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Numerically probing the universal operator growth hypothesis
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Recently, a hypothesis on the complexity growth of unitarily evolving operators was presented. This hypothe-
sis states that in generic, nonintegrable many-body systems, the so-called Lanczos coefficients associated with an
autocorrelation function grow asymptotically linear, with a logarithmic correction in one-dimensional systems.
In contrast, the growth is expected to be slower in integrable or free models. In this paper, we numerically
test this hypothesis for a variety of exemplary systems, including one-dimensional and two-dimensional Ising
models as well as one-dimensional Heisenberg models. While we find the hypothesis to be practically fulfilled
for all considered Ising models, the onset of the hypothesized universal behavior could not be observed in the
attainable numerical data for the Heisenberg model. The proposed linear bound on operator growth associated
with the hypothesis eventually stems from geometric arguments involving the locality of the Hamiltonian as
well as the lattice configuration. We derive and investigate a related geometric bound, and we find that while
the bound itself is not sharply achieved for any considered model, the hypothesis is nonetheless fulfilled in most

cases.
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I. INTRODUCTION

The issue of the emergence of irreversible behavior from
the unitary time evolution of quantum mechanics has yet
to be answered in a satisfying manner [1]. In this context,
concepts like the “eigenstate thermalization hypothesis” [2—4]
and “quantum typicality” [5—7] have been introduced as possi-
ble fundamental mechanisms behind an eventual equilibration
of isolated quantum systems. The idea of typicality is that an
overwhelming majority of pure states (at some energy) give
rise to corresponding thermal expectation values. Thus, it is
quite likely that over the course of time, a pure state eventually
ends up in the giant “bubble” of typical states, signaling an
apparent equilibration of the system. In the Heisenberg picture
formulation of quantum mechanics, it is not the states that
are time-dependent, but rather the observables themselves.
Hence, it may be somewhat expected to find a similar no-
tion of typicality for observables, going from initially simple,
few-particle operators to more complex, generic operators.
Recent works have studied this notion of operator growth from
various angles [8—13].

In this paper, we refer to the particular work presented
in Ref. [14], in which a hypothesis on the universality of
operator growth is brought forth. Said hypothesis is formu-
lated in the framework of the recursion method [15,16], and it
makes a statement about the growth of the so-called Lanczos
coefficients, real numbers that characterize the complexity
growth of operators over the course of time. In the following,
we numerically test this operator growth hypothesis for vari-
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ous models and observables. Similar numerical investigations
have been conducted [17,18].

The paper at hand is organized as follows: we briefly re-
state the universal operator growth hypothesis and introduce
related quantities in Sec. II. Following that, in Sec. III we
derive an upper bound on the complexity growth of operators
based on geometric arguments. We present our numerical
results and relate them to the operator growth hypothesis in
Sec. IV. We summarize our main results and conclude in
Sec. V.

II. OPERATOR GROWTH HYPOTHESIS

For self-containedness, in this section we restate the op-
erator growth hypothesis brought forward in Ref. [14]. To
start, the main quantities that eventually play a role in the
hypothesis are introduced. We consider a system in the ther-
modynamic limit described by a local Hamiltonian H [here,
local means short-range, few-body interactions]. An observ-
able of interest represented by a Hermitian operator O gives
rise to a corresponding autocorrelation function

C@t) = Tr[O)0], )

where O(t) = €™ Oe7"" is the time-dependent operator in
the Heisenberg picture (/i = 1). In the following, it is conve-
nient to work directly in the Hilbert space of operators and
denote its elements O as states |O). This Hilbert space of oper-
ators is equipped with an inner product (O]0,) = Tr[O}L 0,],
which induces a norm via ||O]| = +/(O|0O). The Liouvillian
superoperator is defined by £|0) = [H, O] and propagates a
state |O) in time such that the autocorrelation function may be
written as C(t) = (0|e'~|0).

The Lanczos algorithm can be employed to calculate a
tridiagonal representation of the Liouvillian £ in a (finite)
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subspace determined by some “seed” observable O. To start
the iterative scheme detailed below, we take the normalized
initial state |Og) = |0), i.e., (O|0) = 1, and set by = ||LOy||
as well as |O;) = L]0y)/b;. Then we iteratively compute
|Qn) = ‘Clon—l) - bn—l |On—2)’
bn = ||Qn| |s
|0n) = |Qn)/bn‘ (2)

The tridiagonal representation of the Liouvillian in the Krylov
basis {|0,)} is then given by

0 b 0
b 0 b

Lyn = (0,1L10,) = | 7! : NG))
0 b

mn

where the Lanczos coefficients b, are real, positive numbers
output by the algorithm. They can be interpreted as hopping
amplitudes in a tight-binding model, and their iterative com-
putation is an elementary part of the recursion method [15,16].

Before the hypothesis itself is stated, we will briefly
present the relation between the Lanczos coefficients b, and
the autocorrelation function C(¢) or, respectively, its Fourier
transform, the spectral function

oo
®(w) = / e C(t)dt. 4)
—0o0

There exists a (nonlinear) one-to-one map between the Lanc-
zos coefficients b, and the spectral function ®(w), thus a set
of b,’s uniquely determines ®(w) and vice versa. It can be
shown that the Lanczos coefficients b,, appear in the continued
fraction expansion of ®(w), i.e.,

2

®(w) = Re
b

®)
iw+ 2
v+ —2
iw—+---

The universal operator growth hypothesis brought forward
in Ref. [14] concerns the asymptotic behavior of the Lanczos
coefficients b,. The hypothesis can informally be stated as
follows: The Lanczos coefficients b, should “grow as fast
as possible” in generic, nonintegrable systems. It turns out
that (as detailed below) the fastest possible growth rate is
(asymptotically) linear, i.e.,

b, ~an+y +o(1) (6)

for some real constants « > 0 and y. In the special case
of a one-dimensional system, the fastest possible growth is
sublinear due to an additional logarithmic correction, i.e.,

by ~ A —— + o(n/Inn), (7
Inn

where A > 0 is a real constant and o(g,) denotes some real
sequence f, with lim, . |f,/g:] = 0.

These bounds on the fastest possible (asymptotic) growth
eventually originate from a powerful statement on the behav-
ior of the spectral function ®(w) for large w. The spectral
function usually features nonvanishing high-frequency tails

for generic many-body systems. By means of geometric argu-
ments, these tails can be rigorously bounded by an exponential
function such that

d(w) < Ke ™! ®)

for some adequately chosen constant K > 0 and decay con-
stant k > 0, which is related to the geometry of the system
[19]. It can be shown that spectral functions actually featuring
exponentially decaying tails give rise to asymptotically linear
growth in the Lanczos coefficients [20,21]. Therefore, the
operator growth hypothesis is equivalent to an exponentially
decaying spectral function, and it basically states that the
Lanczos coefficients should grow as fast as “permitted by the
geometry.” There are a few examples for which linear growth
is analytically known to be achieved [14,22].

III. BOUND ON GROWTH VIA MOMENTS

The asymptotically linear bound on the growth of b, or,
respectively, the exponential bound on the decay of the spec-
tral function ®(w) are ultimately a consequence of geometric
arguments concerning the locality of the Hamiltonian and
the observable as well as the specific lattice geometry of the
system [19].

A straightforward way to apply these arguments is by con-
sidering the moments p,, of the autocorrelation function and
determining an upper bound by taking the respective system
geometry into account. The moments of the autocorrelation
function C(¢) are defined by

d2n
Han = =5 C0)) ©)

or, respectively, in terms of the spectral function

Hon = /wz” d(w)dw. (10)

Since C(¢) is an even function, all odd moments necessarily
vanish. The information contained in the moments i, is iden-
tical to the information conveyed by the Lanczos coefficients
b,. Itis detailed in Appendix how to translate between the two
quantities.

Employing the Heisenberg equation of motion for time-
dependent operators, Eq. (9) can be written as

o = |IL"OI1%. (11)
This quantity will be bounded from above in the following.
We again consider a local operator O with ||O|| =1 and

a local Hamiltonian # = ), h, with local terms h, or, re-
spectively, a local Liouvillian £ =), €, with local terms
b = [hy, - 1.

The norm of a local Liouvillian £ (we assume periodicity
such that all ¢; are of the same type) applied to some operator
A can be bounded by

[IEAIl < ETIAIlL (12)

where £ = Epax — Emin denotes the maximum eigenvalue of
£, and Enax (Emin) 1 the maximum (minimum) eigenvalue of
h. The equality holds if the operator A is an eigenoperator
of the local Liouvillian corresponding to the largest eigen-
value. Utilizing the triangle inequality and iteratively applying
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Eq. (12) yields

I£"0l =11 > Ol
kiy...sky
< [k, - - - £k, O
ki,....ky
< Y & =E" Nam(n), (13)
kiy...sky

where Ny, denotes the number of terms in the sum (it is spec-
ified below which terms are actually counted). This number
typically grows quite fast with n and can be exactly deter-
mined for simple geometries, as is presented at the end of this
section. Consequently, the moments can be bounded as

pan = [|1L"0|]> < E"Ngy (). (14)

Regarding the former results, it can be noted that the above
bound is tighter than similar bounds brought forth in Ref. [14].
For instance, E*'N2 (n) < (2€')*"P?, where the right-hand
side refers to the bound corresponding to asymptotically linear
growth presented in Appendix F of Ref. [14]. For more details,
see also Ref. [26].

The fastest possible growing moments, i.e., moments equal
to the right-hand side of Eq. (14), can be translated to corre-
sponding Lanczos coefficients as described in Appendix. For
later reference, we denote the coefficients obtained in this way
by B,. They depend on the energy scale £ as well as on the
lattice geometry expressed through Ngy,,. Both quantities are
exactly known for the models studied below. Even though
Eq. (14) gives a rigorous upper bound on the moments, the
B, obtained from this bound do not necessarily constitute a
pointwise upper bound on b,. In Sec. IV A, we give more
details on the interpretation of the coefficients B,,.

To end this section, we determine the number Ny, for the
simple case of a one-dimensional chain with nearest-neighbor
interactions, i.e., H = Zz he ¢+1. We start with a local oper-
ator O whose support is only on-site zero (the support of an
operator contains all sites on which the operator is not equal
to the identity, e.g.,here O = -- - @ I Q Oy ® I ® - - -, where
I denotes the identity on a given site).

The operator LO consists of operators £_; o0y with sup-
port on sites (—1,0) as well as £y 109 with support on
sites (0,1). Next, £2O contains six operators with support on
sites (-2, —1,0), (—1,0), (—-1,0,1), (—1,0,1), (0,1), and
(0,1,2), respectively. In these lists, we include (and count)
trivially nonvanishing operators, i.e., operators that vanish
due to a lack of overlap between respective supports are
not counted (for example, the operator 39Oy trivially van-
ishes), however operators with respective overlap between
supports (like £y 10p) are always counted, even though the
operator may vanish due to the specific choice of the local
Hamiltonian and initial observable. In this manner, we it-
eratively apply the Liouvillian to the initial operator, grow
the supports accordingly, and keep track of the number of
potentially nonvanishing operators. For the case at hand,
the above procedure gives rise to a sequence of numbers
Nam(n) =1, 2,6,22,94,454, 2430, 14214, ... of terms in
the sum in Eq. (14). As rigorously shown in Ref. [23], there

exists a closed mathematical expression for this sequence, i.e.,
Ngm(n) = B,(2), where B, denote the Bell polynomials.

The above strategy of counting terms (which is presented
in Ref. [23] in a more rigorous way) in principle also works
for more complicated geometries, e.g., higher-dimensional
or with long-range interactions. However, it can be quite
involved to keep track of all contributions, and closed ex-
pressions such as the one above are generally difficult to
come by. Thus, for the lattice geometries investigated below,
i.e., with next-nearest-neighbor and two-dimensional interac-
tions, respectively, we compute the sequences iteratively up to
some 7.

IV. NUMERICAL ANALYSIS

In this section, we numerically check the proposed oper-
ator growth hypothesis by explicitly calculating the Lanczos
coefficients b, for various exemplary setups. These setups in-
clude one-dimensional (1D) and two-dimensional (2D) Ising
models as well as 1D Heisenberg models, all paired with a
variety of different observables. We compare the calculated b,
with the coefficients B, [obtained from the right-hand side of
Eq. (14)] by explicitly calculating £ and Ny, for each model.

In practice, it is only possible (for the considered systems
at least) to obtain a finite number N of Lanczos coefficients
b,, since the dimension of the operator space grows expo-
nentially. The achievable number of coefficients N is around
30 for the 1D Ising model and around 15 for the Heisenberg
model. The difference in obtainable b, is due to the fact
that the operator space grows much faster for the Heisenberg
model than for the Ising model. For all considered systems,
the Hamiltonian H consist of two terms, an integrable part
and an integrability-breaking part V, i.e.,

H="Ho+ 21V (15)

(except for the 2D Ising model, where H, is already non-
integrable). The parameter A tunes the nonintegrability of
the model. We suppose that the total Hamiltonian H (as
well as Ho and V individually) can be written in terms of
local Hamiltonians, i.e., H = ), hy. Again, the local terms
usually describe short-range, few-body interactions. For each
model, we consider a number of observables O. Importantly,
all observables should have zero overlap with any conserved
quantity [24], for example, (O|H) = 0.

A. Transverse Ising model

The first model under consideration is a transverse Ising
model with a tilted field. Respective unperturbed and total
Hamiltonians are given by

Ho =) Juoi oty + B0,
4
H=Ho+B:Y o}, (16)
14

where o,”"* denote Pauli operators on site £. The mag-
netic field B, in the x-direction plays the role of the
integrability-breaking parameter A in Eq. (15), i.e., the sys-
tem is nonintegrable for B, # 0 and integrable for B, = 0.
We set J,, = 1.0 and B, = —1.05 and calculate the Lanczos
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FIG. 1. Lanczos coefficients b, of the transverse Ising model for the 2-local observables (a) O, (b) slow mode of O with ¢ = 7/13,
and (c) fast mode of 0;2) with ¢ = 7. The integrability-breaking magnetic field attains values from B, = 0.0 to 0.5. For all observables, the
transition from a free model to a nonintegrable model is evident. The coefficients B, are explicitly depicted in (a) for the case B, = 0.5 as
yellow triangles. Dashed lines indicate the “lower branches” of the corresponding B,,. To avoid clutter, only the dashed lines are depicted as a
guide to the eye for other values of B, and in all subsequent figures. The coefficients 3, are larger than the physical b, by a factor of about 2

for all observables.

coefficients for various observables as detailed in Sec. II. In
practice, it is convenient to adopt the set of Pauli strings as a
working basis of the Hilbert space of operators [14,25].

The behavior of the Lanczos coefficients during a transition
from an integrable to a nonintegrable 1D Ising model has
been systematically probed in Ref. [17] for local observables
supported on one or two sites. Thus, here, we primarily focus
on observables with support throughout the whole system. As
a first example, we consider the 2-local observable

0" o< Y " 1.050/0},, +0f,
¢

a7

where 2-local means that the local terms are supported on two
sites, respectively. The choice of the parameter 1.05 in front
of the xx-coupling term ensures that (O'"|{) = 0. This exact
setup was also studied in Ref. [14]. The corresponding Lanc-
zos coefficients are depicted in Fig. 1(a) for various values of
the integrability-breaking parameter B, .

The Hamiltonian of the bare transverse Ising model (with
B, =0) can be mapped onto free fermions via a Jordan-
Wigner transformation. Further, the observable in Eq. (17)
is local in the fermionic picture. In this noninteracting case,
the Lanczos coefficients seem to be more or less constant. As
soon as a small perturbation that breaks the integrability is
introduced, e.g., B, = 0.01, the Lanczos coefficients begin to
grow. The distinction between the free case and nonintegrable
cases is clearly visible in Fig. 1(a). The growth of the Lanczos
coefficients for larger values of B, already looks quite linear.
A possible logarithmic correction due to the system’s one-
dimensionality is not directly noticeable in the data, although
it has been observed in this model [17].

Before we continue, we want to make some remarks on
the interpretation of the coefficients 5,. As mentioned, the
B, are computed by assuming that the moments grow as fast
as possible, i.e., an equality sign in Eq. (14), and translating
these maximum moments to Lanczos coefficients as detailed
in Appendix. However, even though Eq. (14) gives a rigorous
upper bound on the moments, the resulting 3, do not necessar-
ily constitute a strict pointwise upper bound on the b, (this is
simply due to the way the Lanczos coefficients are calculated
from the moments). Thus, the B, should not be thought of as
such. Rather, the B, represent a sort of “global uniform” upper

bound, meaning that it is impossible to further increase the
value of one specific coefficient “by hand” without simulta-
neously decreasing the value of another one (or several other
ones). In this sense, the B, are the “maximum” coefficients.
If the “physical” coefficients b, followed the B, tightly, then
one could indeed conclude that the upper bound in Eq. (14)
was sharply achieved and that the Lanczos coefficients would
indeed grow ‘“as fast as possible,” given the constraints in
Eqgs. (12) and (13).

The values of the B, are explicitly depicted in Fig. 1(a)
for B, = 0.5. The coefficients clearly exhibit some even-odd
effects. These even-odd effects also occur for all other consid-
ered parameters and models. To avoid clutter, we only show
the “lower branches” of the B, as dashed lines for smaller
values of B,. Therefore, the dashed lines in Fig. 1(a) (and all
subsequent figures) serve as a guide to the eye for the “max-
imal possible” coefficients 3,. The energy scale is £ = 3.2
(for B, = 0.5), and Ny, is obtained as detailed at the end of
Sec. III, with the important difference that the initial operator
is now supported on two sites. In Fig. 1(a), it is evident that
the coefficients B, are larger than the physical coefficients b,
by about a factor of 2. Thus, the upper bound on the moments
is not sharply achieved, i.e., Eq. (14) is an overestimate [26].

This general behavior of the b, as well as the B, is repro-
duced for the next observable, which constitutes an energy
density wave with momentum g¢, i.e.,

0% oc Y " cos(ql)hy. (18)
4

We study a relatively slow dynamic with ¢ = 7 /13 and
a relatively fast dynamic with ¢ = 7. Both observables are
local in the fermionic picture. The Lanczos coefficients b,, and
coefficients B, are depicted in Fig. 1(b) for ¢ = 7 /13 and in
Fig. 1(c) for ¢ = m. In both cases, the qualitative behavior
is quite similar to the first observable. Again, the Lanczos
coefficients of the free model with B, = 0 seem to be more
or less constant. Once the additional magnetic field is added,
the model becomes nonintegrable, and at some point the b,
grow approximately linearly. Just as for the first observable,
the derived bounds are not tight and the 5, are larger by a
factor of about 2.
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FIG. 2. Lanczos coefficients b, of the transverse Ising model
for a local observable O® = o7 for various integrability-breaking
parameters B,. The distinction between the free and nonintegrable
curves is not as striking as before. The green dash-dotted line indi-
cates a fit o« 4/n to the data of the integrable model. Dashed lines
serve as a guide to the eye for the coefficients B,, which are larger
by a factor of about 2.

The final considered observable for the one-dimensional
Ising model is a local operator whose support only contains a
single site, i.e.,

0% =of. (19)

The corresponding Lanczos coefficients are depicted in
Fig. 2. There is a clear qualitative difference compared to the
observables investigated thus far. For the free case with B, =
0, the Lanczos coefficients seem to no longer be bounded by
a constant. Rather, the growth is quite accurately described
by a square-root o /% (see the fit). For this particular model
and observable, the square-root-like growth can be understood
analytically [22]. Further, this kind of growth has been ob-
served for a variety of other integrable models [14,16,27].
We suspect that this qualitatively different behavior compared
to the previous cases is due to the specific choice of the
observable, which is, in contrast to all previously considered
observables, nonlocal in the fermionic picture. Consequently,
one could be inclined to formulate two sufficient conditions,
which both have to be met in order for the b, to be bounded by
a constant. First, the Hamiltonian has to describe a free model,
and second, the observable has to be local. For the observable
at hand, which is nonlocal in the fermionic picture, the second
condition is violated. Therefore, the Lanczos coefficients are
not bounded by a constant, rather they grow as a square root.

As the Hamiltonian departs from the integrable/free point
once B, # 0, the b, grow faster (which is not too surprising,
since there are simply more terms in the Hamiltonian). From
the computed data it is not immediately obvious whether
the growth becomes linear (with a logarithmic correction) or
remains more or less square-root-like. Possibly, the data for
larger B, in Fig. 2 hint at an onset of linear growth for larger
n. However, the distinction is certainly not as clear as for the
local observables. Again, the BB, are off by a factor of about 2.

It is interesting to note that in the nonintegrable models, all
considered observables seem more or less to lead to similar
growth patterns and attain similar values for larger n. For com-
parison, Figure 3 depicts the Lanczos coefficients for all four

20
o=0"07 .07,
15
<10 )
//
0 Z
0 10 20 30

n

FIG. 3. Comparison between Lanczos coefficients for the Ising
model with B, = 0.5 for all four observables considered thus far.
The growth is quite similar for larger n hinting at a universality of
operator growth.

observables considered thus far for B, = 0.5. This figure cer-
tainly supports the hypothesis of a universality of operator
growth brought forth in Ref. [14]. Particularly striking is the
relation between the observable O'" and the slow Fourier
mode 0(q2=)7T /130 since for n 2 10 the coefficients practically
coincide.

Before leaving the Ising model and continuing with the
Heisenberg model, we want to briefly present data on the
2D Ising model. As the 2D Ising model is nonintegrable,
the hypothesis predicts a strict asymptotically linear growth
(without logarithmic correction) of the Lanczos coefficients
b,. Respective Hamiltonians of the two-dimensional Ising
model are given by

_ x X /X x z
Ho =) Ju0i v0f0 + 08007 s + B0
v

H=Ho+B:Y ofy. (20)

e

where primed indices number the vertical direction and un-
primed indices the horizontal direction.

As in the one-dimensional case, we set J,, = 1.0, B, =
—1.05, and vary B,. The coupling strength in the vertical
direction is set to J/, = 0.5. Note that this model is nonin-
tegrable for all values of B,. The energy scale is given by
& =3.9 (for B, =0.5).

We again consider a local observable whose support is only
on one site, i.e.,

0 = oty 1)

The Lanczos coefficients b, are depicted in Fig. 4. Since
the space of operators grows extremely fast, it is only prac-
tically possible to calculate about 13 coefficients. These
coefficients grow in a nicely linear fashion for all values of B,
which is in accord with the operator growth hypothesis. The
coefficients B, from the derived upper bound on the moments
are so far off that there is an additional vertical axis for the
coefficients B, on the right side in Fig. 4, which includes
a factor of 4. As mentioned, the number Ny, is computed
iteratively. For the two-dimensional Ising model, the operator
space grows so fast that the /3, are only attainable upton = 5.
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FIG. 4. Lanczos coefficients b, of the two-dimensional trans-
verse Ising model for an observable O = o, for various B,. For
all values of B, the growth is nicely linear. Dashed lines serve as
a guide to eye for the coefficients 5,, which are much larger (note
the additional vertical axis on the right).

Summarizing the results from this section, the operator
growth hypothesis is supported by (most of) the numerical
data. The Lanczos coefficients of the one-dimensional non-
integrable Ising models seem to eventually attain approximate
linear growth for observables that are local in the fermionic
picture. In these cases, the transition from free to noninte-
grable is clearly visible. A possible logarithmic correction
is not directly noticeable in the presented data. However,
it is possible to reveal the predicted correction by rescal-
ing the axes appropriately [17]. Further, the data for the
two-dimensional Ising model support the hypothesis for all
considered values of B,. Only the data for the third observable
0¥ = oy remain somewhat inconclusive. The transition is
not as distinct as for the other observables, however the onset
of the hypothesized universal behavior may be suspected for
larger n.

All these numerical results support the operator growth
hypothesis proposed in Ref. [14] in the sense that the b,
grow asymptotically linear. This is the first main result of the
present paper.

The second main result concerns the “maximal” coeffi-
cients B,. While our “optimized” bound in Eq. (14) also
corresponds to asymptotically linear growth, there is a signif-
icant gap between the B, and the actual, physical coefficients
by.

B. Heisenberg model

The second model of interest is a Heisenberg model with
an additional next-nearest-neighbor interaction. Respective
Hamiltonians are given by

— X 5 X p Z.2
Ho =) 070}y +0)0),, + Aojog,,,
¢

H="Ho+ AN oiof,,. (22)
e

The anisotropy of the nearest-neighbor interaction is
denoted by A, and the integrability-breaking next-nearest-
neighbor interaction [28-30] is tuned by the parameter A’
[which plays the role of A in Eq. (15)]. The bare Heisenberg
chain (A" = 0) is integrable for any anisotropy A.

Oy Y cos(ql)o; A’ =0.0,0.01,0.1, B, ----
’
N (a) A=05 || (b)a=05 ) 40
6 q=m/13 =7 e 30
<4 - 20
9 - - ' = 10
0 0
! (c)a=15 (d)ya=1ts5 o0
qg=m/13 q=m
40
= o
4
0—= 0
0 0 5 10 15

n n

FIG. 5. Lanczos coefficients b, of the Heisenberg model for spin
density waves. Depicted are various combinations of anisotropies
and momenta: (a) A =0.5, g=7m/13; (b) A=0.5 g=m; (¢)
A =15,9g=mnr/13;(d) A = 1.5, ¢ = m. The integrability-breaking
parameter A’ attains values from 0.0 to 0.5. Dashed lines serve as a
guide to the eye for the coefficients 13,, which are much larger (note
the additional vertical axes on the right).

The model is gapless and exhibits ballistic transport be-
havior (of spin and energy) for |A| < 1, whereas for |A]| > 1
the transport of spin is diffusive, while energy transport is
still ballistic [31]. In the following numerics, we cover both
cases by choosing values A = 0.5, 1.5. The parameter A’ that
breaks the integrability is varied in the same fashion as B, in
the Ising model.

Note that the full Hamiltonian in Eq. (22) conserves the
total magnetization in the z-direction. Therefore, it is natural
to consider spin density waves with momentum ¢, i.e.,

04 o Y cos(ql)o. (23)
14

Similar to the energy density wave in the Ising model, we
study a relatively slow dynamic with ¢ = /13 [depicted
in Figs. 5(a) and 5(c) for A = 0.5, 1.5, respectively] and a
relatively fast dynamic with ¢ = 7 [depicted in Figs. 5(b) and
5(d) for A = 0.5, 1.5, respectively].

Since the Heisenberg Hamiltonian contains more coupling
terms than the Ising Hamiltonian, the dimension of the opera-
tor space (with respect to the Pauli basis) grows faster and we
are restricted to a smaller number of coefficients, only about
15.

Comparing the variance (relative deviations) of the Lanc-
zos coefficients for A = 0.5 and 1.5, it is striking that the
coefficients for A = 1.5 vary much less for different val-
ues of A’. This is most likely due to the relative strength
of the perturbation. Let ||H4|| denote the norm of the un-
perturbed Hamiltonian with anisotropy A, and [|AV)]|| the
strength of the perturbation (where A conforms to A’). Then,
for example, [|0.5V||/||H}° ] = 0.34, but [|0.5V||/[|H?|| =
0.47 (for comparison, in the one-dimensional Ising model
[10.5V]]/1IHol] = 0.28). Again, the stronger the perturbation,
the faster the coefficients grow, which is simply due to ad-
ditional terms in the Hamiltonian (in order to not obscure
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the main points, we refrain from rescaling the Hamiltonian
accordingly). Other than that, the growth is more irregular
than in the Ising model, at least in the regime where data are
available. For both values of A the transition occurs between
an integrable (A’ = 0) and nonintegrable (A’ # 0) model.
However, for A = 0.5 there is neither visible square-root-like
growth in the integrable case nor visible linear growth in
the nonintegrable case [for both modes with ¢ =7 /13 in
Fig. 5(a) and ¢ = 7 in Fig. 5(b)]. For A = 1.5, A’ = 0.0,
and g = 7 /13, the growth of the coefficients is more similar
to a square root (see the fit) and only visibly deviates for
n 2 12; see Fig. 5(c). For the faster mode with ¢ = 7, the
growth seems more linear with relatively small deviations; see
Fig. 5(d).

The coefficients 3, are much larger than any of the b,
such that the additional vertical axes contain a factor of 5
in all cases. The number of terms in the sum Ny, grows
quite a lot faster than in the Ising model due to the next-
nearest-neighbor interaction. These terms must in principle
be included as soon as A’ attains an arbitrarily small value
strictly greater than zero. This leads to a somewhat gross
overestimation, since the energy scale £ remains basically
unaltered for small A’. This is visible in all figures for the
Heisenberg model, where the coefficients B, for A" = 0 are
calculated with the smaller numbers Ny, of nearest-neighbor
interaction. In principle, one could improve the upper bound
on the moments by introducing a second energy scale &y, of
the next-nearest-neighbor interaction and count terms accord-
ing to the appearance of nearest-neighbor terms ¢ ;4 and
next-nearest-neighbor terms ¢y ;4. This is, however, more
complicated and not in the spirit of the derivations presented
in Refs. [14,19].

Summarizing, the numerical data for all considered values
of A and g can neither really reject nor support the operator
growth hypothesis (not least because data for larger n are
not available). The transitions between integrable and nonin-
tegrable models are certainly less striking than for the Ising
model. Again, only looking at the b, it would be impossible
to say which coefficients belong to an integrable or nonin-
tegrable model. This possibly raises the question of whether
the distinction between integrability and nonintegrability re-
garding the growth of the b, is an adequate distinction to
make. As mentioned in Sec. II, the Lanczos coefficients are
uniquely determined by the autocorrelation function C(¢). The
Heisenberg model for A = 1.5 and A’ = 0 is integrable and
exhibits diffusive transport behavior [31], which is usually
attributed to chaotic, nonintegrable systems. In view of this, it
may not be too surprising that the operator growth hypothesis
is not supported by the (limited) numerical data presented in
this section. This is the third main result of this paper.

V. CONCLUSION

The first main message of the present paper concerns
the explicitly calculated numerical data on the Lanczos co-
efficients. We numerically probed the universal operator
growth hypothesis proposed in Ref. [14], which states that in
generic, nonintegrable systems the Lanczos coefficients grow

asymptotically linear (with a logarithmic correction in one
dimension). We explicitly calculated Lanczos coefficients b,
for various combinations of models (including 1D and 2D
Ising models as well as ballistic and diffusive Heisenberg
models) and observables (including energy and spin density
waves as well as local ones).

We found that the Ising model data generally support
the operator growth hypothesis. In particular, as soon as an
integrability-breaking perturbation is added to the Hamilto-
nian, the coefficients eventually attain a linear growth [this
transition is more pronounced in the case of a free Hamilto-
nian with a local observable (in the fermionic picture) than
in the case of a free Hamiltonian with a nonlocal observ-
able (in the fermionic picture)]. Further, the two-dimensional
Ising model exhibits clear linear growth. The data for the
Heisenberg model, however, remain inconclusive. For none
of the combinations of considered parameters is there a clear
distinction between the integrable and nonintegrable cases.
Of course, it may be possible that the hypothesized universal
behavior only sets in at some larger n, which is not accessible
by our numerical tools.

The second main message of this paper concerns the co-
efficients 3,, which are obtained by considering the fastest
growing moments and converting them into Lanczos coeffi-
cients. The physical coefficients b, seem to grow in a manner
that is compatible with the “functional form” of the maximal
growth B, i.e., we observe more or less linear growth for the
Ising models, only with a flatter slope than would be induced
by the bound on the moments. Along this line of thinking,
there are arguments that suggest that the coefficients B, cap-
ture the correct asymptotic behavior, only with a rescaled
“effective” energy scale & that is generally different from &£
[23]. Thus, treating £ in Eq. (12) as a fitting parameter may
give reasonable results. This is, however, beyond the scope of
this work, but it is a possible prospect for future research.
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APPENDIX: TRANSLATING BETWEEN b, AND u,,

For completeness, we briefly present the relation between
the Lanczos coefficients b, and the moments 1o, [32].

(1) From moments to Lanczos coefficients: To calculate the
Lanczos coefficients b, from a given set of moments w,,,
we proceed as follows: we define ¢, = u2, /1o and compute
determinants of certain matrices constructed from the normal-
ized moments ¢, i.€.,

B, = det(ciy j)o<i, j<n—1> (A1)
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where n > 2 and By = B; = 1, as well as

C, = det(citj1)o<ij<n—1s (A2)
where n > 1 and Cy = 1. Then the Lanczos coefficients are
obtained as fractions of determinants via
Bn+1Cn_1 2 Bn—lCn

P} b = . A3
B,C, 217 B.Cyy (A9

2
b2n_

(i) From Lanczos coefficients to moments: We take the
representation L of the Liouvillian £ in the Krylov subspace
spanned by the vectors generated by the Lanczos algorithm;
cf. Eq. (3). The moments 1,, can be easily read off as the
upper-left element of even powers 2n of the matrix L, i.e.,

fan = (L*")go. (A4)
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