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We study the steady states and the coarsening dynamics in a one-dimensional driven nonconserved system
modeled by the so-called driven Allen-Cahn equation, which is the standard Allen-Cahn equation with an
additional driving force. In particular, we derive equations of motion for the phase boundaries in a phase ordering
system obeying this equation using a nearest-neighbor interaction approach. Using the equations of motion we
explore kink binary and ternary interactions and analyze how the average domain size scale with respect to time.
Further, we employ numerical techniques to perform a bifurcation analysis of the one-period stationary solutions
of the equation. We then investigate the linear stability of the two-period solutions and thereby identify and study
various coarsening modes.
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I. INTRODUCTION

Phase ordering in systems quenched suddenly from a disor-
dered to an ordered phase is ubiquitous in nature. It is manifest
not only in physical phenomena such as domain growth in
ferromagnets and spinoidal decomposition in alloys [1–3]
but also in other natural processes, such as the formation of
membraneless cell compartments [4] and the spontaneous or-
ganization of unicellular organisms like bacteria and amoeba
[5]. Not surprisingly, it has been a topic of extensive research
in the past several decades [6–8] and still continues to intrigue
scientists across various disciplines [9,10]. Over the years,
this phenomenon has been studied in experiments, simulations
[11–15], and by means of various numerical and analytical
techniques [16–19].

Mesoscopic descriptions of domain coarsening in terms
of a coarse-grained order parameter have been successful in
explaining numerous interesting features [1,17,20–22]. Two
such mathematical models that are predominant in literature
are given by the Cahn-Hilliard (CH) and the Allen-Cahn (AC)
equations [6,23]. The CH equation follows conserved dynam-
ics, while the AC equation follows nonconserved dynamics.
These equations and their various extensions have been stud-
ied in a variety of contexts [22,24,25]. The forces in these
models can be derived from a Hamiltonian, and therefore the
associated Langevin dynamics lead the systems to equilibrium
at large time [26].

In Ref. [27], Leung studied phase separation in a driven
conserved lattice gas by introducing a non-Hamiltonian driv-
ing term to the CH equation. The resulting equation is referred
to as the convective Cahn-Hilliard (cCH) equation. It has
also been used to describe several other physical processes
like spinoidal decomposition in the presence of gravitational
field [28] and faceting in crystals [29,30]. Various aspects of
the cCH equation have been studied in detail over the years.
Coarsening mechanisms such as kink binary and ternary co-
alescence, scaling of the average domain size with respect

to time, and bifurcation analysis of the stationary and the
traveling wave solutions are some of them. These studies have
revealed several interesting features of the cCH equation and
have helped us understand coarsening in driven conserved
systems [28,31–34].

However, the effects of a similar driving force on the
coarsening dynamics of a nonconserved system, for instance,
a driven nonconserved lattice gas, are comparatively less
explored. Such a system can be aptly modeled by adding
a similar driving term to the AC equation. The resulting
equation, which we refer to as the driven Allen-Cahn (dAC)
equation, is the focus of this paper. We note here that the
critical dynamics of a stochastic version of the dAC equa-
tion was explored in Ref. [35]. Kink dynamics in a similar
forced dissipative system is studied in Refs. [36,37]. Other
extensions of the Allen-Cahn equation, with the addition of
a chemical potential and a nonvariational force, for instance,
have also been studied [38,39].

Several interesting questions naturally arise here. What are
the steady-state solutions of the dAC equation and how do
they differ from those of the AC and the cCH equations? How
does the average domain size scale with respect to time in the
presence of the drive when the dynamics is nonconserving?
What are the allowed coarsening mechanisms? How are they
affected by the strength of the drive and how do they differ
from those of the conserved model?

Motivated by these questions, we employ analytical and
numerical techniques to study the steady-state solutions and
the coarsening dynamics of the dAC equation. In particular,
we first study single (anti)kink steady-state solutions in an
infinite domain using asymptotic analysis. Second, we use
analytical techniques to derive equations of motion for the
phase boundaries at large driving strength in a system with
multiple kinks and antikinks separated by large distances. The
equations of motion are then exploited to investigate vari-
ous coarsening mechanisms and to obtain the scaling form
for the average domain size with respect to time. We also
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perform simulations of kink binary coalescence and compare
them with the analytical results. Third, we do a bifurcation
analysis of the one-period stationary solutions of the dAC
equation with the help of the continuation and bifurcation
software Auto07p [40]. Last, a linear stability analysis of the
two-period solutions is performed to obtain the coarsening
and the evaporation or condensation modes and the corre-
sponding eigenvalues. We also explore the behavior of the
modes and the eigenvalues as a function of the domain size
L and the driving strength E .

This paper is organized as follows. In Sec. II, we present
the asymptotic analysis of the single (anti)kink steady-state
solutions. Section III is dedicated to the derivation of the
equations of motion for the phase boundaries and the simu-
lations, and Sec. IV is dedicated to the bifurcation analysis
of the one-period stationary solutions and the linear stability
analysis of the two-period solutions.

II. SINGLE (ANTI)KINK SOLUTIONS

In this section, we first introduce the dAC equation and
then study the fixed points of its time independent version in
frame moving with a constant velocity v. We also establish
that single (anti)kink traveling wave solutions exist only for
isolated values of v using asymptotic analysis.

The dAC equation is obtained by adding a driving force
proportional to ψψx to the standard AC equation and is ex-
plicitly written, in dimension less form, as

ψt = ψxx + ψ − ψ3 + 2Eψψx, (1)

where E is the driving strength and ψ (x, t ) is the order param-
eter. The subscripts x and t denote derivatives with respect
to the spatial coordinate x and time t , respectively. In the
limit E → 0, we retrieve the AC equation. The driving force
2Eψψx is of nonequilibrium nature as it cannot be derived
from a Hamiltonian. This is in contrast to the AC equation,
where the forces can be derived from the Landau-Ginzburg
Hamiltonian [6,26]. Note that it is also the simplest such
gradient term that can be added to the AC equation.

The gradient term ψx is also a valid candidate for drive and
may give rise to nontrivial features depending on the boundary
conditions. However, a term of this form can be removed
by an appropriate Galilean transformation for the boundary
conditions considered in this work, namely periodic boundary
condition and ψ (x → ±∞, t ) = C0, where C0 is a constant.

For the following analysis, it is convenient to rewrite
Eq. (1) in a frame moving with a constant velocity v:

ψt = vψx + ψxx + ψ − ψ3 + 2Eψψx. (2)

Clearly, the time independent solutions of Eq. (2) correspond
to the traveling wave solutions of the dAC equation in the rest
frame. Note that both Eqs. (2) and (1) are symmetric under the
transformation (E, ψ ) → (−E,−ψ ). Therefore, we consider
only values of E � 0 throughout this paper as it is sufficient.

We first examine the linear stability of the constant solu-
tions ψ0 of Eq. (2). Unlike the cCH equation for which any
constant function is a solution, the dAC equation has only
three spatially uniform time independent solutions, namely
ψ0 = 0,±1. The linear stability of these solutions can be

investigated by perturbing them as

ψ (x, t ) = ψ0 + ε exp (βt + ikx), (3)

where ε is a small parameter. Substituting this in Eq. (2)
and subsequent linearization yields the following dispersion
relation:

β(k) = −k2 + (
1 − 3ψ2

0

) + ik (v + 2Eψ0). (4)

The sign of the real part of β determines the linear stability of
the solutions, where

Re(β ) =
{−k2 − 2, ψ0 = ±1,

−k2 + 1, ψ0 = 0.
(5)

It follows that in an infinite domain ψ0 = ±1 are stable, and
ψ0 = 0 is unstable with respect to time-dependent perturba-
tions. We also observe that the unstable modes for ψ0 = 0
have zero speed on substituting Eq. (4) in Eq. (3) and then
transforming back to the rest frame.

We now analyze the fixed points of the time-independent
form of Eq. (2):

vψx + ψxx + ψ − ψ3 + 2Eψψx = 0. (6)

Clearly, the fixed points of the above equation are also given
by ψ0 = 0,±1. Substituting ψ = ψ0 + ε exp hx in Eq. (6) and
linearizing the resulting equation in the small parameter ε, we
obtain the following equation for the eigenvalue h:

h2 + (v + 2Eψ0) h − (
3ψ2

0 − 1
) = 0. (7)

Of course, Eq. (7) could have been obtained by setting ik = h
and β = 0 in Eq. (4) as well. The eigenvalue Eq. (7) is readily
solved to obtain the following three cases:

h = 1

2
×

⎧⎨⎩
−(v + 2E ) ±

√
(v + 2E )2 + 8, ψ0 = 1,

−v ± √
v2 − 4, ψ0 = 0,

−(v − 2E ) ±
√

(v − 2E )2 + 8, ψ0 = −1.

(8)

From the above solution, we deduce that for ψ0 = ±1 there
are two eigenvalues each, all of which are real in contrast
to the cCH equation [28,31]. One of the eigenvalues is pos-
itive while the other is negative for both ψ0 = 1 and −1.
Therefore, for the fixed points ψ0 = ±1 the dimensions of
the stable manifolds W S (ψ0 = ±1) and the unstable mani-
folds W U (ψ0 = ±1) are both 1. A stable single kink solution
�+ should be such that �+(±∞) = ±1. Note that ψ0 = 0
is unstable with respect to time dependent perturbations in
an infinite domain. It follows that a kink should lie in the
intersection

W U (ψ0 = −1) ∩ W S (ψ0 = 1). (9)

Similarly a stable single antikink solution �− should lie in the
intersection

W U (ψ0 = 1) ∩ W S (ψ0 = −1). (10)

These are both intersections of two one-dimensional mani-
folds in a two-dimensional space. This restricts the choice of
the parameter v. Therefore, we expect a (anti)kink to exist
only for isolated values of v. In other words, v is not a free
parameter but a nonlinear eigenvalue of Eq. (6). This is in
contrast to the case of the cCH equation where kink solutions
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exist for values in a region in that parameter space, as has been
shown using a similar analysis in previous works [28,29,31].
However, antikink solution exist only for isolated points in the
parameter space in the case of the cCH equation as well.

The following solutions corresponding to v = 0 exist for
Eq. (6):

�±(x) = ± tanh s±x, (11)

where

s± = (1/2)
√

2 + E2 ± E/2. (12)

The signs + and − correspond to kink and antikink, re-
spectively. It is evident in this case that a phase boundary
separating two stable phases, given by the constant solutions
ψ0 = ±1, does not move in spite of the drive. The drive
only squeezes (stretches) the kink (antikink) region. This is
in contrast to the case considered in Ref. [39], where a non-
variational force added to the Allen-Cahn equation forces a
(anti)kink that separates two stable phases to move. Such
phase boundaries can also be forced to move by adding a
chemical potential to the standard Allen-Cahn equation [41].
In the case of the cCH equation, a phase boundary connecting
two homogeneous solutions, say ua and ub, does not move
only if ua = −ub [34].

The following remark on the nature of the fixed point ψ0 =
0 is in order here. We deduce from Eq. (8) that for the fixed
point ψ0 = 0, the corresponding eigenvalues are h = ±√−4
when v = 0. These are pure imaginary numbers, implying
that the fixed point ψ0 = 0 is a center. Therefore, we expect
there to be spatially periodic orbits in the neighborhood of
this fixed point in the phase-plane. We shall explicitly show
in Sec. IV that there indeed exist periodic solutions of Eq. (6)
that oscillate, as a function of x, about ψ0 = 0 when v = 0.

We now proceed to examine the motion of phase bound-
aries in a system with multiple kinks and antikinks.

III. NEAREST-NEIGHBOR INTERACTION THEORY
FOR PHASE BOUNDARIES

In this section, we first analytically study the coarsening
process in a driven one-dimensional Allen-Cahn system with
multiple phase boundaries. To this end, we derive equations of
motion governing the dynamics of the phase boundaries
using a nearest-neighbor interaction approach. Using the
equations of motion, we examine kink binary and ternary
interactions and obtain a scaling law for the average domain
size with respect to time. We then simulate kink binary coales-
cence with the help of Mathematica and compare them with
the analytical results.

A. Equations of motion

To derive the equations of motion, we first write down an
ansatz to the dAC equation that has a series of alternating
kinks and antikinks, which are separated by large domains
where the order parameter is more or less constant. We then
substitute it in the dAC equation and concentrate on the posi-
tions of the phase boundaries.

Remember that the constant solutions of the dAC
equation that are stable with respect to time dependent

perturbations are given by ψ0 = ±1. Hence, we expect that
in a region far left (right) to a kink (antikink) ψ � −1, and
likewise in a region far right (left) to a kink (antikink) ψ � 1.
Such a (anti)kink solution is already known from the previ-
ous section [see Eq. (11)]. We adopt these tanh profiles and
construct the ansatz as described below.

Let pi(t ) denote the position of the ith phase boundary.
Without loss of generality we assume that odd i correspond to
kinks and even i correspond to antikinks, and for convenience
we introduce the following set of comoving coordinates:

ζi = x − pi(t ). (13)

The solution near the ith phase boundary is constructed as a
moving tanh profile superposed with a small correction:

ψi(x, t ) = �i(ζi) + ωi, (14)

where

�i(ζi ) =
{
�+(ζi ), odd i,
�−(ζi ), even i,

(15)

and ωi is the small correction. We write ωi as a sum of
contributions from the immediate neighbors:

ωi = ω−
i + ω+

i , (16)

where

ω∓
i =�i∓1(ζi∓1) − �i∓1(±∞). (17)

As the distance between the phase boundaries is large, ω is
indeed small near pi. A similar nearest-neighbor interaction
approach has been used previously in the case of the standard
AC and CH equations [21,31]. Other examples of dynamics
of coherent structures comprising kinks and antikinks can be
found in Refs. [42,43].

For compactness, we introduce the force

F [ψ,ψx] ≡ ψ − ψ3 + 2Eψψx. (18)

The dAC equation is written in terms of F as

ψt = ψxx + F [ψ,ψx]. (19)

It will be handy to note here that �i and �iζi satisfy the
relations

�iζiζi + F [�i,�iζi ] = 0, (20)

and[
∂2

∂ζ 2
i

+ ∂F [�i,�iζi ]

∂�iζi

∂

∂ζi
+ ∂F [�i,�iζi ]

∂�i

]
�iζi = 0, (21)

respectively. Substituting Eq. (14) in Eq. (19), and then using
Eqs. (20) and (17) we obtain

1∑
j=−1

−ṗi+ j�i+ jx =ωxx + ∂F [�i,�iζi ]

∂�i
ω − 2E (�iω)x + F̃i,

(22)

where

F̃i ≡F [ψi, ψix] − F [�i,�iζi ] − ∂F [�i,�iζi ]

∂�i
ω + 2E (�iω)x,

(23)
and the dot above symbols represents derivative with respect
to time.
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Acting the operator
∫ ∞
−∞dx �ix on Eq. (22) and then using

Eq. (21) in the right-hand side (RHS) after integration by
parts, we obtain

1∑
j=−1

−ṗi+ j

∫ ∞

−∞
dx �ix�i+ jx =

∫ ∞

−∞
dx �ixF̃i. (24)

The left-hand side (LHS) and the RHS of the above equa-
tion can be simplified by approximating the integrals therein

using Eqs. (A2) and (A3). These approximations are valid
when the driving strength E as well as the separation,

li = pi+1 − pi, (25)

are large. See the Appendix for further details. After the
straightforward calculations shown therein, we obtain the fol-
lowing equations of motion for the cases of odd and even i,
respectively.

−1

3
s+ ṗi + 2s− ṗi+1e−2s−li + 2s− ṗi−1e−2s−li−1 = 4E

(
s+
3

+ 2s−
s−
s+

)
e−2s−li−1 − 4E

(
s+
3

+ 2s−
s−
s+

)
e−2s−li (odd i),

(26)

−1

3
s− ṗi + 2s− ṗi+1e−2s−li + 2s− ṗi−1e−2s−li−1 = 2

{
1 − 2Es−

(
1 + s−

s+

)}
e−2s−li−1 − 2

{
1 − 2Es−

(
1 + s−

s+

)}
e−2s−li (even i).

(27)

Here s± and li are given by Eqs. (12) and (25), respectively.
Note that we have considered the time evolution of a sys-

tem consisting of domains of stable phases, namely domains
of ψ � ±1, due to the nonlinear dynamical Eq. (19). The
resulting propagating phase boundaries, whose equations of
motion are given by Eqs. (26) and (27), are known in lit-
erature as pushed fronts [41]. Other types of domain wall
motion have been studied in similar systems. For instance,
front propagation in a system perturbed from an unstable ho-
mogeneous phase has been studied for the case of Allen-Cahn
equation with a chemical potential [38,41]. There the phase
boundary separates an unstable homogeneous phase and a
stable homogeneous phase.

B. Kink binary interaction and scaling law

Consider a kink binary consisting of a kink and an antikink
that are closer to each other than to the other respective ad-
jacent phase boundaries. Let p1 and p2 be their respective
positions. Substituting p0, p1, and p2 for pi−1, pi, and pi+1,
respectively, in Eq. (26) and p1, p2, and p3 for pi−1, pi, and
pi+1, respectively, in Eq. (27) and then solving the resulting
equations simultaneously leads to the equations of motion

ṗ1 = vk e−2s−l1 , ṗ2 = −va e−2s−l1 , (28)

where

vk = 12E
[

1

3
+ 2

(
s−
s+

)2]
,

va =
[

6

s−
− 12E

(
1 + s−

s+

)]
, (29)

and li is given by Eq. (25). Note that terms with exp(−2s−l0)
and exp(−2s−l2) are discarded as l0, l2 	 l1. The coefficients
vk and va are plotted against the driving strength E in Fig. 1.

For all values of E > 0, vk and va are positive. This implies
that the kink at p1 moves in the positive x direction and the
antikink at p2 moves in the negative x direction as is evident
from Eq. (28). In other words, the kink and the antikink
attract each other resulting in binary coalescence. We shall

indeed see in Sec. IV that the dominant unstable mode is the
one where adjacent kinks and antikinks attract each other,
resulting in evaporation or condensation of a cluster. This
is in stark contrast to the case of the cCH equation where
kink binary coalescence is impossible, which is expected
since evaporation or condensation of a cluster violates mass
conservation [33].

When E > 0.3, then vk > va indicating that the kink moves
at a higher speed than the antikink. As E increases further,
vk increases and va → 0. It then follows from Eq. (28) that
at large values of E the antikink is almost stationary, and the
kink speed increases with E when l1 is fixed. These results
agree with the results of the simulations explained at the end
of this section. It is worth mentioning here that for the case
of the standard Allen-Cahn equation the kink and the antikink
move with the same speed [21].

When E < 0.3, then vk < va as can be seen from Fig 1. It
then follows from Eq. (28) that the theory developed here pre-
dicts that the antikink moves at a higher speed than the kink.
But this is not in agreement with the results of the simulations,
which shows that the kink moves at a higher speed when
E < 0.3 as well. However, the equations of motion derived

FIG. 1. The coefficients vk and va vs the driving strength E . The
two lines intersect at E = 0.3.
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in this section are not expected to hold for small values of
E since the approximation we used, namely Eq. (A2), is not
valid for small E .

A dynamical equation for the separation l1 can be easily
obtained from Eq. (28) as follows:

l̇1 = ṗ2 − ṗ1 = −(vk + va)e−2s−l1 , (30)

which is readily solved to yield

l1(t ) = 1

2s−
log[−μt + e2s−l1(0)], (31)

where

μ = 2s−(vk + va), (32)

and l1(0) is the initial distance between the kink and the
antikink. From Eq. (31) the time taken for a kink binary
to coalesce can be readily calculated. Let tc be the time at
which the binary coalesces. Then, by substituting l1(tc) = 0
in Eq. (31) we obtain

tc = e2s−l (0) − 1

μ
. (33)

Now consider a dAC system where the average separation
between the kink binaries is given by l̄ . Assume that l̄ as well
as the driving strength E are large enough that the analytical
results derived above can be applied. As the system evolves
in time kink binaries coalesce, and with each such event l̄
increases by a fraction. Since the time taken for an average
binary to coalesce grows exponentially with l̄ according to
Eq. (33), we in turn expect the average domain size l̄ to
scale logarithmically with respect to time as also observed in
simulation:

l̄ (t ) ∼ ln t . (34)

Logarithmically slow coarsening is also observed in the case
of the cCH equation when the characteristic length L is suf-
ficiently larger than the Peclet length LP [33]. When L <<

LP , domain coarsening therein exhibits the coarsening rate
L(t ) ∼ t1/2.

C. Kink ternary interaction

We now examine kink ternary interaction. Two types of
ternaries are possible in a one-dimensional system with alter-
nating kinks and antikinks: one where there is a kink in the
middle of two antikinks and one where there is an antikink in
the middle of two kinks. We call the former type-K ternary
and the latter type-A ternary.

Consider a ternary of type-K. Let pk denote the position
of the kink and pk−1 and pk+1 the respective positions of the
antikinks. For simplicity we set lk−1 = lk , and assume that
lk−2, lk+1 	 lk . As in the case of kink binary interaction,
Eqs. (26) and (27) can be used to obtain dynamical equa-
tions for ṗk−1, ṗk , and ṗk+1. They are as follows:

ṗk−1 = vae−2s−lk , ṗk = 0, ṗk+1 = −vae−2s−lk , (35)

where va is given by Eq. (29). We obtain equations of motion
for the phase boundaries in a type-A ternary by proceeding
in a similar fashion. Let pa be the position of the antikink
and pa−1 and pa+1 the respective positions of the kinks. We
set la−1 = la and assume that the ternary is isolated, i.e.,
la−2, la+1 	 la. Using Eqs. (26) and (27) as in the previous
case leads to

ṗa−1 = vke−2s−la , ṗa = 0, ṗa+1 = −vke−2s−la , (36)

where vk is given by Eq. (29).
The following comparisons of the two types of ternaries are

in order here. Recall that vk increases and va decreases as the
driving strength E increases, and for large values of E , va � 0,
and vk is large. This is evident from Fig. 1. It follows from
Eqs. (35) and (36) that for large values of E , the antikinks in
type-K ternary are almost stationary, and the kinks in type-A
ternary moves at a high speed. Therefore, in a system with
multiple phase boundaries we expect type-A coalescence to
dominate over type-K coalescence. Here, type-A coalescence
refers to the coalescence of a ternary of type-A resulting in
a kink, and type-K coalescence refers to the coalescence of a
ternary of type-K resulting in an antikink. We note here that
this feature bear a resemblance with the cCH equation, where
only type-A coalescence is allowed [33].

FIG. 2. Time evolution of kink binary for different values of the driving strength E . The black solid line shows the initial profile at t = 0.
The gray dashed, the blue dotted, and the red dot-dashed lines show the profiles at instants t1, t2, and t3, respectively, where t1 < t2 < t3. The
instant t3 is also the time at which the profile just becomes flat. The initial separation between the kink and the antikink is denoted by l1.
(a) E = 0.1, l1 = 10, t1 = 30000, t2 = 35000, and t3 = 35474, (b) E = 1, l1 = 15, t1 = 12000, t2 = 15000, and t3 = 15537, and (c) E =
1.5, l1 = 15, t1 = 1000, t2 = 1350, and t3 = 1457.
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D. Simulation of kink binary coalescence

Here we discuss the specifics of the simulations and state
the results. Kink binaries are numerically time evolved at
different values of the driving strength E . For this a domain
of length LD = 50 is considered such that x ∈ (0, LD). The
initial profile is constructed using the tanh functions as shown
in Eq. (14) and is written as

ψ (x) = �1(x − p1) + �2(x − p2) − 1, (37)

where �i is given by Eq. (15). The variables p1 and p2

denote the initial positions of the kink and the antikink, re-
spectively. The initial profile is numerically evolved in time
according to the dAC equation with the help of Mathematica.
The simulation is run for three different driving strengths,
E = 0.1, 1, and 1.5. The results are shown in Fig. 2, and the
initial conditions for the different runs are stated therein. As
can be seen from the figures, in all the three cases, the kink
moves at a higher speed than the antikink. As E increases, the
speed of the kink increases, whereas the speed of the antikink
tends to 0. For the cases of E = 1 and E = 1.5, there is no
visible shift in the position of the antikink. Further, the time
taken for coalescence falls from 15 537 to 1457 when E is
increased from 1 to 1.5. Note that in both cases the initial
separations between the kink and the antikink are the same:
l1 = p2 − p1 = 15.

IV. ONE- AND TWO-PERIOD STATIONARY SOLUTIONS
AND THE UNSTABLE MODES

In the first part of this section, we focus on the stationary
solutions of the dAC Eq. (1) subject to periodic boundary
conditions. In particular, we seek the solutions of the equation

ψxx + ψ − ψ3 + 2Eψψx = 0, (38)

on a periodic domain of size L such that x ∈ (0, L). We limit
to the case of one-period solutions with 0 mean for simplicity.
The solutions are obtained by numerical continuation, im-
plemented with the help of the continuation and bifurcation
software Auto07p [40]. We also draw the bifurcation diagrams
and study the stability of the one-period solutions. In the later
part of this section, we focus on the linear stability of the
two-period solutions. We therein obtain the positive eigenval-
ues and the corresponding eigenfunctions (coarsening modes)
and study their behavior as a function of the domain size L
and the driving strength E .

A. One-period solutions

We rewrite Eq. (38) as a set of two first-order differen-
tial equations in terms of the scaled coordinate z = x/L for
convenience:

ψz = Lψ̃,

ψ̃z = −L(ψ − ψ3 + 2Eψψ̃ ), (39)

where ψ̃ ≡ ψx and z ∈ (0, 1). Note that in Eq. (39) we have
extracted the period L as a parameter. We first make the
following preliminary observations to implement numerical
continuation and obtain the one-period solutions. The spa-
tially uniform solutions ψ0 = ±1 are stable with respect to

FIG. 3. Branches of one-period stationary solutions of the dAC
equation corresponding to different values of E ..

time dependent perturbations for any domain size L as shown
in Sec. II. However, in the case of the constant solution
ψ0 = 0, modes with |k| < kc = 1 are unstable while those
with |k| > kc are stable, where k is the wave vector [see
Eq. (5)]. This means that spatially nonhomogeneous unstable
modes step in when the length of the domain L is increased
beyond Lc = 2π/kc = 2π . We identify the point L = Lc as
the primary bifurcation point. Note that the mode with k = 0
always renders the homogenous solution ψ0 = 0 unstable,
irrespective of the size of the domain.

We now set the initial value of the parameter L = Lc and
choose the following small amplitude sinusoidal function as
the starting solution:

ψ[x(z)] = 0.0001 sin(2πz),

ψ̃[x(z)] = 0.0001 cos(2πz). (40)

The branches of one-period solutions corresponding to differ-
ent values of the driving strength E are now obtained from this
initial data by varying L as the continuation parameter. This is
implemented using the software Auto07p [40]. Note that the
boundary conditions

ψ[x(0)] = ψ[x(1)],

ψ̃[x(0)] = ψ̃[x(1)], (41)

are also imposed. For more details on implementation of such
calculations and examples see Refs. [34,44,45]. In particu-
lar, the Auto07p files and the computational techniques used
here are similar to those previously used for the AC equa-
tion [44,46,47]. The Auto07p files written for this calculation
is available in Ref. [48].

For each value of E a branch of spatially nonuniform solu-
tions emerges from the primary bifurcation point Lc as shown
in Fig. 3. These solutions are characterized using their norms

||ψ || =
√

1

L

∫ L

0
dx ψ2. (42)

There are no further bifurcations along the solution
branches shown in Fig. 3. These solutions are linearly unsta-
ble to evaporation or condensation mode where two adjacent
phase boundaries move towards each other and coalesce. The
method used for the linear stability analysis and the nature
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FIG. 4. One-period stationary solutions of the dAC equation cor-
responding different values of L for the case of E = 0.

of the evaporation or condensation mode will be discussed in
detail in the context of two-period solutions in Sec. IV B.

The case of E = 0 corresponds to that of the standard
Allen-Cahn equation. The solutions at five different points on
the E = 0 branch are plotted in Fig. 4. The solution profiles re-
semble a sinusoidal wave for values of L close to Lc. But as L
increases plateaus where ψ = +1 and − 1 appear separated
by a narrow antikink.

We now fix the period at L = 50 and continue along the
parameter E . The solutions corresponding to four different
values of E are plotted in Fig. 5. It evident from the figure that
when the driving strength E is switched on the antikink region
begins to widen and the plateaus become narrower. At the
same time the kink at the boundaries become sharper. Even-
tually, the plateaus vanish and the antikink region becomes
straight line when E is sufficiently large. When E is further
increased the profile tends to flatten out. This is in contrast
with the case of the cCH equation, where the plateaus assume
a spatially irregular profile when the driving force is increased
beyond a certain value, and there are also other periodic sta-
tionary solutions when the drive is large [29,34].

B. Two-period solutions and the unstable modes

The two-period solutions can be obtained by numerical
continuation or constructed from the one-period solutions
obtained above. For instance, a two-period solution corre-
sponding to the parameter values (L, E ) can be constructed
by concatenating two identical one-period solutions with the
parameter values (L/2, E ). See Figs. 7(a), 7(d) and 7(e) for

FIG. 5. Stationary one-period solutions of the dAC equation cor-
responding to different values of the driving strength E for L = 50.

FIG. 6. The dominant (blue solid line) and the nondominant
(green dashed line) eigenvalues against L for E = 0.

the two-period solutions corresponding to L = 30 and E =
0, 0.08, and 0.75, respectively. We will find from the linear
stability analysis described in the next paragraph that the two-
period solutions are unstable to evaporation or condensation
and coarsening modes.

Let ψs(x) be a two-period stationary solution of Eq. (1) and
δψ (x, t ) a perturbation. Substituting ψ = ψs + δψ in Eq. (1)
and collecting terms that are linear in δψ yields

∂tδψ = L̂δψ, (43)

where the operator

L̂ =
2∑

k=0

Fk (x)∂k
x ,

F0 = (
1 − 3ψ2

s

) + 2E∂xψs,

F1 = v + 2Eψs,

F2 = 1. (44)

The stability of the solution ψs is determined by the eigen-
values of operator L̂, which is a linear ordinary differential
operator with nonconstant coefficients. The eigenfunctions
and the corresponding eigenvalues can be computed numer-
ically using several methods. We use the Floquet-Fourier-Hill
method [49]. We now proceed to examine in detail the unsta-
ble modes and the corresponding eigenvalues thus obtained.

Consider the case of E = 0. Recall that Eq. (1) reduces
to the standard Allen-Cahn equation when E = 0. In this
case there are two positive eigenvalues, which we denote by
λ. They are plotted against L in Fig. 6. We call the larger of
these the dominant eigenvalue and the other the nondominant
eigenvalue. However, the difference between these eigenval-
ues decreases as L increases and they both asymptotically
approach 0.

The dominant eigenvalue is nondegenerate while the
nondominant eigenvalue is doubly degenerate. The eigenfunc-
tions corresponding to these eigenvalues, i.e., the positive
eigenvalues, are the unstable modes. We illustrate the case of
L = 30 in Fig. 7 to describe the nature of these modes. In
particular, the blue dotted line in Fig. 7(a) shows the domi-
nant unstable mode, i.e., the eigenfunction corresponding to
the dominant eigenvalue. The two nondominant modes cor-
responding to the nondominant eigenvalue are plotted using
green dotted lines in Figs. 7(b) and 7(c), respectively. The red
dashed line in each of these figures is used to illustrate the
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FIG. 7. Each of the first five figures (a–e) shows the two-period solution ψs (black solid line), the unstable mode δψ (blue and green
dotted line), and the superposition ψs + δψ (red dashed line) corresponding to the type of mode and values of L and E given under them.
The last figure (f) shows the behavior of the MB, MK , and MA eigenvalues as a function of E in blue solid, green dashed, and green dotted
lines, respectively. (a) E = 0, L = 30. Mode type: MB, (b) E = 0, L = 30. Mode type: MA, (c) E = 0, L = 30. Mode type: MK , (d) E = 0.08,

L = 30. Mode type: MB, (e) E = 0.75, L = 30. Mode type: MB, and (f) Positive eigenvalues against E , for L = 30.

superposition

ψ = ψs + εδψ, (45)

where δψ represents the respective unstable mode, ψs is the
two-period solution, and ε is a small number. As is now
evident from the figure, the dominant mode correspond to kink
binary interaction where adjacent kinks and antikinks move
towards each other and annihilate, resulting in evaporation
or condensation of a cluster. Hence, this is an evaporation or
condensation mode. We refer to this type of mode as MB. The
first nondominant mode [shown in Fig. 7(b)] corresponds to
the process where kinks on either side of an antikink move
towards it and coalesce resulting in a kink, and the second
nondominant coarsening mode [shown in Fig. 7(c)] corre-
sponds to the process where antikinks on either side of a kink
move towards it and coalesce resulting in an antikink. We refer
to modes of the former type as MA and the latter type as MK ,
both of which are coarsening modes. The superpositions of
the coarsening modes, MV = MA + MK and MT = MA − MK ,
are known as the volume transfer and the translation modes,
respectively. Indeed, the former mode result in transfer of
volume between adjacent clusters and the latter in their trans-
lation as is evident from Fig. 8.

We now examine the behavior of the positive eigenvalues
and the unstable modes when E > 0. The main observations
are as follows:

(1) There are three types of unstable modes as in the case
of E = 0: MB, MA, and MK .

(2) MA-type and MK -type modes become nondegenerate
as soon as the driving strength E is switched on. The MA

and the MK eigenvalues are plotted against E in Fig. 7(f)

using green dashed and green dotted lines, respectively. As
shown therein, the MA eigenvalue increases with E and asymp-
totically becomes equal to the MB eigenvalue, whereas the
MK eigenvalue decreases with E and asymptotically tends
to 0.

(3) MB-type mode remains the only dominant mode except
when E is large. This is evident from Fig. 7(f) where the MB

eigenvalue is plotted against the driving strength E using the
blue solid line. Both MB and MA-type modes are dominant
when E is large as the corresponding eigenvalues tend to be
equal then.

(4) The behavior of the MB-type mode varies with E : as E
increases the antikinks tend to be stationary. This is evident
on comparing Figs. 7(a), 7(d) and 7(e) which correspond to
the cases of E = 0, E = 0.08, and E = 0.75, respectively. The
domain size L = 30 for all the three cases. The blue dotted
line in each of the three figures shows the corresponding
MB-type mode, and the red dashed line the superposition
ψ = ψs + εδψ.

(5) The MK -type coarsening mode diminishes as E in-
creases, and δψ � 0 for large E . The investigation here imply
that type-A coalescence is favored over type-K at large E ,
which is in agreement with the inferences of Sec. III. Remem-
ber that type-A (type-K) coalescence refers to the one where
two kinks (antikinks) meet an antikink (kink) resulting in a
kink (antikink).

As already mentioned MB-type mode corresponds to evap-
oration or condensation of a cluster. Therefore, its dominance
at small and intermediate values of E indicate that clusters
form or vanish faster than they coarse through other modes.
However, in the presence of strong driving force coarsening
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FIG. 8. Illustration of volume transfer (top) and translation (bot-
tom) modes: the black solid lines show the two-period solution ψ

corresponding to L = 30 and E = 0, the green dotted lines show
the volume transfer mode MV (top) and the translation mode MT

(bottom), and the red dashed lines the superpositions ψ + εMV (top)
and ψ + εMT (bottom), where ε is a small number.

due to type-A coalescence compete with formation and evap-
oration of clusters. Further, at large values of E the volume
transfer mode becomes approximately equal to type-A coales-
cence mode: MV = MA + MK ∼ MA. Similarly, at large E the
translation mode MT = MA − MK � MA. Of course, in this
limit they tend to loose their meaning as volume transfer and
translation modes.

V. CONCLUSION

In the first part of this paper, we studied the single
(anti)kink steady-state solutions of the dAC equation in an
infinite domain and established that such solutions exist only
for isolated values of the traveling wave velocity v. A sin-
gle (anti)kink solution was also identified for v = 0. Therein
we further investigated the linear stability of the constant
solutions.

We then considered a driven Allen-Cahn system with mul-
tiple phase boundaries and derived equations that govern the
dynamics of these boundaries when the driving strength E

and the separation between the phase boundaries li are large.
Using these equations, we investigated various coarsening
mechanisms and studied their behavior as a function of the
driving strength E . We further argued that the average do-
main size scaled logarithmically with respect to time. We also
presented the results of the simulations of kink binary coa-
lescence and compared them with the analytical results. The
time taken for kink binary coalescence is found to decrease
drastically with increase in E .

In the last section, we presented the bifurcation analysis of
the one-period stationary solutions of the dAC equation and
explored their behavior with respect to the period L and the
driving strength E . We then investigated the linear stability
of the two-period solutions and thereby identified the various
coarsening modes. We observed, among other details, that
the MB-type mode is the only dominant unstable mode for
small E and that for large E the MK eigenvalue asymptotically
becomes equal to the MB eigenvalue.

There are several other interesting possibilities in the study
of the dAC that deserve further investigation. It was observed
in Sec. II that a single (anti)kink connecting two stable phases
in an infinite domain does not move even in the presence
of the drive, in contrast to the case studied in Ref. [39].
We expect that inclusion of a chemical potential to the dAC
equation will cause phase boundaries to move as it does in
the case of the standard AC equation with chemical potential
[38,41]. Further, it is known that the chemical potential lifts
the degeneracy in the coarsening modes in the case of the AC
equation. It will be interesting to examine the behavior of the
various coarsening and evaporation or condensation modes in
the case when both the chemical potential and the drive are
present.

The analyses is Sec. III were focused on domain wall
motion in a system where there are domains of stable homo-
geneous phases. One could also consider other scenarios such
as front propagation in a system perturbed from an unstable
homogeneous phase and study the effects of the drive. Further,
the scaling law obtained here was for the case of large aver-
age separation between phase boundaries, which may differ
from logarithmic when the average separation is smaller as
observed in the case of the cCH equation [33].

Finally, we remark that an extension of the dAC equa-
tion to higher spatial dimension will be interesting, especially
because the anisotropic nature of the drive comes into play
when the dimension of the space is greater than one. It is worth
mentioning here that a stochastic multicomponent version of
the dAC equation in d-dimensional space is known to exhibit
far from equilibrium critical scaling behavior [35,50,51].
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APPENDIX: APPROXIMATING THE INTEGRALS IN EQ. (24)

In this Appendix, we evaluate the integrals appearing on the left-hand side (LHS) and the right-hand side (RHS) of Eq. (24)
using the approximations explained below.
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(1) It follows from Eq. (12) that when the driving strength E is large s+ is also large. Then, the function sech2[s+(x − pk )]
becomes sharply peaked at pk and approximately 0 elsewhere. This fact is exploited in approximating the integrals in which
sech2[s+(x − pk )] appears. For instance, the integrals of the form

I =
∫ ∞

−∞
dx sech2[s+(x − pk )] g(s+(x − pk )) f (x), (A1)

are approximated as

I �
∫ ∞

−∞
dx sech2[s+(x − pk )] g(s+(x − pk )) { f (pk ) + f ′(pk )(x − pk )}, (A2)

where f (x) is Taylor expanded about pk to first order in (x − pk ).
(2) Let pi and p j , where j = i ± 1, denote positions of two adjacent phase boundaries. The following approximations can be

made when |pi − p j | is large:

tanh[s±(pi − p j )] �
{−1 + 2e−2s±li , j = i + 1,

1 − 2e−2s±l j , j = i − 1,

sech2[s±(pi − p j )] �
{

4e−2s±li , j = i + 1,

4e−2s±l j , j = i − 1,
(A3)

where li is given by Eq. (25) and terms of O({exp(−2s±li)}2) and higher order are neglected.
We now proceed to approximate the integrals in Eq. (24). Using Eq. (15) the LHS can be explicitly written as

LHS = −
1∑

j=−1

ṗi+ j

∫ ∞

−∞
dx �i

x�
i+ j
x = (−1) j+1si

1∑
j=−1

si+ j ṗi+ j

∫ ∞

−∞
dx sech2(siζi ) sech2(si+ jζi+ j ). (A4)

We consider the cases of odd and even i separately. Note that in the former case, i represents a kink, and in the latter case, an
antikink, by the convention adopted in Sec. III. When i is odd, we can write Eq. (A4) as

LHS (odd) = −s2
+ ṗi

∫ ∞

−∞
dx sech4(s+ζi ) + s+s−

∑
j∈{−1,1}

ṗi+ j

∫ ∞

−∞
dx sech2(s+ζi )sech2(s−ζi+ j ). (A5)

The integral in the first term is readily solved after replacing ζi using Eq. (13) to yield∫ ∞

−∞
dx sech4(s+ζi ) =

∫ ∞

−∞
dx sech4[s+(x − pi )] = −4

3
s+ ṗi. (A6)

The integral in the second term is of the form given in Eq. (A1). Therefore, this integral can be approximated in the same way,
i.e., by Taylor expanding sech2[s−(x − pi+ j )] about pi up to terms linear in (x − pi ):∫ ∞

−∞
dx sech2(s+ζi )sech2(s−ζi+ j ) �

∫ ∞

−∞
dx sech2[s+(x − pi )]

{
sech2[s−(pi − pi+ j )] + (x − pi )

∂

∂x
sech2[s−(x − pi+ j )]

}
= 2

s+
sech2[s−(pi − pi+ j )]

� 8

s+
e−2 js−(pi+ j−pi ). (A7)

Note that we have used Eq. (A3) in the last step. Plugging the results from Eqs. (A6) and (A7) in Eq. (A5) and then using
Eq. (25), we obtain

LHS (odd) � −4

3
s+ ṗi + 8s− ṗi+1e−2s−li + 8s− ṗi−1e−2s−li−1 . (A8)

Proceeding in similar fashion, we arrive at the following approximation for the LHS when i is even:

LHS (even) � −4

3
s− ṗi + 8s− ṗi+1e−2s−li + 8s− ṗi−1e−2s−li−1 . (A9)

The integrals in the RHS of Eq. (24) can be evaluated using the same method. Using Eqs. (18) and (23) the RHS is expanded as

RHS =
∑
α=±

[
−3

∫ ∞

−∞
dx �iζi�iω

2
α −

∫ ∞

−∞
dx �iζiω

3
α + 2E

∫ ∞

−∞
dx �iζiωα (ωαx + �iζi ) + 4E

∫ ∞

−∞
dx �iζi�iωαx

]

− 6
∫ ∞

−∞
dx �iζi�iω−ω+ − 3

∫ ∞

−∞
dx �iζiω

2
−ω+ − 3

∫ ∞

−∞
dx �iζiω−ω2

+ + 2E
∫ ∞

−∞
dx �iζi (ω+ω−x + ω−ω+x ). (A10)
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We consider the cases of odd and even i separately as in the case of LHS. The first integral in the right-hand side of Eq. (A10)
can be explicitly written for odd i as

I1(odd) =
∫ ∞

−∞
dx �iζi�iω

2
α = s+

∫ ∞

−∞
dx sech2[s+(x − pi )] tanh[s+(x − pi )]{tanh[s−(x − pi+aα

)] + aα}2, (A11)

where we have used Eqs. (12), (13), (15), and (17) and a± = ±1. The integral in Eq. (A11) is of the form given in Eq. (A1) and
can be approximated as shown in Eq. (A2).

I1(odd) � s+
∫ ∞

−∞
dx sech2[s+(x − pi )] tanh[s+(x − pi )][{tanh[s−(pi − pi+aα

)] + aα}2

+ 2s−{tanh[s−(pi − pi+aα
)] + aα}sech2[s−(pi − pi+aα

)] × (x − pi )]

= 2s−s+{tanh[s−(pi − pi+aα
)] + aα}sech2[s−(pi − pi+aα

)]
∫ ∞

−∞
dx sech2[s+(x − pi )] tanh[s+(x − pi )](x − pi )

= 2s−
s+

{tanh[s−(pi − pi+aα
)] + aα}sech2[s−(pi − pi+aα

)]

� 8s−
s+

×
{

(e−2s−li )
2
, α = +,

−(e−2s−li−1 )
2
, α = −,

�0. (A12)

Note that in the one to last step we have used Eq. (A3), and in the last step neglected terms of order O({exp (−2s±li)}2). The
remaining integrals in Eq. (A10) are evaluated likewise for the case of odd i. The nonvanishing contributions are listed as follows:∫ ∞

−∞
dx �iζiωα (ωαx + �iζi ) � −8

3
s+ ×

{
e−2s−li , α = +,

−e−2s−li−1 , α = −,
(A13)∫ ∞

−∞
dx �iζi�iωαx � −8s−

s−
s+

×
{

e−2s−li , α = +,

−e−2s−li−1 , α = −.
(A14)

Using the results from Eqs. (A12), (A13), and (A14) in Eq. (A10) we obtain

RHS (odd) � 16E
(

s+
3

+ 2s−
s−
s+

)
e−2s−li−1 − 16E

(
s+
3

+ 2s−
s−
s+

)
e−2s−li . (A15)

We now proceed to evaluate the integrals in Eq. (A10) for the case of even i. Using Eqs. (12), (13), (15), and (17), the first
integral is explicitly written for even i as

I1(even) =
∫ ∞

−∞
dx �iζi�iω

2
α = s−

∫ ∞

−∞
dx sech2[s−(x − pi )] tanh[s−(x − pi )]{tanh[s+(x − pi+aα

)] + aα}2. (A16)

The approximation in Eq. (A2) cannot be directly used as the integrand does not involve a sech[s+(x − pk )] factor as in Eq. (A1).
However, by integrating by parts a sech[s+(x − pk )] factor can be introduced to yield

I1(even) = s+
∫ ∞

−∞
dx sech2[s+(x − pi+aα

)]{tanh[s+(x − pi+aα
)] + aα}sech2[s−(x − pi )]. (A17)

We can now use the approximations given in Eqs. (A2) and (A3) as in the previous cases to obtain

I1(even) �
(

8 − 8
s−
s+

)
×

{
e−2s−li , α = +,

−e−2s−li−1 , α = −.
(A18)

The remaining integrals in Eq. (A10) are evaluated for the case of even i in the same way. The nonvanishing ones are listed as
follows: ∫ ∞

−∞
dx �iζiω

3
α � −

(
16 − 24

s−
s+

)
×

{
e−2s−li , α = +,

−e−2s−li−1 , α = −,
(A19)∫ ∞

−∞
dx �iζiωα (ωαx + �iζi ) � −8s−

(
1 − s−

s+

)
×

{
e−2s−li , α = +,

−e−2s−li−1 , α = −,
(A20)∫ ∞

−∞
dx �iζi�iωαx � 8s− ×

{
e−2s−li , α = +,

−e−2s−li−1 , α = −.
(A21)
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Using the results from Eqs. (A18), (A19), (A20), and (A21) in Eq. (A10) we obtain

RHS (even) �
{

8 − 16Es−

(
1 + s−

s+

)}
e−2s−li−1 −

{
8 − 16Es−

(
1 + s−

s+

)}
e−2s−li . (A22)

Finally, Eqs. (A8) and (A15) are put together to yield

− 4

3
s+ ṗi + 8s− ṗi+1e−2s−li + 8s− ṗi−1e−2s−li−1 = 16E

(
s+
3

+ 2s−
s−
s+

)
e−2s−li−1 − 16E

(
s+
3

+ 2s−
s−
s+

)
e−2s−li , (A23)

where i is odd. Similarly, Eqs. (A9) and (A22) yields

− 4

3
s− ṗi + 8s− ṗi+1e−2s−li + 8s− ṗi−1e−2s−li−1 =

{
8 − 16Es−

(
1 + s−

s+

)}
e−2s−li−1 −

{
8 − 16Es−

(
1 + s−

s+

)}
e−2s−li , (A24)

where i is even.
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