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Perturbative expansion of irreversible work in symmetric and asymmetric processes
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The systematic expansion method of the solution of the Fokker-Planck equation is developed by generalizing
the formulation proposed in [J. Phys. A: Math. Theor. 50, 325001 (2017)]. Using this method, we obtain an
alternative formula to calculate the mean work perturbatively which is applicable to systems with degeneracy in
the eigenvalues of the Fokker-Planck operator. This method enables us to study how the geometrical symmetry
affects thermodynamic description of a Brownian particle. To illustrate the application of the derived theory,
we consider the Fokker-Planck equation with a two-dimensional harmonic potential. To investigate the effect
of symmetry of the potential, we study thermodynamic properties in symmetric and asymmetric deformation
processes of the potential: the rotational symmetry of the harmonic potential is held in the former, but it is broken
in the latter. Optimized deformations in these processes are defined by minimizing mean work. Comparing these
optimized processes, we find that the difference between the symmetric and asymmetric processes is maximized
when the deformation time of the potential is given by a critical time which is characterized by the relaxation
time of the Fokker-Planck equation. This critical time in the mean work is smaller than that of the change of the
mean energy because of the hysteresis effect in the irreversible processes.
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I. INTRODUCTION

There is no established framework to generalize the ther-
modynamic description to a small-fluctuating system, but
such a system is often modeled using Brownian motion con-
fined in an external potential [1–4]. We can then define mean
work, heat, and entropy in the process induced by the de-
formation of the confinement potential, and show that these
quantities satisfy the laws analogous to the first and second
laws in thermodynamics. Differently from the idealized dis-
cussion in thermodynamics, the deformation of the potential
is implemented within a finite time period, and thus any pro-
cess is irreversible. In the construction of, for example, an
efficient nanomachines, it is important to find the optimized
process where the irreversible contribution in mean work is
minimized [4–18].

The distribution function of a Brownian particle in the
configuration space is known to be described by the Fokker-
Planck equation. Therefore the thermodynamic quantities in
a small-fluctuating system can be obtained by solving it. In
order to find the optimized process, then, it is desirable to
calculate the mean work in an analytic form [4,5] because
it is difficult to calculate variation numerically. In fact, the
optimization has been exclusively studied for exactly solvable
models like the harmonic potential [15–28]. As applications
to more general potentials, see, for example, [29,30]. In
Ref. [18], the present author developed a perturbative expan-
sion method to calculate the solution of the Fokker-Planck
equation in the one-dimensional system. Using this theory,
a formula to calculate the mean work perturbatively was
obtained. Applying the derived perturbation theory to the
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one-dimensional harmonic potential, we confirmed that our
perturbative calculations are consistent with the exact results.

In Ref. [18], however, the effect of degeneracy is not con-
sidered, and thus the theory is not applicable to study the
systems in higher spatial dimensions. The purpose of this
paper is to generalize the perturbation theory to arbitrary
spatial dimensions. Such a generalization enables us to study
how the geometrical symmetry of the external potential af-
fects thermodynamic description of a Brownian particle. The
external potential determines the shape of the system, and
thus the generalized theory will be useful to study the surface
effect in the thermodynamic behavior which vanishes in the
thermodynamic limit. See also Ref. [31] as a related reference.
To illustrate the application of the derived theory, we study
thermodynamic description of a Brownian particle confined
in a two-dimensional harmonic potential. We are interested in
the effect of symmetry and hence investigate symmetric and
asymmetric compression processes. The rotational symmetry
of the harmonic potential is held in the former, but it is broken
in the latter. Perturbative calculations are affected by these
deformation processes because the degeneracy of the expan-
sion basis (foot and head states) depends on the symmetry of
the potentials. The optimized processes are found by mini-
mizing the mean work. Comparing the optimized symmetric
and asymmetric processes, we find that these behaviors are the
same in the vanishing and infinity limits of the deformation
time of the potential. The difference between these processes
is maximized when the deformation time is given by a critical
time which is characterized by the relaxation time of the
Fokker-Planck equation. This critical time in the mean work
is smaller than that in the change of the mean energy because
of the hysteresis effect in irreversible processes.

This paper is organized as follows. In Sec. II the ther-
modynamic interpretation in the Fokker-Planck equation is
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summarized following stochastic energetics [4]. In Sec. III the
eigenvalues and eigenfuctions of the time-dependent Fokker-
Planck operator are introduced. Using these, we develop the
perturbation theory in the D-dimensional Fokker-Planck equa-
tion in Sec. IV. This result is applied to find the perturbative
formula to calculate the mean work in Sec. V. To illustrate
the applications of the formula, we consider symmetric and
asymmetric compression processes of the two dimensional
harmonic potential in Secs. VI and VII, respectively. These
results are numerically calculated and compared in Sec. VIII.
Section IX is devoted to the concluding remarks.

II. THERMODYNAMIC INTERPRETATION
IN FOKKER-PLANCK EQUATION

Before discussing the perturbation theory, we briefly sum-
marize the thermodynamic description of the systems given by
the Fokker-Planck equation. The discussion in this section is
based on stochastic energetics [4].

We consider a D-dimensional Brownian particle which is
confined in an external potential V and interacts with a thermal
bath with temperature T . Let us define the distribution of the
Brownian particle in the configuration space by.

ρ(x, t ) =
∫

dR ρ0(R)E
[
δ(D)(x − xt )

]
, (1)

where D is the spatial dimension and xt represents the po-
sition of the Brownian particle at t . The initial distribution
of the Brownian particle is denoted by ρ0(R) with R being
the position at an initial time ti, xti = R. The evolution of this
distribution is described by the Fokker-Planck equation,

∂tρ(x, t ) = ∇ ·
{

1

νβ
∇ + 1

ν
(∇V (x, at ))

}
ρ(x, t )

≡ Lt (x)ρ(x, t ), (2)

where ν is a friction constant and β = 1/(kBT ) with kB be-
ing the Boltzmann constant. In this work, the temperature is
constant but the form of the potential V is deformed by chang-
ing the control parameters at = (a(1)

t , a(2)
t , . . . ). Because of

the confinement potential V , the particle distribution ρ(x, t )
vanishes quickly at an infinite distance, lim

|x|→∞
ρ(x, t ) = 0.

As is well known, the Fokker-Planck equation (2) is re-
produced from Brownian motion which is described by the
stochastic differential equation [4,32],

dxt = −dt

ν
∇V (xt , at ) +

√
2

βν
dBt , (3)

where dBt = Bt+dt − Bt is the inclination of the standard
Wiener process Bt satisfying

E
[
dBi

t

] = 0, (4)

E
[
dBi

t dB j
t ′
] = dt δt,t ′ δi, j . (5)

The ensemble average of the Wiener process is denoted by
E[·].

In this model, the Brownian particle interacts with the
thermal bath through the dissipative force (−νdxt/dt ) and
the random force (

√
2/βν dBt/dt ). In stochastic energetics,

the heat dqt associated with a single stochastic trajectory is
interpreted as the work done by these interactions and thus
given by

dqt =
D∑

i=1

(
−ν

dxi
t

dt
+

√
2

βν

dBi
t

dt

)
◦ dxi

t , (6)

where ◦ is the Stratonovich definition of the product,

At ◦ dBt = At + At+dt

2
dBt . (7)

Applying Eq. (3) to the definition (6), the above heat is reex-
pressed as

dqt = dV (xt , at ) − dwt . (8)

The first term on the right-hand side gives the change of
the internal energy and the second term represents the work
done by the deformation of the external potential, which is
defined by

dwt =
D∑

i=1

∂V (xt , at )

∂ai
t

dai
t . (9)

Note that the relation (8) is satisfied for each stochastic
trajectory

The expectation value of Eq. (8) leads to a law analogous
to the first law of thermodynamics,

dQt = [E (t + dt ) − E (t )] − dWt , (10)

where the expectation values are introduced by

dQt =
∫

dDR ρ0(R)E[dqt ], (11)

E (t ) =
∫

dDR ρ0(R)E[V (xt , at )] =
∫

dDx ρ(x, t )V (x, at ),

(12)

dWt =
∫

dDR ρ0(R)E[dwt ]

= dt
∫

dDx ρ(x, t )
D∑

i=1

∂V (x, at )

∂ai
t

dai
t

dt
. (13)

Using the Shannon entropy (multiplying the Boltzmann
constant) defined by

S(t ) = −kB

∫
dDx ρ(x, t ) ln ρ(x, t ), (14)

we further find that there exists the following inequality [4]:

dS(t )

dt
− 1

T

dQt

dt
� 0. (15)

The equality is satisfied for the stationary state of the Fokker-
Planck equation. This inequality can be regarded as the second
law of thermodynamics. Note, however, that the Shannon
entropy is definable even in nonequilibrium states. Therefore
the above inequality is not exactly the same as the the thermo-
dynamic second law.

In this paper, we consider the irreversible isothermal pro-
cesses where the system interacts with the thermal bath with
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a fixed temperature T , and thus the mean work should satisfy
the following inequality:

dWt = [E (t + dt ) − E (t )] − dQt

� Fhelm(at+dt ) − Fhelm(at ). (16)

This is obtained by using the inequality (15) and the
Helmholtz free energy defined by

Fhelm(at ) = E (t ) − T S(t ). (17)

Here, however, S(t ) is not the thermodynamic entropy but the
Shannon entropy introduced above. Therefore this Helmholtz
free energy is not the same as the corresponding quantity in
thermodynamics.

III. EIGENVALUES AND EIGENFUNCTIONS
OF TIME-DEPENDENT FOKKER-PLANCK OPERATOR

In this section, we define the expansion basis following
Ref. [18]. A similar expansion basis is discussed, for exam-
ple, in Ref. [32]. We generalize this method to the case of
the time-dependent Fokker-Planck operator referring to the
discussion in Ref. [33]. Note that the eigenvalue theory of
the time-periodic Fokker-Planck operator (the Kolmogorov
operator) is discussed in Ref. [34] and the properties found
below are consistent with the result. See also Ref. [35].

The eigenvalues and eigenfunctions of the time-dependent
Fokker-Planck operator Lt (x) are defined by

Lt (x) ρ
n,αn

(x, at ) = −λn(t ) ρ
n,αn

(x, at ). (18)

We call these eigenfunctions the foot states. Here the index
n characterizes the eigenvalue λn(t ) which is a function of
time. The degeneracy associated with the index n is charac-
terized by a set of nonnegative integers αn = (α1,n, α2,n, . . . ),
satisfying 0 � αi,n � d (i,n)(at ). Thus the upper limit of the
sums of the degeneracy is characterized by a set of integers
d(n)(at ) = (d (1,n)(at ), d (2,n)(at ), . . . ). If there is no degener-
acy, d(n)(at ) = (0, 0, . . . ) = 0 and thus αi,n can take only
zeros, αn = (0, 0, . . . ) = 0.

Note that Lt (x) is not self-adjoint and the above eigenfunc-
tions do not form a complete set. To find the complete set, we
define the adjoint operator of Lt (x) by∫

dDx g(x)Lt (x) f (x) =
∫

dDx
(
L†

t (x)g(x)
)

f (x), (19)

where f (x) and g(x) are smooth arbitrary functions and

L†
t (x) =

[
1

νβ
∇2 − 1

ν
[∇V (x, at )] · ∇

]
. (20)

The eigenfunctions of L†
t (x) are called the head states and

defined by

L†
t (x)ρn,αn

(x, at ) = −λn(t )ρn,αn
(x, at ). (21)

As shown soon later, the eigenvalue of the head state λn(t ) is
the same as that of the foot state λn(t ).

Note that both of Lt (x) and L†
t (x) are characterized by a

self-adjoint operator Ht (x) defined by [18,32,33]

eG(x,at )/2Lt (x)e−G(x,at )/2 = e−G(x,at )/2L†
t (x)eG(x,at )/2

= −Ht (x), (22)

where

Ht (x) =
[
− 1

νβ
∇2 − 1

2ν
[∇2V (x, at )] + β

4ν
[∇V (x, at )]

2

]
,

(23)

G(x, at ) = βV (x, at ). (24)

To give the representations of the foot and head states, we
introduce the eigenfunctions of Ht (x),

Ht (x)un,αn (x, at ) = λn(t )un,αn (x, at ). (25)

As is well known in quantum mechanics, these eigenfunctions
form a complete orthogonal set [18,36],∫

dDx un,αn (x, at )um,βm
(x, at ) = δn,mδ

αn,βn
,

∑
n�0

d(n) (at )∑
αn=0

un,αn (x, at )un,αn (x′, at ) = δ(D)(x − x′), (26)

where δαn,βn
= δα1n,β1,n δα2,n,β2,n . . . . Note that the eigenvalues

λn(t ) are nonnegative real numbers as shown later and thus
un,αn (x, at ) can be chosen to be real functions.

Using these results, we construct the foot and head states.
The set of the foot and head states form a biorthogonal sys-
tem and satisfies the following orthogonal and completeness
conditions:∫

dDx ρn,αn
(x, at )ρm,βm

(x, at ) = δn,mδαn,βm
,

∑
n�0

d(n) (at )∑
αn=0

ρ
n,αn

(x, at )ρn,αn
(x′, at ) = δ(D)(x − x′). (27)

Because of these properties, the solution of the Fokker-Planck
equation can be expanded using the foot and head states. The
foot and head states are represented by

ρ
n,αn

(x, at ) = √
Nn,αn (at )e

−G(x,at )/2un,αn (x, at ),

ρn,αn
(x, at ) = 1√

Nn,αn (at )
eG(x,at )/2un,αn (x, at ). (28)

Here we introduced the real factor Nn,αn (at ). It is because,
differently from quantum mechanics, the normalization con-
dition is applied to a pair of foot and head states, and thus, for
example, a foot state itself is not necessarily normalized by
one.

From Eqs. (28), we find that all eigenvalues of ρ
n,αn

(x, at ),
ρn,αn

(x, at ) and un,αn (x, at ) are equal,

λn(t ) = λn(t ) = λn(t ). (29)

Moreover, the foot and head states satisfy the relation

ρn,αn
(x, at ) = 1

Nn,αn (at )
eG(x,at )ρ

n,αn
(x, at ). (30)

Therefore it is easy to understand that the degeneracy of
ρ

n,αn
(x, at ) is the same as that of ρn,αn

(x, at ).
For an arbitrary external potential, we can show the follow-

ing properties:
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(1) The smallest eigenvalue is given by zero. Thus, with-
out loss of generality, we can set the order of the eigenvalues
as

0 = λ0(t ) < λ1(t ) < λ2(t ) < · · · . (31)

(2) The “ground” foot and head states ρ
0
(x, at ) and

ρ0(x, at ) have the eigenvalue λ0. These states are not degen-
erate and given by

ρ
0,0

(x, at ) = √
N0,0(at )

1√
Z (at )

e−βV (x,at ),

ρ0,0(x, at ) = 1√
N0,0(at )

1√
Z (at )

, (32)

respectively. Here we introduced

Z (at ) =
∫

dDx e−βV (x,at ). (33)

The derivations of these properties are the same as those in
one dimension [18] and are summarized in Appendix A.

When we choose

N0,0(at ) = 1

Z (at )
, (34)

the ground head state becomes trivial,

ρ0,0(x, at ) = 1. (35)

This choice is considered in Ref. [36], where it is shown that
the time evolution of the Fokker-Planck, the Kramers, and the
relativistic Kramers systems can be regarded as a special case
of Schrödinger’s reciprocal process, and then the Jarzynski re-
lation is reproduced from the symmetry of the Fokker-Planck
operator.

A. Bra-ket representation

For the sake of simplicity, we introduce the quantum-
mechanical bra-ket notation. The foot and heat states are
expressed in terms of the inner products of bra-ket vectors,

ρ
n,αn

(x, at ) = 〈x|n,αn, at 〉,

ρm,βm
(x, at ) = 〈x|m,βm, at 〉. (36)

Here we introduce the position basis |x〉 which satisfies
(|x〉)† = 〈x| and∫

dDx |x〉〈x| = 1, 〈x|x′〉 = δ(D)(x − x′). (37)

Then the conditions for the complete orthogonal set, Eq. (27),
are, respectively, represented by

〈m,βm, at |n,αn, at 〉 = δm,nδβm,αn ,∑
n�0

d(n) (at )∑
αn=0

|n,αn, at 〉〈n,αn, at | = 1, (38)

where

(|n,αn, at 〉)† = 〈n,αn, at |, (|n,αn, at 〉)† = 〈n,αn, at |.
(39)

From Eq. (30), we find

|n,αn, at 〉 = 1

Nn,αn (at )
eĜ(at )|n,αn, at 〉, (40)

where the operator Ĝ(at ) is defined by

〈x|Ĝ(at )|x′〉 = G(x, at )δ
(D)(x − x′). (41)

In this notation, the Fokker-Planck equation is represented
by

∂t |ρ(t )〉 = L̂t |ρ(t )〉, (42)

where

〈x|L̂t |x′〉 = Lt (x)δ(D)(x − x′). (43)

The eigenvalue equations are then expressed as

L̂t |n,αn, at 〉 = −λn(t )|n,αn, at 〉,
L̂†

t |m,βm, at 〉 = −λm(t )|m,βm, at 〉. (44)

Here we have used Eq. (29).
One may notice that these representations in the biorthog-

onal basis look very similar to the non-Hermitian general-
ization of quantum mechanics (which is, sometimes, called
PT -symmetric quantum mechanics) [37–39]. Indeed, the op-
erator eG(x,at )/Nn,αn (at ) in Eq. (30) seems to be a kind of the
metric operator. Thus a head state is obtained from a foot state
by multiplying it and vice versa. See also the discussion in
Ref. [36].

IV. PERTURBATIVE SOLUTION OF TIME-DEPENDENT
FOKKER-PLANCK EQUATION

There are various expansions to express the solution of
the Fokker-Planck equation. See Refs. [40–44] and references
therein. In our method, we expand the solution of the Fokker-
Planck equation in terms of the foot states introduced in the
previous section,

|ρ(t )〉 =
∑
n�0

d(n) (at )∑
αn=0

An,αn (t )e− ∫ t
ti

ds λn(s)|n,αn, at 〉. (45)

Note that the sums in the above expansion can be time-
dependent because of d(n)(at ). In the following calculation,
however, we consider the case where the sums associated with
n and αn are independent of time,

∑
n�0

d(n) (at )∑
αn=0

=
∑
n�0

d(n) (at ′ )∑
αn=0

(t �= t ′). (46)

For the sake of simplicity, we further decompose the coef-
ficient An,αn (t ) as

An,αn (t ) =
d(n) (at )∑
βn=0

[M(n)(t )]αn,βn
Cn,βn

(t ). (47)
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Here the matrix [M(n)(t )]αn,βn
is obtained by the solution of

the following differential equation:

∂t [M(n)(t )]αn,βn

= −
d(n) (at )∑
γ n=0

〈n,αn, at |∂t |n, γn, at 〉[M(n)(t )]γ n,βn
, (48)

with the initial condition

[M(n)(ti)]αn,βn
= δαn, βn

. (49)

Substituting this expansion into the Fokker-Planck equa-
tion, we find that the expansion coefficients are given by the
solutions of the following differential equation:

∂tCn,αn (t ) +
d(n) (at )∑
βn=0

∑
m �=n�0

d(m) (at )∑
γm,δm=0

e
∫ t

ti
ds [λn(s)−λm (s)]

×
[M(n)(t )]−1

αn,βn

[
L̇(n,m)(t )

]
βn,γm

[M(m)(t )]γm,δm

λn(t ) − λm(t )

× Cm,δm
(t ) = 0, (50)

where

[L̇(n,m)(t )]αn,βm
= 〈n,αn, at |(∂t L̂t )|m,βm, at 〉, (51)

and the inverse matrix is defined by

d(n) (at )∑
γ n=0

[M(n)(t )]−1
αn,γ n

[M(n)(t )]γ n,βn
= δαn,βn

. (52)

It should be noted that the coefficient C0,0(t ) is time-
independent,

C0,0(t ) = C0,0(ti ), (53)

because

[L̇(0,m)(t )]0,βm
∝

∫
dDx ∇ · {ρ

m,βm
(x, t )∇[∂tV (x, at )]} = 0.

(54)

A. Evolution from equilibrium state

In the following, we focus on the time evolution from a
thermal equilibrium state with the control parameters ati ,

ρeq (x, ti ) = 1

Z (ati )
e−βV (x,ati ), (55)

where Z (ati ) is defined by Eq. (33). The expansion in terms
of the foot state leads to

ρeq (x, ti ) =
∑
n�0

d(n) (at )∑
αn=0

Cn,αn (ti)〈x|n,αn, ati〉, (56)

where

C0,0(ti ) = 1√
N0,0(ti )

1√
Z (ati )

= 〈0, 0, ati |x〉

Cn,αn (ti ) = 0(n > 0). (57)

For this initial condition, Eq. (50) is further simplified. Let
us reexpress the expansion coefficient Cn,αn (t ) as

Cn,αn (t ) = 〈0, 0, ati |x〉Dn,αn (t ). (58)

Then, by solving Eq. (50) formally, the expansion coefficient
Dn,αn (t ) is determined by solving the following equation iter-
atively:

Dn,αn (t ) = Dn,αn (ti ) −
∫ t

ti

ds
d(n) (as )∑
βn=0

∑
m �=n�0

d(m) (as )∑
γm,δm=0

× e
∫ s

ti
ds′ [λn(s′ )−λm (s′ )]

×
[M(n)(s)]−1

αn,βn
[L̇(n,m)(s)]βn,γm

[M(m)(s)]γm,δm

λn(s) − λm(s)

× Dm,δm
(s), (59)

with the initial conditions

Dn,αn (ti ) = δn,0δαn, 0. (60)

Again, note that D0,0(t ) is independent of time, D0,0(t ) =
D0,0(ti), because of Eq. (53). In the following calculations,
we use exclusively this expansion coefficient Dn,αn (t ).

B. Pseudodensity matrix

Let us introduce the pseudodensity matrix defined by

ρ̂(t ) =
∑
n�0

d(n) (t )∑
αn,βn=0

e− ∫ t
ti

ds λn(s)|n,αn, at 〉

× [M(n)(t )]αn,βn
Dn,βn

(t )〈0, 0, ati |. (61)

This satisfies the following properties:

Tr[̂ρ(t )] = 1, (62)

ρ̂2(t ) = ρ̂(t ). (63)

To show the second equation, we have used

〈0, 0, ati | = [M(0)(t )]−1
0,0〈0, 0, at |. (64)

The expectation values are represented by the trace with
the pseudo density matrix. For example, the mean work done
by the deformation of the external potential is given by

W =
∫

dt Tr[(∂tV̂t )̂ρ(t )]. (65)

V. FORMULA FOR MEAN WORK

Let us consider the time evolution from a thermal equi-
librium state which is induced by changing the control
parameters at in a finite time interval ti � t � t f where t f

is a finial time. The mean work done by the deformation of
the potential is given by the time integral of Eq. (13). Using
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Eq. (61), we find

W =
∫ t f

ti

dWt

=
∫ t f

ti

dt
∑
n�0

d(n) (at )∑
αn,βn=0

e− ∫ t
ti

d λn(s)

× [M(n)(t )]αn,βn
Dn,βn

(t )〈0, 0, ati |(∂tV̂t )|n,αn, at 〉. (66)

This formula is the generalization of Eq. (38) of Ref. [18] to
the systems in higher spatial dimensions. Indeed, this is re-
duced to Eq. (38) by setting [M(n)(t )]αn,βn

= e−θn (t )δαn,0δβn,0.
The role of θn(t ) is discussed in Sec. V C.

To expand the right-hand side in terms of the time deriva-
tive of the control parameters, ȧt , we introduce the expansions
of the mean work W and the expansion coefficient Dn,βn

(t ),

W = W (1) + W (2) + · · · , (67)

Dn,βn
(t ) = D(0)

n,βn
(t ) + D(1)

n,βn
(t ) + · · · , (68)

where W (m) and D(m)
n,βn

(t ) indicate the mth order terms of ȧt .
From the initial condition (60), we find

D(0)
n,βn

(t ) = δn,0δβn,0 D(m)
0,0 (t ) = 0 (m � 1). (69)

A. Lowest order contribution W (1)

The lowest order contribution in the mean work is given by
W (1),

W (1) =
∫ t f

ti

dt [M(0)(t )]0,0〈0, 0, ati |(∂tV̂t )|0, 0, at 〉. (70)

This quantity is calculated exactly without referring to the
detailed behavior of the control parameters at , and given by
the difference of the free energies,

W (1) = F (at f ) − F (ati ), (71)

where

F (at ) = − 1

β
lnZ (at ) = − 1

β
ln

(∫
dDx e−βV (x,at )

)
. (72)

It should be emphasized that this free energy is not the
Helmholtz free energy defined by Eq. (17). We see that W (1)

is determined only by the initial and final values of at and
independent of the intermediate deformation processes of
V (x, at ).

By definition, the initial state is given by a thermal equilib-
rium state, and thus this free energy agrees with the Helmholtz
free energy (17) at the initial time ti, F (ati ) = Fhelm(ati ).
In general, F (at ) for t > ti does not necessarily agree with
Fhelm(at ). However, in the quasistatic process, the final state is
approximately given by a thermal equilibrium state, and then
the right-hand side of Eq. (71) is identified with the change of
the Helmholtz free energy. This is the well-known behavior in
the reversible process.

B. Higher order contributions

All higher order terms in the mean work W (n) (n � 2) give
only irreversible contributions. The lowest order term W (2) is

obtained by using D(1)
n,βn

(t ),

W (2) =
∫ t f

ti

dt
∑
n�1

d(n) (at )∑
αn,βn=0

e− ∫ t
ti

ds λn(s)

× [M(n)(t )]αn,βn
D(1)

n,βn
(t )〈0, 0, ati |(∂tV̂t )|n,αn, at 〉,

(73)

where

D(1)
n,βn

(t ) = −(1 − δn,0)
∫ t

ti

ds
d(n) (as )∑
γ n=0

e
∫ s

ti
ds′ λn(s′ )

×
[M(n)(s)]−1

βn,γ n
[L̇(n,0)(s)]γ n,0[M(0)(s)]

λn(s)
. (74)

The factor (1 − δn,0) is due to the property (60). When
V̂t is given by the harmonic potential, higher order terms
W (n) (n > 2) vanish and the exact mean work is given by

W = W (1) + W (2). (75)

This is discussed in detail later.

C. Relation to Berry’s phase

In quantum mechanics, it is known that the wave function
acquires a phase induced by a cyclic adiabatic motion of a
system. This additional phase is affected by the geometrical
properties of the parameter of the Hamiltonian and called
Berry’s geometric phase.

In the quasistatic (adiabatic) limit, the solution of the
Fokker-Planck equation is obtained by substituting Dn,αn (t ) =
D(1)

n,αn
(t ),

|ρ(t )〉 = 〈0, 0, ati |x〉e−θ0(t )|0, 0, at 〉, (76)

where

θ0(t ) = − ln[M(0)(t )]0,0 =
∫ t

ti

ds〈0, 0, as|∂s|0, 0, as〉. (77)

We observe that a nontrivial time-dependent factor e−θ0(t )

appears besides the time evolution of |0, 0, at 〉, and this factor
corresponds to Berry’s geometric phase. See also the discus-
sion in Ref. [18].

Wilczek and Zee found that Berry’s phase becomes a ma-
trix in the system with degeneracy [45]. Indeed, [M(n)(t )]αn,βn

is generally given by a matrix for n �= 0. In the present calcula-
tion, the ground foot state is always not degenerate. Therefore,
to observe the Wilczek-Zee-type phase, we should consider
the time evolutions in the “excited” state of the Fokker-Planck
operator.

VI. APPLICATION I: SYMMETRIC PROCESS

To illustrate the applications of the derived formula, we
consider the two-dimensional harmonic potential,

V (x, at ) = 1
2 a(1)

t x2
1 + 1

2 a(2)
t x2

2 . (78)

In such a system, the degeneracy related to the rotational
symmetry of the potential is characterized by a single in-
teger. Let us consider the symmetric deformation of the
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harmonic potential where a(1)
t = a(2)

t = at and thus the poten-
tial has the rotational symmetry around (x1, x2) = (0, 0) in the
two-dimensional plane during the deformation process. Then
d (n)(at ) are given by time-independent constants, d (n), and
thus the condition (46) is satisfied. The foot and head states
are defined by

〈x|n, αn, at 〉 = ρ
αn

(x1, at )ρn−αn
(x2, at ), (79)

〈x|n, αn, at 〉 = ραn
(x1, at )ρn−αn

(x2, at ), (80)

where αn take nonnegative integers satisfying 0 � αn �
d (n) = n, and

ρ
n
(x, at ) =

√
Nn(at )e

−βat x2/4un(x, at ), (81)

ρn(x, at ) = 1√
Nn(at )

eβat x2/4un(x, at ). (82)

Here Nn(at ) is an arbitrary real function associated with the
ambiguity of the normalization of the foot states discussed
below Eq. (28). We introduced

un(xi, a(i)
t ) = 1√

Z (a(i)
t )

√
1

2nn!
e−βa(i)

t x2
i /4Hn(

√
βa(i)

t /2xi ),

(83)

where Hn(x) denote the Hermite polynomials and

Z (a) =
√

2π

βa
. (84)

The eigenvalues of the foot and head states are the same and
given by

λn(t ) = at

ν
n (n � 0). (85)

The lowest order contribution in the mean work W (1) is al-
ready calculated. The next order contribution is given by
Eq. (73), which is simplified as

W (2)
sym = 2

∫ t f

ti

dt
∫ t

ti

ds
das

ds

(
1

2βa2
s

e− ∫ t
s ds′ 2as′

ν

)
dat

dt
. (86)

See Appendix B for the detailed derivation.
In the harmonic potential, the exact mean work is given by

Wsym = W (1) + W (2)
sym. (87)

To understand this, note that, as seen from Eqs. (59) and (69),
the expansion coefficient D(n)

2,β2
(t ) has the following product:∑

m1 �=2

∑
m2 �=m1

· · ·
∑

mn−1 �=0

[M(2)(τ1)]−1
[
L̇(2,m1 )(τ1)

]
[M(m1 )(τ1)]

× [M(m1 )(τ2)]−1
[
L̇(m1,m2 )(τ2)

]
[M(m2 )(τ2)] · · ·

× [M(mn−1 )(τn)]−1
[
L̇(mn−1,0)(τn)

]
[M(0)(τn)]. (88)

Note that [L̇(n,m)(τ )] has a finite contribution only when
n = m + 2 and n = m, but the latter is excluded in the sums
[see Eq. (B5)]. Therefore all higher order terms D(n)

2,β2
(t ) (n �

2) disappear.

The mean work in the one-dimensional harmonic potential
is obtained in Ref. [18]. Comparing the one- and two-
dimensional results, we find that W (2)

sym in the two-dimensional
calculation is twice as large as the one-dimensional result
given by Eq. (50) in Ref. [18]. The same property is found in
the three-dimensional symmetric deformation of the harmonic
potential. Therefore the D-dimensional result is comprehen-
sively summarized by

W (2)
sym = D

∫ t f

ti

dt
∫ t

ti

ds
das

ds

(
1

2βa2
s

e− ∫ t
s ds′ 2as′

ν

)
dat

dt
, (89)

where D is the number of the spatial dimension and can take
D = 1, 2, or 3. This simple D dependence is understood by
the fact that the harmonic potential is given by the independent
sum of the each spatial component and thus the Fokker-Planck
operator is represented by the sum of the independent spatial
components,

Lt =
D∑

i=1

(
1

νβ
∂2

i − ∂i
at xi

ν

)
. (90)

Therefore the optimization with respect to the ith spatial
component does not affect that to the j( �= i)-th spatial com-
ponents, and the mean work is given by a linear function of D
in the present symmetric process.

A. Energy

Following the thermodynamic interpretation introduced in
Sec. II, the mean energy of this system is defined by Eq. (12),

E (t ) = Tr[V̂t ρ̂(t )]. (91)

Applying the same procedure used in the calculation of the
mean work, the exact mean energy is calculated by using D(1)

2,β2

in the pseudodensity matrix. The result is given by

Esym(t ) = 1

β
+ at

β

∫ t

ti

ds e− ∫ t
s ds′ 2as′

ν
1

a2
s

das

ds
. (92)

Because Esym(ti ) = 1/β, the change of the mean energy in the
symmetric process is given by the second term of the above
equation,

�Esym = Esym(t f ) − Esym(ti ) = at f

β

∫ t f

ti

ds e− ∫ t f
s ds′ 2as′

ν
1

a2
s

das

ds
.

(93)

B. Optimization in symmetric process

We are in particular interested in the optimized process
which minimizes the mean work. Because W (1) is determined
only by the initial and final values of the parameters, ati and
at f , independently of processes, it is sufficient to consider the
variation of W (2)

sym by fixing the operation time τop = t f − ti.
The variation of the control parameter is defined by

at −→ at + δat . (94)

We fix the initial and final forms of the harmonic potential and
hence this variation satisfies the boundary conditions,

δati = δat f = 0. (95)
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The variation of W (2)
sym leads to∫ t

ti

ds
1

a2
s

das

ds
∂t e

− 2
ν

∫ t
s dτ aτ + 1

a2
t

∫ t f

t
ds

das

ds
∂t e

− 2
ν

∫ s
t dτ aτ

+ 2

ν

∫ t f

t
ds2

∫ t

ti

ds1 e− 2
ν

∫ s2
s1

dτ aτ
1

a2
s1

das1

ds1

das2

ds2
= 0. (96)

Because of the reason discussed below Eq. (89), this integro-
differential equation is the same as Eq. (59) of Ref. [18] which
determines the optimized process in the one-dimensional har-
monic potential. See Appendix B in Ref. [18] for the detailed
derivation.

The optimized protocol is determined by solving this equa-
tion, but, so far, the exact solution is not known. Therefore we
consider an approximated process in the large τop limit as is
discussed in Ref. [18]. For this purpose, we reexpress W (2)

sym in
the adimensional form,

W (2)
sym = 2

∫ 1

0
dτ1

∫ τ1

0
dτ2

dāτ2

dτ2

×
[

e− 2τopati
ν

∫ τ1
τ2

dτ3 āτ3
1

2β(āτ2 )2

]
dāτ1

dτ1
, (97)

where adimensional quantities are introduced by

τ = (t − ti )/τop, (98)

āτ = ati+ττop

ati

. (99)

In the large τop limit, we consider the following approxima-
tion: ∫ 1

0
dτ1

∫ τ1

0
dτ2 G(τ1, τ2)e− 2τopati

ν

∫ τ1
τ2

dτ3 āτ3

≈
∫ 1

0
dτ1

∫ τ1

0
dτ2 G(τ1, τ1)e− 2τopati

ν
āτ1 (τ1−τ2 )

≈
∫ 1

0
dτ1 G(τ1, τ1)

ν

2τopaiāτ1

, (100)

where G(τ1, τ2) is a smooth function. Using this approxima-
tion, W (2)

sym is calculated as

W (2)
sym = ν

2βatiτop

∫ 1

0
dτ

1

(āτ )3

(
dāτ

dτ

)2

. (101)

We minimize this approximated mean work. Applying the
variation defined above, we find

1

ā3
τ

d2āτ

dτ 2
− 3

2

1

ā4
τ

(
dāτ

dτ

)2

= 0. (102)

This equation is analytically solvable and the optimized exter-
nal parameter in the large τop limit is given by

āτ = ā1

[
√

ā1 − (
√

ā1 − 1)τ ]2
−→ at

= τ 2
op ati at f

[(t − ti )
√

ati + (t f − t )√at f ]2
. (103)

This is the same as those in Refs. [5,15,18].

Substituting this into Eq. (101), the optimized mean work
in the large τop limit is expressed as

lim
τop→∞

Wsym

W (1)
= lim

τop→∞
W (1) + W (2)

sym

W (1)

= 1 + 2

ā1 ln ā1

(√
ā1 − 1

)2 ν

atiτop
, (104)

where, from Eq. (71),

W (1) = − 1

β
ln

Z (at f )

Z (ati )
= 1

β
ln ā1. (105)

The time evolution in the large τop limit is very slow and thus
ρ(x, t f ) is approximately given by the thermal equilibrium
state with at f , ρeq (x, t f ). Then W (1) in Eq. (71) corresponds
to the one in the reversible process and is represented by
the change of the Helmholtz free energy. One can see that
the irreversible contribution of the mean work asymptotically
disappears as a function of τ−1

op in Eq. (104). It is worth empha-
sizing that this τop dependence is experimentally verified [46].

In a similar fashion, the change of the mean energy (93) is
calculated with this approximated optimized process (103). In
the large τop limit, this quantity is simplified as

�Esym ≈ ν

2τopatiβ

1

ā2
1

dāτ

dτ

∣∣∣∣
τ=1

. (106)

Substituting Eq. (103) into this, the change of the mean energy
is calculated as

lim
τop→∞

�Esym

E (ti )
= 1

ā1
(
√

ā1 − 1)
ν

atiτop
. (107)

This equation implies that there is no change of the mean
energy in the quasistatic isothermal process as is the case of
the ideal gas.

Later, we will discuss the asymmetric deformation of
the harmonic potential and compare the results with those
in the symmetric process. In the asymmetric process, we
choose the initial and final parameters of the harmonic po-
tential as (a(1)

ti , a(2)
ti ) = (a0, a0) and (a(1)

t f
, a(2)

t f
) = (2a0, 2a0),

respectively. The corresponding symmetric process is realized
by choosing ati = a0 and at f = 2a0. Then, from Eqs. (104)
and (107), the mean work and the change of the mean energy
in the large τop limit are, respectively, given by

lim
τop→∞

Wsym

W (1)
= 1 + (

√
2 − 1)2

ln 2

τ ∗

τop
, (108)

lim
τop→∞

�Esym

E (ti )
= (

√
2 − 1)

2

τ ∗

τop
, (109)

where W (1) = β−1 ln 2 and we introduced τ ∗ = ν/a0.

VII. APPLICATION II: ASYMMETRIC PROCESS

In this section, we consider the asymmetric deformation
of the harmonic potential where a(1)

t �= a(2)
t for ti < t < t f .

The initial and final values of the control parameters of the
harmonic potential are fixed by (a(1)

ti , a(2)
ti ) = (a0, a0) and

(a(1)
t f

, a(2)
t f

) = (2a0, 2a0), respectively. We first increase a(1)
t

fixing a(2)
t = a0 along path I as shown in Fig. 1. After the
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FIG. 1. Symmetric and asymmetric compression processes of the
harmonic potential. The former is denoted by the dotted line and the
latter by the solid line, respectively. The rotational symmetry of the
harmonic potential is hold in the symmetry process where a(1)

t = a(2)
t .

The asymmetric process is represented by two paths. The control
parameter a(2)

t is fixed by a0 on path I. At the switching time tX , path
I is switched to path II where a(1)

t is fixed by 2a0.

switching time tX , the control parameters are changed along
path II where a(2)

t is increased fixing a(1)
t = 2a0. That is, the

corresponding time evolutions of the control parameters are
represented by

(
a(1)

t f
, a(2)

t f

) =
{

( ft , a0): path I ti � t � tX
(2a0, gt ): path II tX < t � t f

, (110)

where ft and gt are monotonically increasing functions satis-
fying

fti = gtX = a0, ftX = gt f = 2a0. (111)

The switching time tX and the functions ft and gt are deter-
mined by minimizing the mean work.

Because of the same reason discussed below Eq. (87), the
exact mean work is given by the sum of W (1) and W (2)

asym.
As discussed, W (1) is independent of the evolution of the
control parameters and given by Eq. (71), W (1) = β−1 ln 2.
The second-order term W (2)

asym is given by the sum of the
contributions from path I and path II,

W (2)
asym = W (2)

I + W (2)
II , (112)

where

W (2)
I =

∫ tX

ti

dt
∫ t

ti

ds
dfs

ds

[
e− ∫ t

s ds′ 2 fs′
ν

1

2β( fs)2

]
dft

dt
, (113)

W (2)
II =

∫ t f

tX

dt
∫ t

tX

ds
dgs

ds

[
e− ∫ t

s ds′ 2gs′
ν

1

2β(gs)2

]
dgt

dt
. (114)

See Appendix C for the detailed derivation.

A. Optimization in asymmetric process

As was done in Sec. VI B, we minimize of the mean work
in the the large τop limit to find the optimized process. In this
limit, W (2)

asym is given by

lim
τop→∞W (2)

asym = ν

4βa0τop

∫ τX

0
dτ

1

( f̄τ )3

(
d f̄τ
dτ

)2

+ ν

4βa0τop

∫ 1

τX

dτ
1

(ḡτ )3

(
dḡτ

dτ

)2

, (115)

where adimensional quantities are introduced by

τX = (tX − ti )/τop, (116)

f̄τ = fti+ττop

a0
, (117)

ḡτ = gti+ττop

a0
. (118)

The optimized parameters f̄τ and ḡτ are obtained by minimiz-
ing W (2)

asym. The variations of ft and gt are defined by

f̄τ −→ f̄τ + δ f̄τ , (119)

ḡτ −→ ḡτ + δḡτ , (120)

which satisfy δ f̄0 = δ f̄τX = δḡτX = δḡ1 = 0. The optimized
parameters are given by the solutions of the following differ-
ential equations:

1

f̄ 3
τ

d2 f̄τ
dτ 2

− 3

2

1

f̄ 4
τ

(
d f̄τ
dτ

)2

= 0, (121)

1

ḡ3
τ

d2ḡτ

dτ 2
− 3

2

1

ḡ4
τ

(
dḡτ

dτ

)2

= 0. (122)

These equations are solved using the following conditions:

f̄0 = ḡX = 1, f̄X = ḡ1 = 2. (123)

The solutions are given by

f̄τ = 2τ 2
X

[
√

2τX − (
√

2 − 1)τ ]2
−→ ft

= 2(tX − ti )2

[(t − ti ) + (tX − t )
√

2]2
a0,

ḡτ = 2(1 − τX )2

[τX − √
2 + (

√
2 − 1)τ ]2

−→ gt

= 2(t f − tX )2

[(t − tX ) + (t f − t )
√

2]2
a0. (124)

The optimized switching time tX is determined by mini-
mizing W (2)

asym which is obtained by substituting Eq. (124) into
Eq. (115). Solving ∂W (2)

asym/∂τX = 0, the optimized tX is given
by

τX = 1

2
−→ tX = t f + ti

2
. (125)
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Using these results, the optimized mean work in the large
τop limit is eventually given by

lim
τop→∞

Wasym

W (1)
= 1 + 2

(
√

2 − 1)2

ln 2

τ ∗

τop
, (126)

where τ ∗ = ν/a0 which is already defined below Eq. (109).
In a similar fashion, the change of the mean energy in the

asymmetric process is calculated by applying the above results
to the definition (12) as was done in Sec. VI A,

�E asym = ftX

2β

∫ tX

ti

dτ

[
e− ∫ tX

τ
ds 2 fs

ν
1

( fτ )2

]
dft

dt

+ gt f

2β

∫ t f

tX

dτ

[
e− ∫ t f

τ ds 2gs
ν

1

(gτ )2

]
dgt

dt
. (127)

Using Eqs. (124) and (125) in the large τop limit, the optimized
change of the mean energy is calculated by

lim
τop→∞

�E asym

E (ti )
= (

√
2 − 1)

τ ∗

τop
. (128)

VIII. COMPARISON OF SYMMETRIC
AND ASYMMETRIC PROCESSES

We compare the mean work and the changes of the mean
energy in the symmetric and asymmetric compression pro-
cesses which are denoted by the dotted and solid lines in
Fig. 1, respectively. The initial and final values of the control
parameters are fixed in both processes, (a(1)

ti , a(2)
ti ) = (a0, a0)

and (a(1)
t f

, a(2)
t f

) = (2a0, 2a0). We use the optimized control
parameters which are given by Eq. (103) in the symmetric pro-
cess, and by Eqs. (124) and (125) in the asymmetric process.

A. Mean work

In Fig. 2 the mean work are plotted as functions of the
operation time τop = t f − ti. The black and gray solid lines
represent the exact mean work in the symmetric and asym-
metric processes, respectively. The former is calculated from
Eqs. (86) and (105), and the latter from Eqs. (105) and (112).
The black and gray dotted lines show the mean work in the
large τop limit which are given by Eqs. (108) and (126),
respectively. We find that the asymptotic behaviors of the
solid lines are well reproduced by the corresponding dotted
lines. In the large τop limit, these processes correspond to the
quasistatic isothermal process. Then the black and gray lines
converge to W (1), which corresponds to the mean work in the
reversible process.

In the instantaneous jump limit τop → 0, the black and gray
solid lines converge to the same value,

lim
τop→0

W sym = lim
τop→0

W asym = 1

β
. (129)

This behavior can be understood from the first law (10). In
this limit, there is no enough time for a Brownian particle
to interact with the thermal bath, and thus Eq. (10) leads to
dWt = E (t + dt ) − E (t ) because dQt = 0. Moreover, in this
limit, the final states are approximately given by the initial
state, ρ(x, t f ) = ρ(x, ti ). Therefore the changes of the mean

FIG. 2. Mean work plotted as functions of the operation time
τop = t f − ti. The black solid and dotted lines are results in the sym-
metric process and represent the exact mean work and the mean work
in the large τop limit, respectively. The optimized control parameters
are given by Eq. (103). The gray solid and dotted lines are results
in the asymmetric process and denote the exact mean work and
the mean work in the large τop limit, respectively. The optimized
parameters are given by Eq. (124). The dotted-dashed line represents
W (1), which is given by Eq. (105). We define τ ∗ = ν/a0.

energy are given by 1/β in both the symmetric and asymmet-
ric processes,

E (t f ) − E (ti ) =
∫

d2x ρ(x, t f )V (x, a f )

−
∫

d2x ρ(x, ti )V (x, ai )

=
∫

d2x ρ(x, ti )[V (x, a f ) − V (x, ai )]

= 1

β
. (130)

The mean work in the asymmetric process (gray solid line)
is always larger than that in the symmetric process (black
solid line). This indicates that irreversible contribution in the
asymmetric process is always larger than that in the symmetric
process. To understand this behavior, we should notice that
Eq. (112) is reexpressed as

W (2)
asym = 2

∫ 1/2

0
dτ1

∫ τ1

0
dτ2

˙̄fτ2

×
[

e− 2τopa0
ν

∫ τ1
τ2

dτ3 f̄τ3
1

2β( f̄τ2 )2

]
˙̄fτ1 . (131)

To obtain this expression, we have used that f̄τ and ḡτ defined
by Eq. (124) satisfy

ḡτ+1/2 = f̄τ . (132)

when τX = 1/2. Then one can see that W (2)
asym (131) is repro-

duced from W (2)
sym by replacing τop with τop/2 in Eq. (97).

That is, the deformation of the harmonic potential in the
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FIG. 3. Difference between Wasym and Wsym plotted as a func-
tion of the operation time τop = t f − ti. The peak is located around
τop ∼ τ ∗ We define τ ∗ = ν/a0.

asymmetric process is twice as fast as that in the symmetric
process. Normally, the irreversible contribution is pronounced
in rapid deformations and thus the mean work in the asym-
metric process has more irreversible contributions than that in
the symmetric process.

The difference of the mean work in the optimized symmet-
ric and asymmetric processes disappears in the large τop and
the instantaneous jump limits. Therefore, we have to choose
an appropriate operation time to maximize the difference.
As shown in Fig. 3, the difference is maximized when τop

is chosen to be close to τ ∗ = ν/a0, which characterizes the
relaxation time of the Fokker-Planck equation. The exact po-
sition of the peak is located at a bit larger than τ ∗. This small
deviation from τ ∗ will be related to a hysteresis effect which
is discussed in the next section.

B. Change of mean energy

The changes of the mean energy in the symmetric and
asymmetric processes are shown as functions of the operation
time τop in Fig. 4. The black and gray solid lines represent
the exact changes of the mean energy in the symmetric and
asymmetric processes, respectively. The former is calculated
from Eqs. (93) and the latter from Eqs. (127). The black and
gray dotted lines show the changes in the large τop limit which
are given by Eqs. (109) and (128), respectively. We find that
the asymptotic behaviors of the solid lines are approximately
reproduced by the corresponding dotted lines.

In this system, the mean energy in equilibrium is given by
1/β independently of the value of at . Therefore the deviation
of �E from zero can be used to characterize the deviation
of the final state from equilibrium. Indeed, the change of the
mean energy is reexpressed as

�E =
∫

d2x V (x, at f )

[
ρ(x, at f ) − e−βV (x,at f )

Z (at f )

]
, (133)

where V (x, at f ) is the harmonic potential (78). The quantity
in the bracket represents the deviation of ρ(x, t f ) from the

FIG. 4. Changes of the mean energy �E = E (t f ) − E (ti ) plotted
as functions of the operation time τop = t f − ti. The black solid and
dotted lines are results in the symmetric process and represent the
exact change of the mean energy and the change in the large τop

limit, respectively. The optimized control parameters are given by
Eq. (103). The gray solid and dotted lines are results in the asymmet-
ric process and represent the exact change of the mean energy and the
change in the large τop limit, respectively. The optimized parameters
are given by Eq. (124). We define τ ∗ = ν/a0.

corresponding thermal equilibrium distribution. To obtain
this, we have used∫

d2x V (x, ati )
e−βV (x,ati )

Z (ati )
=

∫
d2x V (x, at f )

e−βV (x,at f )

Z (at f )

= 1

β
. (134)

From Fig. 4, one can see that �E ’s represented by the black
and gray lines converge to zero in the large τop limit. That is,
the processes behave as the reversible process in this limit.

In the instantaneous jump limit τop → 0, as discussed be-
low Eq. (129), there is no enough time for the final state to
evolve from the initial equilibrium state and thus

lim
τop→0

�Esym = lim
τop→0

�E asym = 1

β
. (135)

This is consistent with the behavior in Fig. 4. We further
observe that the gray lines are always larger than the black
lines. This is because, as was discussed in the mean work,
the asymmetric process has larger irreversible contributions
which give rise to the larger deviation of the final state from
equilibrium.

The difference between �Easym and �Esym is shown in
Fig. 5. For the sake of comparison, the result of Fig. 3 is shown
by the dotted line. We find that it is maximized when τop is
chosen to be close to τ ∗. Exactly speaking, however, the exact
position of the peak is a bit smaller than τ ∗ and this behavior is
different from that in the mean work which is a bit larger. This
difference will be related to a hysteresis effect: the change
of the mean energy is obtained directly from the initial and
final states while the mean work depends on the whole time
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FIG. 5. Difference between �Easym and �Esym plotted as a func-
tion of the operation time τop = t f − ti. For sake of comparison, the
result of Fig. 3 is shown by the dotted line. The peak of the solid
line is smaller than τ ∗ but that of the dotted line is larger. We define
τ ∗ = ν/a0.

evolution of the pseudo density matrix as seen from Eqs. (12)
and (66). Because of this, the peak in the mean work appears
in retard compared to that in the change of the mean energy.

As for the comparison of our perturbation theory with the
numerical simulation of the stochastic differential equation,
the time evolutions of the mean energy are shown in Ap-
pendix D.

IX. CONCLUDING REMARKS

In this paper, we developed the systematic expansion of
the solution of the Fokker-Planck equation with degeneracy
by generalizing the formulation developed in Ref. [18]. The
Fokker-Planck equation describes the thermal relaxation of a
Brownian particle confined in an external potential, which is
deformed by changing control parameters. The time derivative
of these parameters are utilized as the expansion parame-
ter of the perturbation theory. Differently from the theory
in Ref. [18], the present theory is applicable to systems in
arbitrary spatial dimensions, and we obtained a formula to
calculate the mean work perturbatively which is applicable
to the systems with degeneracy in the eigenvalues of the
Fokker-Planck operator. This formula enables us to study how
the geometrical symmetry of the external potential affects
thermodynamic description of a Brownian particle.

The application of the derived formula depends on the
degeneracy of systems. To illustrate this, we considered the
thermodynamic description of a Brownian particle confined
in the two-dimensional harmonic potential. By changing the
control parameters, the harmonic potential is monotonically
compressed. Fixing the initial and final forms of the poten-
tial, we considered two irreversible processes: the symmetric
and asymmetric processes. The rotational symmetry of the
harmonic potential in the two-dimensional plan is held in the
former, but it is broken in the latter. Perturbative calculations
are affected by these deformation processes because the de-
generacy of the expansion basis (foot and head states) depends
on the symmetry of the potential.

The optimized deformation processes of the harmonic po-
tential are obtained by minimizing the mean work. The exact
solutions have, however, not yet been known and thus we con-
sidered the optimization in the limit of the large operation time
τop = t f − ti. Using these approximated optimized processes,
we found that the mean work and the changes of the mean
energy in the asymmetric process are always larger than those
in the symmetric process for any τop, because the timescales
of the deformation in the asymmetric process is shorter than
that in the symmetric process.

When the operation time τop is very small, there is no
enough time for the initial state to evolve. Moreover processes
in the large τop limit converge to the quasistatic process.
Therefore the symmetric and asymmetric processes show the
same behaviors in these limits. To see the difference between
the symmetric and asymmetric processes, we have to choose
τop appropriately. We calculated the difference of the mean
work in the optimized symmetric and asymmetric processes
as a function of τop and found that the difference is maximized
when τop ∼ τ ∗ = ν/a0 where where ν is the friction constant
in the Fokker-Planck equation and a0 denotes the initial value
of the spring constant of the harmonic potential.

The similar difference can be calculated for the changes of
the mean energy. We then found that the difference between
the symmetric and asymmetric processes is maximized when
τop is close to τ ∗ but is smaller than the corresponding value in
the mean work. This deviation may be related to a hysteresis
effect: the change of the mean energy is obtained directly from
the initial and final states while the mean work depends on the
whole time evolution of the pseudodensity matrix. It is thus
reasonable to consider that the maximum in the mean work
appears in retard compared to that in the change of the mean
energy.

In this theory, the solution of the Fokker-Planck equation is
expanded with the foot and head states which are the eigen-
states of the time-dependent Fokker-Planck operator. These
states form the biorthogonal system and thus the foot or head
state itself is not necessarily normalized by one. As a con-
sequence, there is an ambiguity to multiply a real factor to
the foot and head states. See the factor Nn,αn (at ) in Eq. (28).
Our perturbation theory should be invariant for this ambiguity.
Indeed, the mean work and the changes of the mean energy in
the harmonic potential do not depend on this additional real
factor Nn,αn (at ). This invariance is, however, not yet shown
for general external potential.

There are various applications which are not considered
in this paper. To apply the present formulation to nonlinear
potentials, we have to develop another perturbation theory
to express the foot and head states in terms of those of an
analytically solvable potential like the harmonic potential.
The Floquet theory is known to be useful to solve peri-
odic linear differential equations and provides a convenient
method in quantum mechanics [47]. This approach is applied
to the Fokker-Planck equation [34] but the corresponding
optimization problems has not yet been investigated. We have
considered transitions from an initial equilibrium state to a
nonequilibrium state. To consider a transition starting from
a nonequilibrium state, we should use Eq. (50) instead of
Eq. (59). Our perturbation theory will be then applicable to
study linear and nonlinear responses around equilibrium and
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nonequilibrium steady states as is discussed in Ref. [48].
For this, an external field should be chosen as the expan-
sion parameter instead of the time derivative of the control
parameter. When the potential is deformed, we can consider
the processes associated with the rotation of the potential.
There is no thermodynamic counterpart of such a process
and hence its behavior is worth investigating. In Ref. [49] the
heat conduction process between two different heat baths is
considered to study the protocol to realize the transition from
an initial steady state to a final steady state. However, the
relation between the derived protocol and the optimization of
the mean work is not yet known. The framework developed in
the present paper will provide a systematic approach to study
this.

In the present paper, we assumed that the changes of the
control parameters are given by smooth deterministic func-
tions, but these changes can be stochastic in a microscopic
timescale. For the optimization of stochastic control parame-
ters, the minimization of the mean work will be replaced with
the stochastic calculus of variation [50,51]. The applications
to relativistic [36,52,53] and quantum [54,55] systems have
not yet been investigated sufficiently. These generalizations
are left as future tasks.

APPENDIX A: PROPERTIES OF FOOT AND HEAD STATES

We should notice that the operator Ht can be expressed as

Ht = 1

νβ

D∑
i=1

B†
i Bi, (A1)

where

Bi = ∂i + β

2
[∂iV (x, at )], (A2)

B†
i = −∂i + β

2
[∂iV (x, at )]. (A3)

These operators satisfy the following commutation relations:

[Bi, B†
j ] = β[∂i∂ jV (x, at )], (A4)

[Bi, Bi] = 0, (A5)

[B†
i , B†

j ] = 0. (A6)

Then the eigenvalues are shown to be nonnegative,

λn(t ) =
∫

dDx un,αn (x, t )Ht un,αn (x, t )

= 1

νβ

D∑
i=1

|Biun,αn (x, t )|2 � 0. (A7)

Thus, without loss of generality, the eigenvalues are ordered
as

0 = λ0(t ) < λ1(t ) < λ2(t ) · · · . (A8)

The foot state with λ0 = 0 is given by solving Biu0,α0 = 0,
and we find

ρ
0,0

(x, at ) = √
N0,0(at )e

1√
Z (at )

e−βV (x,at ), (A9)

where

Z (at ) =
∫

dDx e−βV (x,at ). (A10)

One can see that this is the stationary solution of the Fokker-
Planck equation when V is not time-dependent explicitly.
There is no degeneracy in the stationary solution and thus we
set α0 = 0. The corresponding head state is easily found by
using Eq. (30),

ρ0,0(x, at ) = 1√
N0,0(at )

1√
Z (at )

. (A11)

It should be noted that Bi and B†
i are not the lowering and

raising operators in general because the right-hand side of
Eq. (A4) is not necessarily constant.

APPENDIX B: DERIVATION OF THE MEAN WORK IN THE SYMMETRIC PROCESS

The lowest order contribution in the mean work W (1) is already calculated. The next order contribution is given by Eq. (73),
which is simplified as

W (2)
sym =

∫ t f

ti

dt
d (2)∑

α2,β2=0

e− ∫ t
ti

d λ2(s)[M(2)(t )]α2,β2 D(1)
2,β2

(t )〈0, 0, ati |(∂tV̂t )|2, α2, at 〉, (B1)

because, in the harmonic potential, we find

〈0, 0, aτ |(∂tV̂ )|n, αn, at 〉 = 1

2

dat

dt

√
N2

0 (at )

N2
0 (aτ )

(aτ

at

)1/2 1

βat

[
δn,0e−i[δn+2(at )−δn(at )]+

√
N2(at )

N0(at )
e−i[δn−2(at )−δn(at )]

√
2δn,2

]
[δ0,αn + δn,αn ].

(B2)

The expansion coefficient D(1)
2,β2

(t ) is given by Eq. (74). Substituting it into Eq. (B1), we obtain

W (2)
sym = 2

∫ t f

ti

dt
∫ t

ti

ds
das

ds

[
1

2βa2
s

e− ∫ t
s ds′ 2as′

ν

]
dat

dt
, (B3)
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where we have used Eq. (64) and the following results:

[M(n)(t )]αn,βn = δαn,βn

√
Nαn (ati )Nn−αn (ati )

Nαn (at )Nn−αn (at )

(
at

ati

)(n+1)/2

, (B4)

[
L̇(n,m)(τ )

]
αn,βm

= −1

ν

daτ

dτ

[
mδn,mδαn,βm +

√
Nβm (aτ )

Nβm+2(aτ )

√
(βm + 2)(βm + 1)δn,m+2δαn,βm+2

+
√

Nm−βm (aτ )

Nm−βm+2(aτ )

√
(m − βm + 2)(m − βm + 1)δn,m+2δαn,βm

]
. (B5)

APPENDIX C: DERIVATION OF THE MEAN WORK
IN THE ASYMMETRIC PROCESS

To apply the perturbation theory to this case, it is conve-
nient to introduce the states which are parameterized by the
eigenvalues of each spatial component,

〈x|“l′′, at 〉 = 〈x|“l1, l ′′
2 , at 〉 = ρ

l1
(x1, a(1)

t )ρ
l2

(x2, a(2)
t )

〈x|“l′′, at 〉 = 〈x|“l1, l ′′
2 , at 〉 = ρ l1 (x1, a(1)

t )ρ l2 (x2, a(2)
t ), (C1)

where we have used the functions defined in Eqs. (81)
and (82). The corresponding eigenvalues of the Fokker-
Planck operator are characterized by the pair of the two

integers (l1, l2),

λ(l1,l2 )(t ) = a(1)
t

ν
l1 + a(2)

t

ν
l2. (C2)

These states satisfy the orthonormal condition,

〈“m′′, at |“n′′, at 〉 = δn1,m1δn2,m2 = δn,m. (C3)

We call these the fictitious states. The sums associated with n
and αn, are shown to be equivalent to the sums of l1 and l2,

∑
n�0

d(n) (at )∑
αn=0

=
∑
l1�0

∑
l2�0

, (C4)

FIG. 6. Distribution of the eigenvalues of the fictitious states (C1) for ti < t � tX . The left panel shows the schematic figure of the change
of the eigenvalues. The right panel represents the correspondence between the foot state |n, αn, at 〉 and the fictitious state |“l1, l ′′

2 , at 〉.
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and hence the condition (46) is satisfied. It is however noted
that the degeneracy of the fictitious state is not yet identified.

The second-order term W (2)
asym is given by the sum of the

contributions from path I and path II,

W (2)
asym = W (2)

I + W (2)
II , (C5)

where

W (2)
I = −

∑
n�1

∫ tX

ti

dt
∫ t

ti

ds
d (n) (at )∑
αn,βn=0

d (n) (as )∑
γn=0

e− ∫ t
s ds′ λ2(s′ )〈0, 0, ai|(∂tV̂ )|n, αn, at 〉

×
[M(n)(t )]αn,βn [M(n)(s)]−1

βn,γn

[
L̇(n,0)(s)

]
γn,0

[M(0)(s)]0,0

λn(s)
, (C6)

W (2)
II = −

∑
n�1

∫ t f

tX

dt
∫ t

ti

ds
d (n) (at )∑
αn,βn=0

d (n) (as )∑
γn=0

e− ∫ t
s ds′ λ2(s′ )〈0, 0, ai|(∂tV̂ )|n, αn, at 〉

×
[M(n)(t )]αn,βn [M(n)(s)]−1

βn,γn

[
L̇(n,0)(s)

]
γn,0

[M(0)(s)]0,0

λn(s)
. (C7)

We see that the integration of t in W (2)
I is on path I while that in W (2)

II is on path II.

1. Calculation of W (2)
I

To calculate these equations, we have to identify a fictitious
state |“l1, l ′′

2 , at 〉 with a foot state |n, αn, at 〉. We first consider
the contribution on path I. On this path, the correspondence
between the fictitious states and the foot states are summa-
rized in Fig. 6. We find that, for example, the sixth foot
state |5, 0, at 〉 corresponds to |“2, 0′′at 〉 at ti < t < tM and to
|“3, 0′′at 〉 at tM < t < t f . Here the time tM is defined by

atM = 3
2 a0. (C8)

This foot state is degenerate instantaneously at t = tM and
hence

d (5)(at ) =
{

0 t �= tM,

1 t = tM .
(C9)

In the calculation of the mean work, the integrand is not
singular and thus the contribution at the moment t = tM is
negligible.

From the correspondence in Fig. 6, we observe, for ex-
ample, that the fictitious state (l1, l2) = (2, 0) corresponds
to the sixth foot state (n, αn) = (5, 0) for ti < t < tM , but
it is changed to the seventh foot state (n, αn) = (6, 0) for
tM < t � tX . Because of this, W (2)

I is given by the sum of three
contributions,

W (2)
I = W A

I + W B
I + W C

I

=
∫ tX

ti

dt
∫ t

ti

ds
dfs

ds

[
e− ∫ t

s ds′ 2 fs′
ν

1

2β( fs)2

]
dft

dt
, (C10)

where

W A
I = −

∫ tM

ti

dt
∫ t

ti

ds e− ∫ t
s ds′ λ(2,0) (s′ ) [M(5)(t )]0,0[M(5)(s)]−1

0,0[L̇(5,0)(s)]0,0[M(0)(s)]0,0

λ(2,0)(s)
〈0, 0, ati |(∂tV̂ )|5, 0, at 〉

=
∫ tM

ti

dt
∫ t

ti

ds
dfs

ds

[
e− ∫ t

s ds′ 2 fs′
ν

1

2β( fs)2

]
dft

dt
, (C11)

W B
I = −

∫ tX

tM

dt
∫ tM

ti

ds e− ∫ t
s ds′ λ(2,0) (s′ ) [M(6)(t )]0,0[M(5)(s)]−1

0,0[L̇(5,0)(s)]0,0[M(0)(s)]0,0

λ(2,0)(s)
〈0, 0, ati |(∂tV̂ )|6, 0, at 〉

=
∫ tX

tM

dt
∫ tM

ti

ds
dfs

ds

[
e− ∫ t

s ds′ 2 fs′
ν

1

2β( fs)2

]
dft

dt
, (C12)

W C
I = −

∫ tX

tM

dt
∫ t

tM

ds e− ∫ t
s ds′ λ(2,0) (s′ ) [M(6)(t )]0,0[M(6)(s)]−1

0,0[L̇(6,0)(s)]0,0[M(0)(s)]0,0

λ(2,0)(s)
〈0, 0, ati |(∂tV̂ )|6, 0, at 〉

=
∫ tX

tM

dt
∫ t

tM

ds
dfs

ds

[
e− ∫ t

s ds′ 2 fs′
ν

1

2β( fs)2

]
dft

dt
. (C13)
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In the calculations of W A
I and W C

I , there is no effect of the change of the eigenvalues at t = tM . We, however, require attention
to the calculation of W B

I . The fictitious state (l1, l2) = (2, 0) in W (B)
I corresponds to the foot state (n, αn) = (5, 0) for the integral

of s but the same state represents (n, αn) = (6, 0) for the integral of t . This is the reason why we observe [M(6)(t )]0,0 and
[M(5)(s)]−1

0,0 in Eq. (C12) at the same time,∑
n�1

∫ tX

tM

dt
∫ tM

ti

ds [M(n)(t )]0,0[M(n)(s)]−1
0,0〈0, 0, as|(∂tV̂ )|n, αn, at 〉

=
∫ tX

tM

dt
∫ tM

ti

ds [M(6)(t )]0,0[M(5)(s)]−1
0,0〈0, 0, as|(∂tV̂ )|6, 0, at 〉. (C14)

2. Calculation of W (2)
II

We consider the contribution from path II in this subsection. The distribution of the eigenvalues on path II is summarized in
Fig. 7, which is much simpler than that of path I. In this case, Eq. (C7) is calculated as

W (2)
II = −

∫ t f

tX

dt
∫ t

ti

ds e− ∫ t
s ds′ λ3(s′ )

[M(3)(t )]0,0[M(3)(s)]−1
0,0

[
L̇(3,0)(s)

]
0,0

λn(s)
〈0, 0, as|(∂tV̂ )|3, 0, at 〉

= −
∫ t f

tX

dt
∫ t

tX

ds e− ∫ t
s ds′ λ3(s′ )

[M(3)(t )]0,0[M(3)(s)]−1
0,0

[
L̇(3,0)(s)

]
0,0

λn(s)
〈0, 0, as|(∂tV̂ )|3, 0, at 〉

=
∫ t f

tX

dt
∫ t

tX

ds
dgs

ds

[
e− ∫ t

s ds′ 2gs′
ν

1

2β(gs)2

]
dgt

dt
. (C15)

In the second equality, the lower limit of the integral of s is
changed from ti to tX because

L̇(n,0)(s) = −
√

2

ν

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dfs

ds

√
N (1)

0 (s)

N (1)
2 (s)

δn,5δαn,0 ti < s < tM,

dfs

ds

√
N (1)

0 (s)

N (1)
2 (s)

δn,6δαn,0 tM < s < tX ,

dgs

ds

√
N (2)

0 (s)

N (2)
2 (s)

δn,3δαn,0 tX < s < t f .

(C16)

FIG. 7. Distribution of the eigenvalues of the fictitious state (C1)
for tX < t < t f .

APPENDIX D: COMPARISON WITH STOCHASTIC
DIFFERENTIAL EQUATION

To confirm that our perturbation theory is consistent with
the numerical simulation of the stochastic differential equa-
tion, we consider the symmetric process and calculate the time
evolution of the mean energy. To calculate this, we need the
equations for x2

i t (i = 1, 2) which are obtained by applying

FIG. 8. Changes of the mean energy plotted as functions of
τ = (t − ti )/τop. The solid line is obtained by the numerical sim-
ulation of the stochastic differential equation. The dotted line is
given by Eq. (93). The optimized protocol (103) is utilized to both
calculations.
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Itô’s lemma to Eq. (3),

d (xi
t )

2 = 2

ν

[
−at (x

i
t )

2 + 1

β

]
dt + 2

√
2

βν
xi

t dBi
t . (D1)

The product of the last term on the right-hand side is given
by the Itô definition [32]. We solved this equation using the

Euler-Maruyama method using dτ = 10−3, τopati/ν = 1 and
the optimized protocol (103).

In Fig. 8 the changes of the mean energy are plotted as
functions of τ = (t − ti )/τop. The solid line is obtained by the
numerical simulation of the stochastic differential equation by
taking the average of 200 000 events. The dotted line is the
exact calculation in the perturbation theory, given by Eq. (93).
Our analytical result agrees with the corresponding numerical
simulation.
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