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Diffusion on a lattice: Transition rates, interactions, and memory effects
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We analyze diffusion of particles on a two-dimensional square lattice. Each lattice site contains an arbitrary
number of particles. Interactions affect particles only in the same site, and are macroscopically represented by the
excess chemical potential. In a recent work, a general expression for transition rates between neighboring cells
as functions of the excess chemical potential was derived. With transition rates, the mean-field tracer diffusivity,
DMF, is immediately obtained. The tracer diffusivity, D = DMF f , contains the correlation factor f , representing
memory effects. An analysis of the joint probability of having given numbers of particles at different sites when
a force is applied to a tagged particle allows an approximate expression for f to be derived. The expression is
applied to soft core interaction (different values for the maximum number of particles in a site are considered)
and extended hard core.
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I. INTRODUCTION

Diffusion and other transport processes have been widely
studied due to their applications to both academic research
and industry; see, for example, Refs. [1–4] and references
cited therein. A simple but yet useful approach to study dif-
fusion are lattice gas models, in which atoms or particles
occupy discrete positions in space. They are useful, as a
first approximation, to characterize transport phenomena on
regular structures, such as solids and surfaces [5–9]. In these
models particles jump to neighboring sites, albeit limited by
the interaction with other particles. For instance, for hard-core
interaction only one particle is permitted on each lattice site,
and thus a particle is only allowed to jump to free sites or
vacancies.

On the other hand, diffusion has also been studied through
lattice-gas automata or lattice Boltzmann methods, in which
particles move through the lattice with different velocities,
and there are collision rules that rearrange their spatial po-
sition [10–12].

Here however, we will focus on the lattice models belong-
ing to the first group, since we are interested on studying the
diffusion on systems where the substratum plays and active
role, such as surface diffusion.

Even with simple models, obtaining closed expressions
for the diffusivity for the complete range of density values
has proved to be challenging. One of the main issues are
memory effects, which in general manifest when the parti-
cle concentration becomes significant. In the case of hard-
core interaction, when a tagged particle jumps to a free site,
the empty site that it left behind is bound to be the target
of the next jump of the tagged particle, rather than moving
in any other direction. Therefore, there is a spatial correlation
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between consecutive jumps which causes the movement of a
tracer to deviate from a standard random walk.

In Ref. [13], a formula for the jump rate in terms of the
excess chemical potential was obtained, combining detailed
balance with the Widom insertion formula. The mean-field
(MF) regime is such that memory effects can be neglected.
Generally, the tracer diffusion coefficient is written in the form
D = DMF f , where DMF is the diffusion coefficient in the MF
regime, and f is known as the correlation factor, which takes
into account the memory effects discussed previously.

Much work (theoretical, numerical, and experimental) has
been devoted to the determination of f in different sys-
tems; Refs. [14–28] are just a small representative sample.
Most applications are related to diffusion in solids and, more
specifically, to the vacancy mechanism of self-diffusion or
substitutional diffusion [9, Ch. 7].

Here we show that it is possible to develop an analytical
expression for the correlation factor by taking into account
averages of transition rates when a small force is applied
to a tagged particle. We analyze a two-dimensional lattice,
in which interactions are represented macroscopically by the
excess chemical potential μex. Apart from hard-core, we focus
on soft-core interaction, in which a site can contain up to �

particles. Note that hard core is the special case of soft core
with � = 1. In addition, we analyze the case of extended hard
core or k-NN (nearest-neighbor) hard core, in which the range
of a particle occupying a site extends over a disk of a radius
proportional to k. Extended hardcore is able to mimic, in the
asymptotic limit of infinitely large k, the continuous dynamics
of rigid disks via Monte Carlo simulations.

The paper is organized as follows. In Sec. II we develop a
general expression for the correlation factor using the tran-
sition rate formula for two neighboring sites. In Secs. III
and IV we present expressions for the correlation factor for
soft-core and extended hard-core interactions, respectively. In
addition, we compare the results predicted by the formulas
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with Monte Carlo simulations. Finally, in Sec. VI we present
the conclusions.

II. CORRELATION FACTOR

Let us consider a d-dimensional square lattice. Each lattice
site, identified with index i, is a cell of size a containing an
arbitrary number of particles. Interactions are considered only
between particles within the same cell. There are ni particles
in cell i. Each site is an open system at temperature T and
chemical potential μ. We call � the number of microscopic
states for one particle in a cell (proportional to its volume), and
the (dimensionless) particle density is defined as ρi = ni/�.

It has been shown in Ref. [13] that the transition rate
for one particle to jump from a cell with n1 particles to a
neighboring cell with n2 particles is

Wn1,n2 = ν
e−β(μex,n2 −μex,n1 )/2√

�n1�n2

, (1)

where ν is the jump frequency (a quantity that depends on
the substratum and that is assumed constant), μex,ni is the ex-
cess chemical potential and �ni is the thermodynamic factor,

defined as βni
∂μ

∂ni
= 1 + βni

∂μex,ni
∂ni

. The order of subindices in
Wn1,n2 indicates the jump direction.

In a MF approximation, we consider that n1 = n2 = n̄ in
Eq. (1), where n̄ is the average number of particles. The result-
ing transition rate is Wn̄,n̄ = ν/�, where � without subindex
is evaluated at n̄. The MF tracer diffusivity is calculated us-
ing the continuous limit of a random walk with step a [29,
Sect. 3.8.2], giving

DMF = Wn̄,n̄a2 = D0/�, (2)

where D0 = νa2 is the diffusivity at small concentration. It
is known that this approximation for the tracer diffusivity
is not appropriate in most cases [5]. Memory effects play
an important role when considering, for example, hard core
interaction; in this case, after a jump, a backward second jump
is more likely than a forward jump since the origin site is
empty. Memory effects are taken into account by the so-called
correlation factor f , so that the tracer diffusivity is

D = DMF f , (3)

or

D

D0
= 1

�
f . (4)

The correlation factor is usually written in terms of the aver-
age 〈cos θ〉, where θ is the angle between consecutive jump
vectors (see for instance [9, Ch. 7]). In the present approach
we follow an alternative path appropriate for diffusion in a
lattice that takes advantage from the expression for transition
rates.

We consider diffusion of a tagged particle in a system com-
posed by equivalent particles (in this case, tracer diffusivity is
equivalent to self-diffusion coefficient). The tracer diffusion
coefficient, D, can be obtained from the mobility, B, using the
Einstein relation,

D = β−1B. (5)

When a small force, F , is applied to the tagged particle, its
average velocity is v = BF ; then, the tracer diffusivity is

D = β−1v/F. (6)

Let us assume that the tagged particle is in site number 1, with
n1 particles. The velocity in terms of the transition rates is

v = a
〈
W F

n1,n2
− W F

n1,n0

〉
F , (7)

where

W F
n1,n2

= Wn1,n2 eβFa/2 = Wn1,n2 (1 + βFa/2), (8)

W F
n1,n0

= Wn1,n0 e−βFa/2 = Wn1,n0 (1 − βFa/2), (9)

and the average 〈〉F corresponds to a particle distribution with
spatial correlations produced by the applied force. In equi-
librium (without the external force), correlations are absent
since interactions between neighboring sites are neglected.
Replacing Eqs. (8) and (9) in Eq. (7), we get

v = a
〈
Wn1,n2 − Wn1,n0

〉
F + βFa2

2

〈
Wn1,n2 + Wn1,n0

〉
, (10)

where the average 〈〉 in the last term corresponds to the
equilibrium particle distribution with independent number
probabilities, Pni , for each site. A small force is assumed in
order to have a linear relationship between velocity and force.

Let us call PF
n0,n1,n2

the joint probability of having n0, n1,
and n2 particles in the corresponding sites when the force F is
applied to a tagged particle in site 1. The average of the first
term in Eq. (10) is

〈
Wn1,n2 − Wn1,n0

〉
F

=
∑

n0,n1,n2

(
Wn1,n2 − Wn1,n0

)
PF

n0,n1,n2
. (11)

The joint probability is linearized

PF
n0,n1,n2

= Pn0 Pn1 Pn2 + ∂PF
n0,n1,n2

∂F

∣∣∣∣
F=0

F, (12)

and the first derivative in F is written in terms of an adimen-
sional function Rn0,n1,n2 , that is defined such that

∂PF
n0,n1,n2

∂F

∣∣∣∣
F=0

= βaPn0 Pn1 Pn2 Rn0,n1,n2 . (13)

Then,

PF
n0,n1,n2

= (
1 + βFaRn0,n1,n2

)
Pn0 Pn1 Pn2 (14)

and the average in Eq. (11) is〈
Wn1,n2 − Wn1,n0

〉
F

= βFa
〈(

Wn1,n2 − Wn1,n0

)
Rn0,n1,n2

〉
, (15)

that is, we have rewritten a nonequilibrium average in terms of
an equilibrium average using the function Rn0,n1,n2 (also, it was
used that, at equilibrium, 〈Wn1,n2〉 = 〈Wn1,n0〉). Using Eq. (15)
in Eq. (10), the average velocity is

v = βFa2
〈(

Wn1,n2 − Wn1,n0

)
Rn0,n1,n2 + Wn1,n2

〉
, (16)

and, using Eq. (6), the tracer diffusivity is

D

D0
= 1

ν

〈(
Wn1,n2 − Wn1,n0

)
Rn0,n1,n2 + Wn1,n2

〉
. (17)
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The correlation factor, f , is obtained combining this equa-
tion with Eq. (4):

f =
〈(

Wn1,n2 − Wn1,n0

)
Rn0,n1,n2 + Wn1,n2

〉
Wn̄,n̄

, (18)

where it was used that Wn̄,n̄ = ν/�. It is shown below, with
some examples, that simple approximations for Rn0,n1,n2 pro-
vide appropriate expressions for the correlation factor.

III. SOFT CORE INTERACTION

For soft core interaction, the thermodynamic factor is � =
1/(1 − ρ) and, replacing in Eq. (2), the MF tracer diffusivity
is [13]

DMF/D0 = 1 − ρ, (19)

where ρ = n̄/�, with n̄ the average particle number in one cell
and � the maximum number of particles allowed (a measure
of the cell’s volume). Hard core interaction is obtained for
� = 1. The transition rate is [13]

Wn1,n2 = ν(1 − ρ2) (20)

with ρ2 = n2/�. In the present notation, ρ (without subindex)
is the average concentration at any point of the lattice, while
ρi = ni/� is the instantaneous concentration at site i. The
transition rate depends only on the particle number in the des-
tination site. Using this information in Eq. (18), the correlation
factor is

f = 1 − 1

1 − ρ
〈(ρ2 − ρ0)Rn0,n2〉, (21)

where the dependence of R on n1 can be omitted since the
averaged quantity does not depend on n1; more explicitly,
Rn0,n2 = ∑

n1
Rn0,n1,n2 Pn1 .

An expansion in powers of the concentrations in sites 0 and
2 is proposed for Rn0,n2 :

Rn0,n2 =
∞∑

i, j=0

ci, jρ
i
0ρ

j
2, (22)

where it is assumed that the coefficients ci, j do not depend on
�. Keeping terms up to order 2, the average involving Rn0,n2

in Eq. (21) is

〈(ρ2 − ρ0)Rn0,n2〉
= 〈

(ρ2 − ρ0)
(
c00 + c10ρ0 + c01ρ2 + c20ρ

2
0 + c02ρ

2
2

+ c11ρ0ρ2
)〉

= (c01 − c10)

�2
(〈n2〉 − n̄2) + (c02 − c20)

�3
(〈n3〉 − n̄〈n2〉)

= c′

�2
〈	n2〉 + c

�3
(〈	n3〉 + 2n̄〈	n2〉), (23)

where c′ = c01 − c10, c = c02 − c20, and n is used indistinctly
for sites 0 or 2 since equilibrium averages are the same in both
sites. The average particle number for soft-core interaction is
given by the Fermi-Dirac distribution:

n̄ = �

1 + e−βμ
, (24)

FIG. 1. Correlation factor f against density ρ for soft-core inter-
action and different values of �, the maximum number of particles
allowed. Points are numerical results and curves correspond to
Eq. (26) with c = 0.156. Black dotted and dashed curves correspond
to analytical results of Nakazato [18] and Chaturvedi [22] respec-
tively, obtained for � = 1.

from which the second- and third-order moments are
obtained: 〈	n2〉 = 1

β
∂ n̄
∂μ

= n̄(1 − ρ) and 〈	n3〉 = 1
β2

∂2n̄
∂μ2 =

n̄(1 − ρ)(1 − 2ρ). Using this information and going back to
the expression for the correlation factor, Eq. (21), we obtain

f = 1 + ρ

�
[c′ + c/� + c 2(1 − 1/�)ρ]. (25)

Compaan and Haven [15] have demonstrated that, for hard
core interaction (� = 1) in a two-dimensional lattice and in
the limit of ρ → 1, the correlation factor takes the value
f�=1 = 1/(π − 1) � 0.46694. This result can be used to set
one of the constants in Eq. (25), where f�=1 = 1 + c′ + c.
Then,

f = 1 + ρ

�

[
π − 2

π − 1
+ c

(
1 − 1

�

)
(2ρ − 1)

]
. (26)

Figure 1 shows the correlation factor against density for
different values of �; an adjusted value of c = 0.156 was
used (see Sec.V). Numerical results (dots) were obtained
from diffusion simulations in a two-dimensional square lat-
tice. Analytical expressions obtained by Nakazato [18] and
Chaturvedi [22] for � = 1 are also shown for comparison,
they are slightly larger than the numerical results. The same
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FIG. 2. Exclusion regions, shown in blue around the central particle, for different values of b. A configuration with maximum concentration
is partially represented in each case with crosses at the centers of the particles.

happens to our linear expression for � = 1, suggesting that
higher-order terms have to be included in the expansion of
Rn0,n2 to obtain a more accurate approximation. Nevertheless,
the expression (26) satisfactorily matches numerical data for
different values of � using the same value of c in all cases.

The expressions obtained by Nakazato and Chaturvedi for
the two-dimensional square lattice and � = 1 are

fNakazato = (2−ρ)(1−α)
2−ρ−α(2−3ρ) with α = 0.363,

fChaturvedi = 1 − 2ρ

(3 − β )(2 − ρ) + 2ρ
with β = 1.1894.

IV. EXTENDED HARD CORE

Diffusion of particles with extended hard core is analyzed
in this section. Particles move in a two-dimensional square
lattice; see Ref. [30] for a possible order-disorder phase tran-
sition in this kind of system. The center of a particle occupies
a lattice site and there is an exclusion region around it that
the center of other particles cannot occupy; some examples
are shown in Fig. 2. A particle’s center jumps randomly to
neighboring sites, and the jump is allowed if the destination
site does not belong to the exclusion region of another particle.
Let us call b the number of sites (or the area) of the exclu-
sion region. If b = 1 we have the situation of the previous
section (with � = 1). The next case is b = 5, where we have
the center plus four nearest neighbors; by including the next-
nearest neighbors we have b = 9, a region of 3 × 3 sites, etc.
Hard disks are obtained in the limit of large b. Then, b is not
the particle size but the area of the exclusion region. For hard
disks, the exclusion region has an area πd2, with d the particle
diameter, while the particle area is πd2/4. In analogy to hard
disks, we define the packing fraction as ξ = ρb/4 for b > 1;
and ξ = ρ for b = 1.

Knowing that the thermodynamic factor is � = 1/(1 − ρ)
for b = 1, we assume that for other values of b it is approxi-

mately given by

� = 1

1 − ρ/ρmax
, (27)

where ρmax is the maximum possible value of concentration,
given by the average number of particles per lattice site.
Figure 2 shows different shapes of the exclusion region around
one particle for increasing values of b; the sequence starts
from b = 1 and a layer of nearest neighbors is added in each
step. The crosses represent an example of a configuration with
maximum concentration in each case, from which the value of
ρmax is obtained; the values are given in the following table:

b 1 5 9 13
ρmax 1 1/2 1/4 1/5

b 21 25 29 37
ρmax 1/8 1/9 1/10 1/12

The maximum packing fraction is immediately obtained
from ξmax = ρmaxb/4 for b > 1, and ξmax = 1 for b = 1.

Considering transitions between cells of size m × m, where
m is approximately equal to the particle diameter, the analysis
of the previous section can be applied, resulting a correla-
tion factor that has the concentration dependence given by
Eq. (26), that is

f = 1 − c1ξ + c2ξ
2, (28)

where c1 and c2 are adjustable parameters. Using Eq. (4), the
tracer diffusivity is

D/D0 = f /� = (1 − c1ξ + c2ξ
2)(1 − ξ/ξmax). (29)

Figure 3 shows numerical values of the tracer diffusivity,
D, against packing fraction, ξ , for different values of exclusion
region size, b. The results are well represented by Eq. (29)
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FIG. 3. Normalized tracer diffusivity, D/νa2, against packing
fraction, ξ , for different values of b. Dots are numerical results and
curves represent Eq. (29) with adjusted values of c1 and c2.

adjusting the values of parameters c1 and c2; the resulting
parameters are shown in Table I.

V. METHODS

Monte Carlo (MC) simulations were carried out consider-
ing a square lattice of size 100 x 100. On each realization a
thermalization run was performed to ensure that the system

TABLE I. Adjusted values of c1 and c2 used in Fig. 3 for different
values of b.

b c1 c2

1 0.593 0.0396
5 3.77 3.57
9 1.64 0.062
13 2.76 1.66
21 1.38 −0.41
25 1.43 0.068
29 1.99 0.55
37 1.48 −0.11

was on the steady state prior to making any measurement. On
each MC step, N particles were given the opportunity to jump
to one of their four neighboring sites, where N is the number
of particles on the lattice. Note that on each step, a particle
can be chosen more than once. For soft core interaction, par-
ticles jump with probability P = 1

4 (1 − ρ2) 	t , where ρ2 is
the density of the destination site and 	t is the time interval;
simulations were carried out considering different values of
�, the maximum number of particles per site. For extended
hard core, a particle jumps with probability P = 1

4 	t if the
destination site does not lie within the exclusion area of any
particle, and with P = 0 otherwise; we considered different
sizes of the exclusion area, from b = 1 to b = 37, where b is
the number of sites that the excluded region occupies.

Each MC simulation consisted of 5000 time steps (after a
thermalization run of 100 steps) and the results were averaged
over 105 realizations.

In order to obtain the value of c corresponding to Eq. (26),
the parameter was adjusted individually for each �; similar
values of c, with dispersion around 3%, were obtained in each
case. The average value, c = 0.156, was used to adjust all the
curves of Fig. 1.

VI. SUMMARY AND CONCLUSIONS

In this manuscript we address the problem of the spatial
correlation effects when studying the tracer diffusivity on a
regular lattice. We have found a general expression for the
correlation factor f , which takes into account the memory
effects of consecutive jumps. Interactions are represented
macroscopically by the excess chemical potential. Here we
have analyzed the cases of hard-core, soft-core, and extended
hard-core interactions. In all cases the results from the MC
simulations show a good agreement with the results predicted
by the theoretical expression of f . As expected, we note that
for soft core the correlation effects decrease ( f tends to 1)
when �, the number of possible configurations for one parti-
cle within a lattice site, increases. This is because when � is
large, a jump of a particle represents a minor change in the
origin site. Thus, in equilibrium, the particle will move with
almost equal probability to any of its four neighboring sites in
its next jump.

A minor but evident drawback of the theoretical approach
is that it does not yield a complete expression for f , since it
contains one free parameter that needs to be adjusted for soft-
core interactions, or two for extended hard-core. Nevertheless,
it has the virtue of being a general expression that can be
employed to study tracer diffusion in several systems ruled
by different interactions. As we have shown throughout this
article, memory effects play an important role in the diffu-
sivity of a tracer particle. A theoretical understanding of the
spatial correlations in a system of interacting particles is the
key to gaining a full comprehension of the nature of transport
processes.
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