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Estimation of drift and diffusion functions from unevenly sampled time-series data
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Complex systems can often be modeled as stochastic processes. However, physical observations of such
systems are often irregularly spaced in time, leading to difficulties in estimating appropriate models from
data. Here we present extensions of two methods for estimating drift and diffusion functions from irregularly
sampled time-series data. Our methods are flexible and applicable to a variety of stochastic systems, including
non-Markov processes or systems contaminated with measurement noise. To demonstrate applicability, we
use this approach to analyze an irregularly sampled paleoclimatological isotope record, giving insights into
underlying physical processes.
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I. INTRODUCTION

The time-dependent behavior of complex systems consist-
ing of a large number of subsystems can often be described
by low-dimensional order parameter equations [1]. In many
cases, a separation between slow adjustments and fast fluctu-
ations allows for a description of continuous observables X of
such systems with a Langevin-type equation

d

dt
X (t ) = f (X, t ) + g(X, t )�(t ), (1)

where �(t ) denotes the stochastic force, with 〈�(t )〉 = 0
and 〈�(t )�(t ′)〉 = δ(t − t ′) [2]. The same information is ex-
pressed in the Fokker-Planck equation,

∂

∂t
p(x, t |x′, t ′) =

[
− ∂

∂x
D(1)(x, t ) + ∂2

∂x2
D(2)(x, t )

]

× p(x, t |x′, t ′), (2)

which contains the Kramers-Moyal (KM) coefficients

D(n)(x, t ) = lim
τ→0

1

n!τ

∫ ∞

−∞
[x′ − x]n p(x′, t + τ |x, t ) dx′, (3)

where x and x′ denote values that can be taken by X , and
p(◦|◦) is the transition probability. Here, the first two coef-
ficients are the drift and diffusion, respectively, connecting to
(1) under the Itô interpretation, with f (x, t ) = D(1)(x, t ) and
g(x, t ) =

√
2D(2)(x, t ).

It has been shown that it is possible to estimate the forms
of such processes directly from regularly sampled time-series
data using a technique called “direct estimation” [3,4]. This
approach has been applied to various fields of science [5].

There are two main difficulties associated with applying
this approach to “real-world” time-series data. The first occurs
when observations are contaminated by another undesirable
signal or measurement noise. In this case, Böttcher et al.
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[6] introduced a method to parametrically estimate drift and
diffusion functions as well as the amplitude of the measure-
ment noise; an approach has been expanded in subsequent
studies [7–9].

The other difficulty involves the discrete sampling of the
time-series data. For low sampling frequencies, it can be dif-
ficult to perform or infer the limit τ → 0 required for direct
estimation. In this case, Honisch and Friedrich [10] proposed
a finite τ optimization method that correctly recovers drift and
diffusion functions even with a large sampling. However, a
related impediment is the presence of irregular sampling. In
this case, there is no obvious way to calculate averages in
(3). This is commonly encountered in geoscientific measure-
ments (e.g., [11,12]), but also is encountered in turbulence
measurements [13–15], astrophysical observations [16–19],
and biological systems [20]. Interpolation is sometimes used
to sidestep these difficulties, however this can introduce a sig-
nificant and hard-to-quantify bias [12,21–23]. This motivates
a method for estimating drift and diffusion functions directly
from unaltered time-series data.

In the next section we review current estimation tech-
niques and propose two extensions for irregular sampling.
Section III shows numerical examples where we demonstrate
the functionality of our methods. In Section IV we apply this
framework to an empirical data-set, namely a paleoclimato-
logical isotope record [24]. Summaries are given in Section V
where further applications are proposed.

II. ESTIMATION OF CONDITIONAL MOMENTS

We consider a stationary scalar process X (t ) that is ob-
served at a set of N increasing points in time, {t1, t2, . . . , tN },
with no guarantee of a regular sampling. Observations at these
points are denoted as {X (t1), X (t2), . . . , X (tN )}. The finite-
time KM coefficients of X (t ) are defined as [10]

D(n)
τ (x) = 1

n!τ
M (n)(x, τ ), (4)
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which are calculated using the finite-time conditional mo-
ments

M (n)(x, τ ) =
∫ ∞

−∞
[x′ − x]n p(x′, t + τ |x, t ) dx′. (5)

The task is to make an estimate of these moments from data
X (t ). These moments will subsequently be used as finite-time
KM coefficients in an appropriate method in order to estimate
drift and diffusion functions of the underlying process.

Conditional moment estimates are denoted as M̂ (n)(xi, τ j ),
and are evaluated at a set of evaluation points in xi ∈
{x1, x2, . . . , xmax}, and τ j ∈ {τ1, τ2, . . . , τmax}.

A. Histogram Based Regression

The simplest way of estimating conditional moments is by
means of regressogram, (e.g., [25]), also known as histogram
based regression (HBR). This estimator can be written as

(e.g., [26]),

M̂ (n)(xi, τ j )=
∑N

k=1 I
(
X (tk ) ∈ B(x)(xi )

)
[X (tk+τ j )−X (tk )]n∑T

k=1 I (X (tk ) ∈ B(x)(xi ))
,

(6)
where I (◦) is the indicator function, and binning is indicated
with the half closed interval B(x)(xi ) := [xi − 1

2 bx, xi + 1
2 bx ),

where bx is the width of the bin.

B. Histogram-Time Based Regression

One simple way to extend HBR to account for uneven
timesampling is to average over all pairs of increasing times,
and also bin data by timestep. We shall refer to this method as
histogram-time based regression (HTBR). The estimator for
conditional moments can be written as

M̂ (n)(xi, τ j ) =
∑N−1

k=1

∑N
l=k+1

x-conditioning︷ ︸︸ ︷
I (X (tk ) ∈ B(x)(xi ))

τ -conditioning︷ ︸︸ ︷
I (�tl,k ∈ B(τ )(τ j ))[X (tl ) − X (tk )]n∑T −1

k=1

∑T
l=k+1 I (X (tk ) ∈ B(x)(xi ))I (�tl,k ∈ B(τ )(τ j ))

, (7)

where �tl,k := tl − tk (>0), and binning in τ is facilitated
with a bounded half closed interval B(τ )(τ j ) := [max(0, τ j −
1
2 bτ ), τ j + 1

2 bτ ).
Both HBR and HTBR provide simple methods of estimat-

ing moments; however, the histogram based nature of both
methods results in undesirable properties.

(1) Histograms assign the same weight to every point in-
side each bin, resulting in sharp cutoffs between data across
the edge of a bin.

(2) The width of the bins sets the resolution length-scale.
This length-scale dependence is not explicit; it is indirectly
determined by the number and range of bins.

C. Kernel Based Regression

To address the deficiencies of the histogram based ap-
proach, Lamouroux and Lehnertz [26] introduced the kernel
based regression (KBR) method. For this, each estimate at
x is assigned an estimate by averaging over all observations
weighted by the distance of the observation X (t ) to x. Mo-
ments are then estimated with

M̂ (n)(xi, τ j ) =
∑N

k=1 Kh(xi − X (tk ))[X (tk + τ j ) − X (tk )]n∑T
k=1 Kh(xi − X (tk ))

,

(8)
where Kh(◦) = K (◦/h)/h is a scaled kernel, h is the band-
width, and K (◦) is the kernel function. Here we use the
Epanechnikov kernel [27]

K (x) =
{

3
4 (1 − x2) if x2 < 1,

0 otherwise.
(9)

for its computationally desirable properties [28].
Kernel-based methods have a number of advantages over

histogram based approaches, including a higher convergence

rate in the limit of a large number of data points [28,29].
The introduction of a bandwidth gives an explicit indication
of the length scale of averaging, although there is no optimal
bandwidth. However, as points are indexed at set time-shifts
τ j in the future, this method is unsuitable for unevenly spaced
data.

D. Kernel-Time Based Regression

To extend KBR to unevenly spaced data, kernel density
estimation is applied to the τ component as well as the x
component. We shall refer to this method as kernel-time based
regression (KTBR). To enable this, bivariate kernel density
estimation is employed

M̂ (n)(xi, τ j )

=
∑T −1

k=1

∑T
l=k+1 K (2)

h (xi − X (tk ), τ j − �tl,k )[X (tl ) − X (tk )]n∑T −1
k=1

∑T
l=k+1 K (2)

h (xi − X (tk ), τ j − �tl,k )
,

(10)

where K (2)
h (◦, ◦) is a bandwidth scaled, Euclidian distance 2D

kernel

K (2)
h (x, τ ) = C

hxhτ

K (((x/hx )2 + (τ/hτ )2)
1
2 ), (11)

where hx and hτ and the bandwidths in x and τ , respectively
[30]. The prefactor C is defined such that the kernel inte-
grates to unity. We use the Epanechnikov kernel (9), therefore
C = 8/3π .

As the domain in τ only has positive support, kernel esti-
mations at τ < hτ can be biased. To account for this, we use a
boundary correction method [31] that replaces the application
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of kernels (11) inside (10), with

K (2)
h (xi − X (tk ), τ j − �tl,k )

→ [
K (2)

h (xi − X (tk ), τ j − �tl,k )

+ K (2)
h (xi − X (tk ), τ j + �tl,k )

]
. (12)

III. NUMERICAL EXAMPLES

To validate the presented methods, we test them on a set of
three synthetic data sets.

A. Ornstein-Uhlenbeck process

First, we examine an Ornstein-Uhlenbeck process given by
the drift and diffusion functions

D(1)(x) = −x, (13a)

D(2)(x) = 1. (13b)

We consider a discrete time-series sampling of X (t ) consist-
ing of 107 points with irregular time sampling, �t ∼ N (5 ×
10−3, 3.2 × 10−7). The solution is integrated [32] with an
internal timestep of δt � 10−4, to ensure numerical accuracy.

To estimate the conditional moments of this data, we use
three separate methods. First, the moments are estimated us-
ing HTBR (6). Sampling in x is performed by 11 evenly
spaced bins in the range [−2, 2]. Sampling in τ is performed
by a single bin, [0,0.01]. Here τ is small enough that the drift
and diffusion functions can be directly estimated from the
moments

D̂(n)(x) ≈ 1

n!τ
M̂ (n)(x, τ ). (14)

Second, the moments are estimated using KTBR (10). Evalu-
ation points in x are 30 evenly spaced points in [−2, 2], with
a bandwidth of hx = 0.3. Sampling in τ is performed with
a single evaluation point at τ = 5 × 10−3, with a bandwidth
of hτ = 2.5 × 10−3. As with HTBR, the direct estimation
method (14) is utilized. Finally, to compare with the two
previous methods, naive resampling is performed on the time-
series data. The data X (t ) is linearly interpolated to a regular
sampling of �t = 5 × 10−3, and then direct estimation is
applied with the same bin sampling as the HTBR estimate.
The drift and diffusion functions are shown in Fig. 1. In this
example—and all the following examples—KBR performed
similarly to HBR except with finer resolution, and hence will
not be shown for conciseness.

We find that the estimates of drift and diffusion func-
tions are in good accordance with the true values for both
HTBR and KTBR. These functions are systematically under-
estimated when using HBR with interpolated timesampling.

B. Multiplicative process with measurement noise

Next we examine a multiplicative process with measure-
ment noise. The drift and diffusion functions are set as

D(1)(x) = −x, (15a)

D(2)(x) = 1 + x2. (15b)

FIG. 1. Results for an Ornstein-Uhlenbeck process. Estimated
functions D(1)(x) and D(2)(x) are shown in the top and bottom plots,
respectively. Estimates from HBR are from interpolated data.

Irregularly sampled data X (t ) is produced similarly to ex-
ample III A; however, we also add δ-correlated measurement
noise

Y (t ) = X (t ) + σζ (t ), (16)

where σ denotes the amplitude of the measurement noise,
and ζ ∼ N (0, 1). We seek to estimate coefficients of parame-
terised drift and diffusion functions

D̂(1)(x) = p1 + p2x, (17a)

D̂(2)(x) = p3 + p4x + p5x2, (17b)

using the method of Lind et al. [7]. The time-series Y (t ) is
used to estimate noisy moments, M̂ (n)(y, τ ). These moments
are separated with linear regression

M̂ (1)(yi, τ j ) ≈ m̂1(yi )τ j + γ̂1(yi ), (18a)

M̂ (2)(yi, τ j ) ≈ m̂2(yi )τ j + γ̂2(yi ) + σ 2, (18b)

along with uncertainties σ 2
m̂1

(yi ), σ 2
γ̂1

(yi ), etc. These estimates
are compared with theoretical values of m1(y), γ1, m2(y), and
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TABLE I. True and optimised parameter values for a multiplica-
tive process with measurement noise. Parameters are rounded to
either 2 significant figures or at least 2 decimal places. The HBR
column represents results from interpolated Y (t ) data. We note that
entering the true parameter values into function (19) with estimates
gathered from interpolated HBR result in a value of F two orders of
magnitude higher than the optimised minimum.

Parameter True HTBR KTBR HBR

p1 0 −0.0050 −0.0040 −0.014
p2 −1 −0.99 −1.00 −1.48
p3 1 0.99 1.00 1.62
p4 0 0.0062 0.013 0.0020
p5 1 0.97 0.98 1.11
σ 1 1.00 1.00 0.76

γ2, which depend solely on parameters p1, . . . , p5, and σ , see
Lind et al. [7] for more details. The parameters vary the fit
function

F =
8∑

i=1

{
[m̂1(yi ) − m1(yi )]2

σ 2
m̂1

(yi )
+ [γ̂1(yi ) − γ1(yi )]2

σ 2
γ̂1

(yi )

+ [m̂2(yi ) − m2(yi )]2

σ 2
m̂2

(yi )
+ [γ̂2(yi ) − γ2(yi ) − σ 2]2

σ 2
γ̂2

(yi )

}
,

(19)

which is minimised using simulated annealing [33].
For HTBR, sampling in y is performed with 50 equally

spaced bins in the range [−6, 6]. Sampling in τ is performed
by 8 equally spaced bins with centers from τ1 = 5 × 10−3

to τ8 = 4 × 10−2, with binwidths bτ = 5 × 10−3. For KTBR,
evaluation points in x are 50 equally spaced points in the range
[−6, 6], with hx = 0.18. Sampling in time is performed with 8
equally spaced points from τ1 = 5 × 10−3 to τ8 = 4 × 10−2,
with hτ = 2.5 × 10−3. Finally, the data Y (t ) is also linearly
interpolated to a regular sampling of �t = 5 × 10−3 and then
processed in the same way as the HTBR example. The opti-
mised parameters are shown in Table I.

The parameters of the drift and diffusion functions are
very close to the true values for both HTBR and KTBR.
For HBR with interpolated timesampling, while some ele-
ments are estimated well, the absolute gradient of the drift,
the constant diffusion term, and the quadratic term are all
overestimated. Finally, the measurement noise amplitude σ is
underestimated.

C. Bistable system with correlated noise

Finally, we examine a bistable process X (t ) driven by cor-
related noise η(t ) [34]. This system is defined as

d

dt
X = D(1)(X ) +

√
2D(2)(X )η(t ), (20a)

d

dt
η = −1

θ
η + 1

θ
ξ (t ), (20b)

where θ is the correlation time of the noise. The drift and
diffusion functions are set as

D(1)(x) = x − 1

2
x3, (21a)

D(2)(x) = 1 + 1

20
ln cosh 2x, (21b)

and the correlation time is θ = 0.01. An unevenly spaced
timeseries is produced in the same way as example III A,
however only X (t ) is observed.

We estimate the drift and diffusion functions using the non-
parametric method of [34]. This involves comparing estimates
of moments, M̂ (n)(x, τ ), with theoretical estimates

M (n)(x, τ ) ≈
3∑

i=1

λ
(n)
i (x)ri(τ, θ ), (22)

where functions ri are prescribed basis functions and λ
(n)
i (x)

are the corresponding coefficients. Coefficients are found
through least squares, and then λ

(n)
1 (x) are directly related

to estimates of the drift and diffusion functions at points in
x. For a detailed description of the method, see Lehle and
Peinke [34].

For HTBR, sampling in x is performed by 16 equally
spaced bins in the range [−2, 2]. Sampling in τ is per-
formed by 30 spaced bins with from τ1 = 5 × 10−3 to τ30 =
1.5 × 10−1, with binwidths bτ = 5 × 10−3. For KTBR, eval-
uation points in x are 50 equally spaced points in the range
[−2, 2], with hx = 0.24. Sampling in time is performed with
30 equally spaced points from τ1 = 5 × 10−3 to τ30 = 1.5 ×
10−1, with hτ = 2.5 × 10−3. Finally, the data X (t ) is also
linearly interpolated to a regular sampling of �t = 5 × 10−3

and then processed in the same way as the HTBR example.
For simplicity, we assume that the correlation time θ has been
accurately estimated a priori [12,18]. For all methods, the
mean absolute error between estimated moments M̂ (n)(x, τ )
and fitted moments (22) is on the order of 10−5. The drift and
diffusion functions are shown in Fig. 2.

The estimates of the drift and diffusion functions compare
well with the true values for both HTBR and KTBR. For the
interpolated HBR the drift function is reproduced well, whilst
the diffusion function is systematically underestimated.

IV. APPLICATION TO PALEOCLIMATOLOGICAL DATA

Paleoclimate proxies preserve a record of Earth’s cli-
mate variability. This variability is commonly studied through
carbon and oxygen isotope records from benthic foraminifera
[24,35]. Of particular interest are large and rapid negative
excursions in carbon isotope ratios, δ13C, throughout the
Cenozoic [36–40]. These excursions have been interpreted
as “hyperthermal” warming events, and are speculated to be
linked to the release of isotopically depleted organic car-
bon from permafrost or methane clathrates [41–43]. Such
records offer insights to Earth’s climate response to hyperther-
mal events, and provide an analog to modern anthropogenic
forcing [44–47]. Recently, Arnscheidt and Rothman [48] sug-
gested that the timevariability of these records can be modeled
as stochastic processes, invoking a singlevariable correlated
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FIG. 2. Results for a bistable system with correlated noise. As
Fig. 1.

additive-multiplicative (CAM) process

d

dt
X = − 1

τeff
X + v(X − c)�(t ), (23)

where τeff, v, and c are constants and �(t ) is white noise
[49–53]. A nonparametric verification of this CAM hypoth-
esis has been unreachable with previous estimation methods,
as the δ13C record is unevenly sampled in time. In this
section, we apply KTBR to a section of this unevenly sampled
paleoclimate record.

We choose a stationary section of the record, from 53 Ma
to 46 Ma, containing a series of representative excursions but
excluding the anomalous Paleocene-Eocene Thermal Maxi-
mum [48,54], shown in Fig. 3. The sampling in this time-span
is approximately lognormally distributed, with log10 �t ∼
N (−2.7, 0.2). To calculate moments, evaluation points in
x are 50 equally spaced points in the range [−0.8, 0.5],
with hx = 0.4. Sampling in time is performed with 30
equally spaced points from τ1 = 3.5 kyr to τ30 = 116 kyr,
with hτ = 5 kyr. The higher order moments in M (4)(x, τ ) �
3(M (2)(x, τ ))2 are evaluated using (10) and are comparable,
showing a small error of ∼5 × 10−3, validating the continuity
of the record [55,56]. To estimate the drift and diffusion func-
tions from these moments, we use the approach of Lehle and
Peinke [34], while the correlation time is estimated through
a grid search, θ ≈ 0.4 kyr. The moments are fit well with
an absolute error between estimated moments M̂ (n)(x, τ ) and
fitted moments (22) on the order of 10−4. The estimated drift
and diffusion functions are shown in Fig. 4.

The drift function has a strongly linear form, and is well
approximated by the CAM model (23) with τeff = 47 kyr
(R2 = 0.98). For the diffusion function, while a CAM model
(23) with the coefficients v = −3.2 and c = −1.2 falls within
the confidence intervals (R2 = 0.67), we cannot reject a likely
piecewise diffusion of

D(2)(x) =
{

p1 + p2(x − p3) if x � p3,

p1 otherwise, (24)

with best fitting coefficients of p1 = 3.30, p2 = −11.50,

and p3 = −0.36 (R2 = 0.99), although we note that this

FIG. 3. Climate variations in the Early Eocene, recorded in benthic foraminiferal δ13C data [24]. A running mean of 1-Ma has been
subtracted to remove longer-scale climate effects. Time-series data and a simulated trajectory are shown in the top and bottom plots,
respectively. Histograms are shown in the right plot. By convention, axes for δ13C are reflected.
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FIG. 4. Results for early Eocene δ13C record. Estimated drift
and diffusion functions D(1)(x) and D(2)(x) are shown in the top
and bottom plots, respectively. Best estimates are plotted as black
lines, and bootstrapped 95% confidence intervals are shown as grey
regions [57].

parametrization is not unique, and only meant to be
suggestive.

To demonstrate that this linear drift and piecewise diffusion
cannot be rejected by the data, we numerically integrate a
sample path with these functions. The time-series and distri-
butions of the original data and SDE simulation are shown
in Fig. 3. The SDE matches the skewed distribution of the
original record, and also displays characteristic excursions to
low δ13C values.

Beyond reproducing observations, the form of the esti-
mated drift and diffusion functions can give insight into
physical processes. The drift term indicates an average
relaxation timescale of τeff = 47 kyr, possibly reflecting
the stabilizing feedback of weathering of carbonate and
silicate rocks (e.g., [58]). The piecewise nature of the dif-
fusion suggests a “tippingpoint” beyond which fluctuations
are amplified, indicating an imbalance in typical weath-
ering feedback mechanisms [59–61]. Further work should
investigate whether this behavior is reflected in related

oxygen isotope records, as well as other epochs in the
Cenozoic.

V. DISCUSSION AND CONCLUSION

We present two methods to estimate conditional mo-
ments from irregularly spaced timeseries. These moments
are used alongside parametric and nonparametric methods to
facilitate the accurate estimation of drift and diffusion func-
tions of stochastic differential equations. We demonstrate this
for three numerical examples in a number of settings. Even
in the presence of measurement noise or nonMarkovian pro-
cesses, both HTBR and KTBR are able to produce moments
that result in accurate estimates of the original drift and dif-
fusion functions. Additionally, KTBR is applied to a series
of irregularly spaced paleoclimatological measurements. The
inferred model is able to produce similar time-dependent be-
havior and statistics, revealing underlying dynamics.

This study also illustrates the dangers of interpolation.
While example III A shows that interpolation results in an
absolute underestimate in the magnitude of estimated drift
and diffusion functions, example III B shows the opposite
bias (with an underestimated measurement noise amplitude).
Interpolation in example III C has little effect on the esti-
mated drift function, but not the diffusion function. These
smaller errors average out for the drift function, as is the case
with weak measurement noise [62]. Overall, the bias may be
small because longer time-scale information is included in
the inversion, or the interpolation bias may be masked by the
non-Markovian nature of the process.

In addition to being applicable to a wide class of stochas-
tic systems, these methods could allow for the handling of
other nonideal sampling conditions. Data with inconvenient
gaps, for example, can be approached by this outlook when
framed as irregularly sampled processes. This method is also
capable of estimating higher-order moments [n > 2 in (7)
and (10)], which are useful for analysis of jump-diffusion
processes [63]. On the effect of number of data points on
the robustness of the estimated drift and noise functions,
as HTBR and KTBR are inherently frequency based cal-
culations, we expect them to perform similarly to previous
methods [26,64,65]. The methods here are demonstrated in
one dimension; however, extensions to higher dimensions is
straightforward.

In the broader picture for stochastic process estimation, the
methods presented here extend time-shift conditioning from
inde-based to histogram and kernel based methods. This re-
flects similar work regarding sample autocorrelation function
estimators [12,18,66]. We note that it is not strictly required
to match similar conditioning on x and τ . In theory hybrid
methods could be used, for example, kernel conditioning
in x combined with histogram conditioning in τ , however,
it is not clear if such an approach would have significant
advantages.
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