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Finite-size scaling of critical avalanches
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We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a
power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation
reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the
scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical
exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis
provides striking implications. While the exact value for avalanches size exponent remains elusive for the
prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent
that the distribution shows a logarithmic system size dependence, consistent with the normalization condition.
We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly
less than 1, which differs significantly from the previous estimate of 1.11.
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I. INTRODUCTION

The emergent scale-invariant feature [1–6] remains one
of the most remarkable observation occurring in systems as
diverse as friction factor in turbulent flow [7], jamming tran-
sition [8], and phylogenetic trees topology [9], to name a few.
While the scaling behavior reflects a lack of a characteristic
scale, diverse systems may have the same scaling exponents
irrespective of their different microscopic dynamics. The no-
tion of universality classes plays an important role, and the
intriguing nature of the scaling feature continues to attract
attention.

Such features can arise near the critical point of a con-
tinuous transition between order and disorder phases. The
hypothesis of self-organized criticality (SOC) [10–13], poised
by Bak, Tang, and Wiesenfeld (BTW) explains the underlying
origin of scaling in natural systems, which remain far away
from equilibrium. According to SOC, a class of spatially
extended driven-dissipative systems spontaneously organizes
into a critical state. The response to a noisy drive exhibits
nonlinearity, and the fluctuations, termed critical avalanches,
show scaling in size probability distribution function (PDF).
So far, SOC has explained scaling features in a broad range
of phenomena spanning from earthquake [14] to biological
evolution [15] and neuronal avalanches [16–18]. The simple
models of SOC, also analytically solvable, include Flyvbjerg’s
random neighbor model [19] and its conservative variant stud-
ied by Nagler et al. [20].

Despite considerable efforts, many aspects of SOC remain
yet not clearly understood. One fundamental goal is to deter-
mine the scaling exponent for avalanche size distribution. In
this context, the exact value of the exponent τ remains elusive
for the paradigmatic BTW sandpile on the square lattice.
Initial numerical estimates suggest τ ≈ 1 [10]. Subsequently,
Zhang [21] proposed a scaling theory that correctly justified

the observation of BTW. However, Manna later performed
large system size simulations and found τ ∼ 1.2 [22]. Since
then, several studies have examined this issue using differ-
ent tools, like the mean-field [23] and renormalization group
methods [24]. Decomposing an avalanche into a sequence
of waves of toppling, Priezzhev et al. [25] argued τ = 6/5.
However, the legitimacy of underlying assumptions has been
questioned by Paczuski et al. [26].

Typically, such systems are not analytically tractable, and
the numerical estimation of the exponents comes from sim-
ulation studies [27]. It is desirable to determine the scaling
exponents accurately to validate theoretical arguments and
universality classes. The commonly accepted approach is to
get data collapse from finite-size scaling (FSS), for which
a systematic method is moment analysis [28]. However,
the FSS breaks to provide a good data collapse in various
cases [29–31]. While the area distribution obeys FSS for the
BTW sandpile, the size distribution does not, particularly near
cutoff. Examples also include the bulk driven Oslo sand-
pile [32–34] or train model of the earthquakes [35,36]. The
multifractal scaling and edge events appear to explain the
breaking of FSS [37,38].

We also mention that, other than the critical exponents, a
feature of significant interest is the average avalanche shape or
the temporal profile of avalanches of fixed duration [39–41].
Laurson et al. [42] have examined such features for the BTW
sandpile and a stochastic variant of it (Manna model). They
report that the shape is symmetric for the Manna model.
Interestingly, they suggest that the shapes do not show a data
collapse for the BTW model as a function of the duration
because the avalanches develop asymmetry. For information
spreading and neuronal dynamics, Gleeson and Durrett [43]
have recently explained a nonsymmetric behavior of the aver-
age avalanche shape from the interplay of the dynamics and
underlying network topology.
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Our main contribution to this paper comprises the follow-
ing. While the power-law distribution with a cutoff remains
a well-recognized feature associated with critical avalanches,
it may also be an explicit function of system size. We em-
phasize that the probability may decrease as a function of the
system size for a fixed avalanche size. Although such system
size dependence is a simple feature, it is unclear in both its
systematic analysis and inferences. We show a simple scaling
analysis that can capture this feature. The method relies on
identifying the characteristics of scaling functions.

To observe the prominent feature, we numerically inves-
tigate several SOC models. We also point out implications
and limitations encountered in numerical computations. The
exact value of the exponent should be 1 for the BTW sandpile
because the size distribution follows a logarithmic system size
dependence. It is easy to follow from the normalization of the
power-law PDF with an upper cutoff. We also note similar
features in the bulk-driven train model.

The plan of the paper is the following. In Sec. II, we recall
the BTW sandpile model and show simulation results for
avalanche area and size distributions. Section III presents an
analysis revealing the system size scaling. We show similar
results for the bulk-driven train model in Sec. IV. Finally,
Sec. V provides a summary and discussion.

II. BTW SANDPILE MODEL

To test the proposed scaling behavior, we examine several
models manifesting SOC. These models explain avalanches
observed in diverse systems, ranging from neuronal networks
to earthquakes and sandpiles. Here, we first show results
for the BTW sandpile model. Consider a square lattice with
N = L2 sites, where L is the linear extent. We associate a
discrete height or slope variable to each site as zi such that 0 �
zi < z0, where z0 = 4 is the threshold. The system is driven by
randomly selecting a site and updating it as zi → zi + 1. If a
site i is unstable zi � z0, the site relaxes as

zi → zi − 4, z j → z j + 1,

where j denotes the nearest neighbors. As a result, the neigh-
bor site(s) may become unstable. The relaxation continues
until all sites become stable and the open boundary allows
dissipation. A new driving occurs when the ongoing avalanche
is over. Thus, the time-scale separation between drive and
dissipation excludes interaction among avalanches.

The number of total (distinct) toppled sites denotes the
avalanche size (area). We numerically examine the PDF for
area a and size s variables. We can clearly see a system size
effect for the area distribution in Fig. 1(a), and this vanishes
if we plot ln(N )P(a) [cf. Fig. 1(b)]. Plotting P(a = 1) for dif-
ferent N , we note ∼1/ ln(N ) type behavior [cf. Fig. 1(c)]. The
mean area (not shown) scales as 〈a〉 ∼ N/ ln(N ). Similarly,
Fig. 2 supports the logarithmic feature for the avalanche size
distribution.

III. SYSTEM SIZE SCALING

Consider sandpile systems showing critical avalanches.
Observable x can describe the events like size (total toppled
sites) s and area (spatial extent of size) a. A systematic
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FIG. 1. The curves show area distribution for the BTW sandpile
model, where (a) P(a) and (b) ln(N )P(a). The system size N varies
from 24, 26, · · · to 214. Throughout our simulation, we use M = 108.
For comparison, we draw lines (thick dashed) with respective slopes.
(c) The variation of P(a = 1) with N along with best fit curve
∼1/ ln(N ).

numerical investigation suggests that the probability distribu-
tion of the event x obeys a decaying power-law behavior

P(x, xc) ∼
{

x−θ
c x−τx , if x � xc,

rapid decay, if x ≈ xc,
(1)

where xc ∼ LDx , with L being the linear extent of the system
and Dx is cutoff exponent. Strikingly, Eq. (1) captures an
unusual feature: The probability decreases on increasing the
system size while keeping x fixed [for example, cf. Fig. 1(a)].
We include a multiplicative prefactor (a function of xc) to ac-
count for the finite size effect. We assume one of the simplest
forms x−θ

c , where θ is a scaling exponent.
Under what mathematical condition can we expect such

behavior, associated with power-law distribution? A well-
defined probability density function must satisfy two con-
ditions: (i) Positivity 0 � P(x) � 1 and (ii) normalization∫

x P(x)dx = 1. For simplicity, we consider a power-law PDF
with a sharp cutoff P(x) = Ax−τx , with 1 � x � xc, where A
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FIG. 2. For the BTW sandpile model, the plot of (a) P(s) and
(b) ln(N )P(s), with different system size N , varying from 26, 28 · · ·
to 214.

is a normalization factor. The normalization yields

A =
{

(1 − τx )/
[
x1−τx

c − 1
]
, if τx �= 1,

1/ ln(xc), if τx = 1.

For a large but finite system, xc 	 1. In turn, the factor A(xc)
can be expressed as

A(xc) ∼
⎧⎨
⎩

1 + O
(
x1−τx

c

)
, if τx > 1,

x−ε
c , if τx = 1,

1/x1−τx
c , if τx < 1.

(2)

Here, we use an approximation ln xc ∼ xε
c . Comparing

Eqs. (1) and (2), we can easily note the scaling exponent

θ =
⎧⎨
⎩

0, if τx > 1,

ε, if τx = 1,

1 − τx, if τx < 1.

(3)

In the thermodynamic limit xc → ∞, the avalanches
should show decaying power-law distribution x−τx with θ = 0
(a sign of generic criticality) and τx > 1. However, there is
an upper cutoff for finite but large systems. As a result, the
critical exponent τx can accept a value less than or equal
to 1. If τx = 1, a logarithmic behavior appears. This case is
usually challenging to verify numerically since such an effect
becomes too small to see for a large system size. If τx < 1,
then τx + θ = 1. Eventually,

τx + θ � 1. (4)

As the probability distribution is a homogeneous function
of its arguments, we can re-express Eq. (1) as

P(x, xc) = 1

xτx+θ
G(u) = 1

xτx+θ
c

H (u), (5a)
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FIG. 3. The data collapses correspond to Fig. 1(a). The scaling
exponent is θ ≈ 0.17.

where u = x/xc. In the regime u � 1, the scaling functions
behave as

G(u) ∼ uθ and H (u) ∼ u−τx . (5b)

The scaling functions isolate the two exponents. As a first
example, consider the one-dimensional (1D) BTW sand-
pile model [29]. Here, x = s = a. Numerically, one gets
P(x, xc) = 1/xc for 0 � x � xc, where xc = L. In the regime
0 � u � 1, the scaling functions are

G(u) = u and H (u) = 1. (6)

Thus, θ = 1, τx = 0, and Dx = 1. Unlike the 1D percolation
model, the 1D BTW model shows trivial behavior, but the FSS
reveals a precise scaling of size distribution.

Our proposal is quite simple and well applicable to the
1D BTW sandpile. However, this does not seem correctly
incorporated in other nontrivial SOC systems. The reason
may be partly because of the overwhelming success of the
FSS with θ = 0 for a wide range of processes. Also, this
feature is not visible in the large-scale system since θ is
typically small. We emphasize that many cases (shown below)
can have θ �= 0. As shown in Fig. 3, the scaling func-
tions confirm the existence of system size scaling behavior
(θ ≈ 0.17) for area distribution in the 2D BTW sandpile
model.

In simulations, we collect the avalanches after discarding
transients. In models with continuous state variables (energy),
we choose the initial configuration close to the critical en-
ergy value. Such a choice is helpful in the sense that it can
reduce transients. To observe a precise dependence of system
size, we keep the total number of avalanches M fixed. As a
result, the normalization does not influence PDF. We prefer
not to normalize the PDF. It allows us to see, at a fixed
M, how large the system size is to consider getting a sharp
cutoff. Notice that a clean cutoff is essentially required to
determine the cutoff exponent Dx. We use a log bin for a
relatively large system to avoid losing information near the
cutoff. Thus, M should be large enough to detect a clean
cutoff. To compute the scaling functions, the exponents τx

and θ need to be determined. Alternatively, it is easy to
measure τx + θ by looking at the slope of PDF on a double
log scale, with different system sizes, near the larger value
of x.
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FIG. 4. Bulk driven train model: The avalanche size distribution
(a) P(s) (b) N0.17P(s) for different N values 24, 26, 28, and 210.

IV. TRAIN MODEL

In the second example, we consider a train model [36]. The
model explains the stick-slip phenomenon and is a simplified
version of the spring block model introduced by Burridge and
Knopoff [35]. Interestingly, a recent study [44] suggests that
the train model does not belong to the universality class of
the Oslo sandpile model. However, both models show the
same critical exponents describing avalanche size distribu-
tion [34]. We focus on the train model. The model definition
is easy to follow. Consider a 1D lattice of size N . Assign a
continuous force or stress variable fi to each site i such that
0 � fi < f0, where f0 is a threshold force. We drive the sys-
tem at one boundary f1 → f0 + δ, with δ � f0. If a site i is
unstable fi � f0, it relaxes by transferring a part of the force
to neighbors via the following rules:

fi → f ′
i , fi±1 → fi±1 + �/2,

where � = fi − f ′
i . In turn, the neighbor(s) may become un-

stable. It may further trigger the linked sites. This activity
forms an avalanche event. The open boundary allows dissi-
pation, and a new avalanche starts when the previous one is
completely over.

In the deterministic version of the model, f ′
i is a nonlinear

periodic function. We consider f ′
i as a uniformly distributed

random variable ∈ (0, 1). This choice does not change the
system properties. We take f0 = 1 and δ = 0.1. In the bulk-
driven version of the train model, an activation occurs by
selecting a random site. The numerical results shown in
Fig. 4 suggest that the avalanche size distribution shows a
scaling of N−θ ′

type with θ ′ ≈ 0.17. We also numerically
checked ln(N )P(s), but it does not show a good collapse.

Also, the scaling exponent τs ≈ 0.94 is slightly less than
1 and significantly different from 1.11 [as obtained using
moment analysis for the Oslo sandpile with bulk drive [29]
or as indicated in Fig. 4(a)]. From Eq. (1), it is easy to
note that θ ′ = θDs, where Ds is the cutoff size exponent.
The known value of the cutoff size exponent Ds ≈ 2.25
yields θ ≈ 0.07. It turns out that τs + θ = 1.01 is in good
agreement with the inequality [cf. Eq. (4)] within the
statistical error.

V. SUMMARY AND DISCUSSION

In summary, we have shown that several SOC mod-
els, including the 2D BTW sandpile, can show explicit
system size dependence besides the cutoff in the probabil-
ity distribution function associated with critical avalanches.
Mathematically, the normalization of power-law PDF with
an upper cutoff reveals the PDF can be an explicitly
power-law or logarithmic function of system size, and the
critical avalanche size exponent τs maybe even less than or
equal to 1, respectively. Effectively, a simple approxima-
tion for the explicit system size function can be a decaying
power-law with a scaling exponent θ . The scaling method
provides a systematic approach, capturing the finite-size scal-
ing. The scaling functions isolate the critical exponents θ

and τs.
We suggest that for a 2D BTW sandpile, the exact value of

the exponent should be τs = 1, as the logarithmic system size
dependence arises for avalanche size (area) distribution. Thus,
we provide significant insight into one of the intriguing issues
associated with SOC. Similarly, we note N−θ ′

with θ ′ ≈ 0.17
dependence for the bulk-driven train model, and the avalanche
size exponent is slightly less than 1. Eventually, the results
would be helpful to validate a theoretical prediction and rec-
ognize the universality class. Treating the critical exponent as
a function of system size, as suggested in some earlier studies,
does not seem convincing.

We have also examined the boundary driven train
model [36], neuronal level model [45], and number-
theoretic division model [46]. These systems manifest critical
avalanches, where τs is significantly greater than 1. In these,
we find no evidence of the system size scaling (i.e., θ = 0).

In percolation, it is the Fisher exponent τ ′
s = τs + 1 that

conventionally takes a value greater than 2. Several recent
works [47–52] have shown that the exponent can take a value
less than 2 in many physically interesting systems. Examples
include no-enclave percolation, describing the behavior of
active gel driven internally by molecular motors [47], and
percolation on not- visited sites for a 2D random walk [53].
Also, the exponent is τ ′

s < 2 in the forest-fire model [54].
While a clean detection of logarithmic corrections for τs = 1
may be difficult, it is easy to verify the explicit system size
dependence numerically.

Recently, Fan et al. [6] have applied the finite-size scaling
combined with extreme value theory to explain the statistics of
the largest gap in the order parameter of percolation systems.
The corresponding scaling function shows universal behav-
ior satisfying the extreme-value Gumble distribution [55]. It
would be interesting to examine the extent of such methods
for the giant avalanche (an extreme event) in SOC systems.
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