous media.

Our results have important implications in settings where
we expect nonlinear or out-of-equilibrium effects to be cru-
cial, such as neural activity originated by external stimulation
[32–34] or population growth [35–37]. Notably, it was shown
that, in models with latent variables, phenomenological renor-
malization group approaches can give seemingly nontrivial
results [38,39]. Such models are formally similar to the frame-
work of a changing environment analyzed here, and future
works should be devoted to understand the relation between
our results and the underlying information properties of these
models.

Further, concepts such as mutual information and disen-
tangled representations of the data are particularly relevant
in the context of machine learning [40–42]. Indeed, it will
be paramount to unravel how these approaches might benefit
from the results presented in this work.

Ultimately, we believe that this work highlights criticali-
ties and potentialities of an information-theoretic approach to
study more general and complex real-world systems. In par-
ticular, the unforeseen findings presented here might reveal, in
the future, surprising properties of the information structure of
complex systems with far-reaching consequences in different
interdisciplinary fields.
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APPENDIX A: DERIVATION OF THE BOUNDS ON THE
JOINT ENTROPY

Here we briefly derive the bounds on the joint entropy [16]
in the slow-jumps limit,

HX = −
∫

dx pslow(x) log pslow(x), (A1)

where pslow is the mixture distribution defined by Eq. (5).
This entropy lacks in general an analytical expression, but it
is often the case that we can compute the entropy of the ith
component of pslow,

Hi
X = −

∫
dxPstat

i (x) log Pstat
i (x). (A2)

Let us now call HX,E the joint entropy between the system
and the environment, where the environment is repre-
sented by the set of probabilities {π} appearing in Eq. (5).
Then, the properties of the conditional entropy allow us to
write

HX � HX|E , (A3)

where

HX|E =
∑

i

πiH
i
X. (A4)

Similarly, we can write

HX � HX,E = HX|E + HE , (A5)

where HE = −∑
i πi log πi = Hjumps. In the case of two vari-

ables presented in the main text, HX = H12.

APPENDIX B: DERIVATION OF THE BOUNDS ON THE
ENVIRONMENTAL MUTUAL INFORMATION WITH

NONLINEAR RELAXATION

Let us derive the pairwise distance bounds [17,21] pre-
sented in Sec. IV. We consider the case of a generic nonlinear
relaxation in the slow-jumps limit,

U (xμ) = x2n
μ

2nτ
, (B1)

where n is a positive integer. The components of the joint
distribution, Eq. (5), can be written as

Pst
i (x1, x2) = (2Dinτ )−1/n

4�2
(
1 + 1

2n

)e− x2n
1 +x2n

2
2Dinτ . (B2)

Similarly, their marginalization is

Pst
i (xμ) = n

�
(

1
2n

)
(2Dinτ )1/2n

e− x2n
μ

2Dinτ . (B3)

We are interested in the mutual information

Ienv =
∫

dx1, dx2 pslow(x1, x2) log
pslow(x1, x2)

pslow(x1)pslow(x2)
,

where pslow(x1, x2) = ∑
i πiPst

i (x1, x2) and pslow(xμ) =∑
i πiPst

i (xμ), for i ∈ {−,+}, are mixture distributions.
In order to derive the bounds proposed in Ref. [21], we

compute the 1/2-Chernoff divergence between the compo-
nents of the mixture distribution,

C1/2(Pst
− , Pst

+ ) = − log
∫

dx
√

Pst− (x)Pst+ (x), (B4)

and the Kullback-Leibler divergence,

DKL(Pst
−||Pst

+ ) =
∫

dxPst
− (x) log

Pst
− (x)

Pst+ (x)
. (B5)

These divergences can be easily calculated, and they only
depend on the ratio ε = D−/D+. In particular, the 1/2-
Chernoff divergences between the components of the joint
and of the marginal distribution, Eqs. (B2) and (B3), are given
by

Cjoint
1/2 (ε) = −1

n
log

[
2
√

ε

1 + ε

]
, (B6)

Cmarg
1/2 (ε) = 1

2
Cjoint

1/2 (Pst
− , Pst

+ ). (B7)

Similarly,

Djoint
KL (ε) = ε − 1 − log ε

n
, (B8)

Dmarg
KL (ε) = 1

2
Djoint

KL (Pst
−||Pst

+ ), (B9)

are the Kullback-Leibler divergences between the − compo-
nents and the + components.

Then, the lower bound reads

I low
env = −π+ log

[
π+ + e−Cmarg

1/2 (ε)π−
]2

π+ + e−Djoint
KL (ε)π−

− π− log

[
e−Cmarg

1/2 (1/ε)π+ + π−
]2

e−Djoint
KL (1/ε)π+ + π−

(B10)

and the upper bound is

Iup
env = −π+ log

[
π+ + e−Dmarg

KL (ε)π−
]2

π+ + e−Cjoint
1/2 (ε)π−

− π− log

[
e−Dmarg

KL (1/ε)π+ + π−
]2

e−Cjoint
1/2 (1/ε)π+ + π−

. (B11)

Inserting n = 2 into the above expression gives the results
presented in the main text.

In particular, notice that both Cjoint
1/2 (ε) and Djoint

KL (ε) diverge
as − log ε as ε → 0. Therefore, the upper and lower bounds
on Ienv converge to Hjumps in this limit, implying that Ienv →
Hjumps.
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