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Fock-space approach to stochastic susceptible-infected-recovered models
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We investigate the stochastic susceptible-infected-recovered (SIR) model of infectious disease dynamics in
the Fock-space approach. In contrast to conventional SIR models based on ordinary differential equations for the
subpopulation sizes of S, I, and R individuals, the stochastic SIR model is driven by a master equation governing
the transition probabilities among the system’s states defined by SIR occupation numbers. In the Fock-space
approach the master equation is recast in the form of a real-valued Schrödinger-type equation with a second
quantization Hamiltonian-like operator describing the infection and recovery processes. We find exact analytic
expressions for the Hamiltonian eigenvalues for any population size N . We present small- and large-N results
for the average numbers of SIR individuals and basic reproduction number. For small N we also obtain the
probability distributions of SIR states, epidemic sizes and durations, which cannot be found from deterministic
SIR models. Our Fock-space approach to stochastic SIR models introduces a powerful set of tools to calculate
central quantities of epidemic processes, especially for relatively small populations where statistical fluctuations
not captured by conventional deterministic SIR models play a crucial role.
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I. INTRODUCTION

The dynamics of infectious diseases in a population
has been long addressed successfully through susceptible-
infected-recovered (SIR) and related models [1–10], since the
seminal work by Kermack and McKendrick in 1927 [1]. SIR
models belong to a class of compartmental models in which
the population is generally subdivided into three categories
of individuals: those who are susceptible to catch the disease
(S), those who are infected and can spread the disease to sus-
ceptible individuals (I), and those who have become immune
(recovered) or died (removed) and can no longer spread or
catch the disease (R).

From a historical perspective, Kermack and McKendrick
[1] introduced the first version of a SIR model based on a
set of coupled ordinary differential equations that drive the
dynamics of the subpopulations of susceptible, infected, and
recovered or dead individuals in an epidemic. In this early
model it was assumed at the individual level that at any given
time each individual is in one of the three possible states (S,
I, or R). In a deterministic mean-field-type formulation at the
population level, a system of coupled differential equations on
the average subpopulations sizes arises. In addition, the pop-
ulation size is fixed (no births or deaths by causes other than
the disease itself), the infectious agent has no incubation time,
the duration of infectiousness matches the duration of being

infected, and the population is homogeneous, with no age,
spatial, or social structure. The authors then compared [1] with
relative success the model solution with data on the number of
deaths with time during the Bombay plague of 1905–1906.

Over essentially the past 100 years the original SIR model
has been substantially improved to address the time evolution
of a significant variety of epidemic processes [2–45]. For
example, rather than being governed by a set of ordinary
differential equations with each individual in a given state at
any time as in Ref. [1], the underlying dynamics of stochastic
SIR models is driven by a master equation for the probabil-
ity distribution of the system’s states, which evolve in time
according to a set of transition rates among them. In this
context, stochastic SIR models are necessary to describe the
nondeterministic variability of the epidemic size and duration,
together with the probability of disease spread, particularly
in smaller communities. Such features have become highly
relevant in current times, especially concerning the epidemic
control and role of vaccination and prophylaxis campaigns
[42–45].

The relevant capabilities of resolving epidemic fluctua-
tion dynamics for smaller populations through stochastic SIR
models, however, requires extensive technical and compu-
tational effort compared to the model dynamics driven by
ordinary differential equations of deterministic SIR models.
In particular, while Schutz et al.’s solution [46] for SIR
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interactions on a chain with homogeneous initial conditions
is a notable exception, typically analytical solutions for any
fluctuation-based phenomena associated with SIR systems are
absent and more complex numerical approaches are required.
For the coarser-grained stochastic differential equation frame-
work, computations typically use Euler-Maruyama [35,47],
implicit Euler [38,42], or Milstein [47,48] methods, while
for models capable of resolving at the level of the individual
one finds numerical techniques based on Gillespie’s algorithm
[49,50] or direct Monte Carlo simulation [18,22] (see also
Ref. [51]). However, these computational frameworks neces-
sitated by the modeling at the resolution of the individual
are not generally amenable to likelihood maximization or
Bayesian inference. We notice that this is particularly prob-
lematic on confronting such models with data as parameter
inference, hypothesis testing and model selection then require
computationally very demanding, likelihood-free methods,
such as approximate Bayesian computation [52].

Hence, our objective is to apply the so-called Fock-space
approach [53,54] to the study of individual-based stochas-
tic SIR models without the need of stochastic simulation
or Monte Carlo algorithms that prevent the general use of
likelihood methods when comparing modeling with data. In
particular, this entails that we do not seek to simulate or
solve the associated stochastic differential or master equa-
tions but instead to utilize the Fock-space method of quantum
physics, which relies on tools inherited from the second quan-
tization formalism combined with symbolic algebra. Within
this framework, the Fock-space solution for a population of
size N in time t is obtained in terms of the eigenvalues and
eigenvectors of a Hamiltonian-like operator that drives the
stochastic SIR model dynamics. Here we find exact analytical
expressions for the eigenvalues for any N . The Hamiltonian
eigenvectors are obtained for values of N that are not ex-
cessively large using a symbolic computing software. From
the sets of eigenvalues and eigenvectors the dynamics of all
important quantities of interest is determined, such as time-
dependent probabilities and average values of the number of
susceptible, infected, and recovered individuals, mean size
and duration of the epidemic, and basic reproduction number.
In particular, for small N closed-form analytical expressions
for these quantities are feasible.

The Fock-space formalism was first proposed [55,56] by
Schönberg in 1952 (see also Ref. [57]) and later rediscovered
[53,54] by Doi in the context of diffusion-controlled processes
in liquid media and chemical reactions. In this approach the
master equation of a set of general random particles is writ-
ten in the form of a real-valued Schrödinger-type equation,
with the probability to find the system in a given state at a
certain time playing a role similar to that of the wave func-
tion in quantum mechanics. The Hamiltonian-like operator
in the Fock-space approach is written in a basis of dis-
crete Fock states associated with the occupation numbers of
the system’s constituents (for example, the numbers of each
type of molecule in a chemical reaction or particles at each
site of a discrete lattice). The Fock-space formalism was later
successfully extended to treat a variety of other stochastic
systems, for instance, gene expression [58], absorbing states
in nonequilibrium lattice dynamics [59], general reaction-
diffusion dynamics [60], and spins chains [61]. More recently,
our group has applied the Fock-space approach to study chem-

ical enzymes interactions [62], fermionic diffusion [63], and
the random search problem [64,65].

A general limitation of the Fock-space method con-
cerns the diagonalization via symbolic computation of large
Hamiltonian-like matrices for high numbers of constituents.
Nevertheless, even in this case a number of results can still be
obtained without the need of diagonalization of the Hamilto-
nian, as shown in this work. Further, as discussed above, we
also remark that the gain in addressing the epidemic dynamics
problem through stochastic SIR models is more significant
precisely with small populations, in which statistical fluctua-
tions of central quantities—not captured by deterministic SIR
models—play a crucial role.

We notice that recent studies [36,37] have applied second
quantization ideas to address disease dynamics in a popu-
lation. However, while in Ref. [36] a simpler model (SI,
without recovered individuals) is investigated, with focus on
the average sizes of the susceptible and infected subpopu-
lations through diagrammatic expansion in small networks,
in Ref. [37] the second quantization approach is specifically
applied with the aim to find the set of ordinary differential
equations for the average subpopulations in a SIR dynam-
ics. In contrast, in our work these average values can be
also obtained from the eigenvalues and eigenvectors of the
Hamiltonian-like operator combined with the time evolution
of the system’s state vector. Indeed, here we calculate, for
example, the distributions of subpopulations sizes, epidemic
sizes, and durations for populations that are not excessively
large, noting these cannot be found by simply solving the
ordinary differential equations as in Ref. [37].

This article is organized as follows. In Sec. II we review the
general formalism of the Fock-space approach. The method is
applied to the stochastic SIR model in Sec. III. General ex-
pressions for some relevant quantities are provided, including
the exact Hamiltonian eigenvalues as functions of the model
parameters (infection and recovery rates) and population size
N . Fock-space results for N = 20, N = 35, and N = 104 are
discussed in Sec. IV. Last, final remarks and conclusions are
left to Sec. V. We also include Appendices A and B with
details on a novel derivation of the basic reproduction number
for this model and an illustrative example of the calculation of
some closed-form analytical results for N = 3, respectively.

II. THE FOCK-SPACE APPROACH

We begin by briefly reviewing the general formalism of
the Fock-space approach [53,54]. Consider a system with N
constituents (e.g., molecules undergoing a chemical reaction
or individuals in a population) that can be grouped into k
subsets of distinct species. We denote by Nj (t ) the number of
constituents of species j at time t , with j = 1, 2, . . . , k, and∑k

j=1 Nj (t ) = N .
The species are allowed to interact through one or more

processes labeled i that occur at given rates ri. For determinis-
tic continuum models, one has fractions mi j of the constituents
of each species j that generate, via a law of mass action
for every process i, a new set of fractions ni j , as generally
described by

k∑
j=1

mi jNj (t )
ri−−→

k∑
j=1

ni jNj (t ). (1)
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In turn, these interactions give rise to dynamical systems of
ordinary differential equations, yielding the continuum model.

In a stochastic dynamic evolution, one typically consid-
ers the probability P (N, t ) to find the system at the state
N(t ) = (N1(t ), . . . , Nk (t )) in time t . The associated master
equation reads

∂P (N, t )

∂t
=

∑
N′

[τN′→NP (N′, t ) − τN→N′P (N, t )], (2)

where in the case of a Markovian process, as assumed in this
work, the transition rates τN′→N from state N′ to N are time
independent.

To start exploring the Fock-space tools, we consider that
a state of the system can be represented in a Fock space
F obtained by the direct product of the Hilbert spaces S j

of all species j. That is, F = S1
⊗

. . .
⊗

Sk , with S j =
{1, . . . , N}. In Dirac notation, |n〉 = |s1 . . . sk〉 represents a
pure Fock state, i.e., a Fock state with well-defined occupation
numbers s1 ∈ S1 of constituents of species j = 1, s2 ∈ S2 of
species j = 2, and so on. The label n indexes the states in
some given order and the set {|n〉} of all pure Fock states
provides a basis for the Fock space F .

By following Refs. [53,54] and rewriting P (N, t ) in the
new notation P(n, t ), with n = {s1...sk}, the statistical descrip-
tion of the stochastic system in time t can be characterized by
the state vector

|�(t )〉 =
∑

n

P(n, t ) |n〉 , (3)

which comprises a linear superposition with each pure Fock
state weighted by the respective time-dependent probability,
so that

∑
n P(n, t ) = 1 for any t .

The creation (α†
j ) and annihilation (α j ) operators for each

species j act on the pure Fock states respectively according to
[53,54]

α
†
j |n〉 = |s1 . . . (s j + 1) . . . sk〉 ,

α j |n〉 = s j |s1 . . . (s j − 1) . . . sk〉 ,
(4)

with α
†
j α j identifying the number operator of the constituents

of species j. If we denote the vacuum state (absence of con-
stituents of any species) by |0〉, then α j |0〉 = 0 and 〈0| α†

j =
0. It is thus straightforward to verify the commutation rules
[αi, α

†
j ] = δi j , [αi, α j] = 0, and [α†

i , α
†
j ] = 0, where δ stands

for the Kronecker delta. The combination of these results
leads to the orthogonality property of the pure Fock states.

By considering Eq. (3), the master equation (2) can be
recast in the form of a real-valued (ih̄ ≡ 1) Schrödinger-type
equation,

∂ |�(t )〉
∂t

= −H (α†
1, α1, . . . , α

†
k , αk ) |�(t )〉 , (5)

with the Hamiltonian-like operator H written as a function
of the set {α†

j , α j} and dependent on the transition rates to be
consistent with Eq. (2). From Eq. (5) the state vector dynamics
is given by

|�(t )〉 = U (t ) |�(0)〉 , (6)

where the time evolution operator is

U (t ) = exp(−H (α†
1, α1, . . . , α

†
k , αk ) t ), (7)

and |�(0)〉 is the system’s initial state vector, see Eq. (3).
In the stochastic SIR model (see below), we remark that
H in Eq. (5) is an infinitesimal stochastic operator of non-
Hermitian type with null column sum on the Fock-space basis,
whereas U in Eq. (7) is a nonunitary stochastic operator with
unit column sum. For further details concerning the use of
operators in stochastic dynamics, see Refs. [66–70] and refer-
ences therein.

After writing H explicitly in terms of the creation and an-
nihilation operators, and expressing it in a matrix form on the
basis {|n〉} of pure Fock states, the set of tools from quantum
mechanics can be employed in the Fock-space representation
to provide the time evolution and average values of all rele-
vant observables of the stochastic system, as described in the
following.

III. FOCK-SPACE APPROACH APPLIED TO
THE STOCHASTIC SIR MODEL

We now apply the Fock-space formalism to the stochas-
tic SIR model. As mentioned, the SIR model concerns an
epidemic taking place in a population of N individuals that
can be subdivided into k = 3 distinct groups: susceptible (S),
infected (I), and recovered (R). In analogy to Eq. (1), the
subpopulations interact through the processes

S + I
α−−→ 2I,

I
β−−→ R,

(8)

where the two model parameters α > 0 and β > 0 (in units
of t−1) represent, respectively, the infection rate at which
susceptible individuals become infected by the contact with
a previously infected one, and the recovery rate at which
infected individuals become recovered (immune or deceased).
In general, the larger β is in comparison to α, the shorter the
epidemic lasts on average.

In the stochastic SIR model the sizes of the three sub-
populations are determined statistically from a t-dependent
probability distribution driven by a master equation in the
form of Eq. (2). Therefore, the stochastic SIR model with
infection and recovery processes as in (8) can be properly
addressed in a Fock-space approach.

We depict the pure Fock states of the stochastic SIR model
in Dirac notation by |n〉 = |s i r〉, with

s, i, r ∈ {0, 1, . . . , N} (9)

as the respective numbers of susceptible, infected, and recov-
ered individuals. A basis of the Fock space,

F = S
⊗

I
⊗

R, (10)

can be thus built by taking into account the set {|s i r〉} of all
kets constrained to the total population size, s + i + r = N ,
generating Nh = (N + 1)(N + 2)/2 distinct possibilities.

Following Eq. (3), a general state vector of the system is
written as

|�(t )〉 =
∑
s,i,r

P(s, i, r, t ) |s i r〉 , (11)
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with the constraint s + i + r = N implied in the summations
above, and

P(s, i, r, t ) = 〈s i r|�(t )〉 (12)

denoting the probability of the system occupying the state
with s susceptible, i infected, and r recovered individuals
in time t , so that

∑
s,i,r P(s, i, r, t ) = 1 for any t . Further,

from Eq. (4) the creation (s†) and annihilation (s) operators
associated with the number of susceptible individuals act on
the pure Fock states respectively via

s† |n〉 = |(s + 1) i r〉 ,

s |n〉 = s |(s − 1) i r〉 ,
(13)

with similar expressions for the operators related to the in-
fected (i†, i) and recovered (r†, r) subpopulations.

The consistency between the master and Schrödinger-type
equations of the stochastic SIR model driven by processes (8)
yields the Hamiltonian-like operator

H = −α[(i†)2 − s†i†]si − β(r† − i†)i, (14)

with matrix elements on the basis {|n〉 = |s i r〉} of pure Fock
states, hmn = 〈m| H |n〉, given by

hmn = in
[
α sn

(
δim,inδrm,rnδsm,sn − δrm,rnδim,in+1δsm,sn−1

)
+β δsm,sn

(
δim,inδrm,rn − δim,in−1δrm,rn+1

)]
. (15)

Above the notation sn means that the state |n〉 comprises sn

susceptible individuals and so forth. Since Nh is the number
of pure Fock states, we note that the matrix h has dimension
Nh × Nh.

We next diagonalize the Hamiltonian-like matrix h to
obtain the sets of eigenvalues {λν} and right eigenvectors
{|λν〉} of the stochastic SIR model, with ν = 1, 2, . . . , Nh.
The eigenvalues are given by the roots of the characteristic
polynomial p(λ) of matrix h, which can be written as

p(λ) = λN+1
N∏

r=1

pr (λ), (16)

with N auxiliary polynomials pr (λ) of degree r, thus implying
that p(λ) is actually degree Nh, as expected.

Some of the main results of this work regard the exact
analytical expressions for the polynomials and eigenvalues.
Indeed, the structure of the matrix elements (15) of the
stochastic SIR model allows us to explicitly write the auxiliary
polynomials as

pr=1(λ) = λ − β,

pr=2(λ) = [λ − (α + β )](λ − 2β ), (17)

pr (λ) =
r−1∏
k=0

(λ − λrk ), r = 3, . . . , N, k = 0, . . . , r − 1,

with the eigenvalues expressed in exact form by

λr=1 = β,

λr=2,k=0 = α + β, λr=2,k=1 = 2β, (18)

λrk = arkα + brkβ, r = 3, . . . , N, k = 0, . . . , r − 1,

and the factors

ark = −k2 + (r − 2)k + r − 1,

brk = k + 1.
(19)

We therefore remark that the set of eigenvalues {λν} of the
stochastic SIR model in the Fock-space approach can be read-
ily expressed exactly as functions of the parameters α and β

by Eqs. (18) and (19), for any population size N .
For practical purposes here we choose the ordering ν =

1, 2, . . . , Nh of the eigenvalues {λν} from the smallest to the
largest one (see Appendix B for an illustrative example with
N = 3 and Nh = 10). One important feature from Eqs. (18)
and (19) is that all eigenvalues are either null or positive. In
fact, the pure Fock states |N − j, 0, j〉, with i = 0 infected
individuals and j = 0, 1, . . . , N , are eigenvectors of h with
null eigenvalue, since the dynamics (8) ceases when the dis-
ease transmission is no longer possible due to the absence
of infectious cases. We thus write λν = 0 for ν = j + 1 =
1, 2, . . . , N + 1, and λν > 0 for ν = N + 2, . . . , Nh. The re-
maining eigenvectors {|λν〉}, ν = N + 2, . . . , Nh, can be in
principle determined on the basis {|s i r〉} as functions of α

and β by using a symbolic computing software (in this work
we have used Mathematica).

The epidemic is generally considered to start with i = i0
infected, r = r0 = 0 recovered, and s = s0 = N − i0 suscep-
tible individuals in t = 0, i.e., the initial state vector is usually
|�(0)〉 = |s0 i0 r0〉 = |N − i0, i0, 0〉. We can write the initial
state vector as well in the form of a linear superposition of
right eigenvectors,

|�(0)〉 =
∑

ν

aν |λν〉 , (20)

with coefficients aν , and by combining Eqs. (6), (7), and (20)
the system’s state vector in time t is expressed as

|�(t )〉 =
∑

ν

aνe−λν t |λν〉 , (21)

from which all significant quantities associated with the
stochastic SIR model can be determined.

Indeed, by considering Eqs. (12) and (21) all statistical mo-
ments of the distributions of numbers of susceptible, infected,
and recovered individuals can be obtained. For example, by
denoting as 〈S〉 the average number of susceptible individuals
we find

〈S〉(t ) =
∑
s,i,r

s P(s, i, r, t ), (22)

with the constrained sums above and analogous expressions
for the average numbers of infected [〈I〉(t )] and recovered
[〈R〉(t )] individuals, implying 〈S〉(t ) + 〈I〉(t ) + 〈R〉(t ) = N at
any time t .

Three other relevant quantities are the total size and dura-
tion of an epidemic, and the basic reproduction number.

Let us denote by p(η) the probability that an epidemic has
total size η. One possible way to calculate p(η) is [2] to con-
sider the number r of recovered individuals in the steady-state
regime, so that all infected cases that emerged throughout the
epidemic have had enough time to recover, that is, η = r and
i = 0 as t → ∞. If we opt not to count in η the i0 individuals
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already infected in t = 0, then

p(η) = lim
t→∞ P(N − i0 − η, 0, i0 + η, t ). (23)

By projecting the state vector |�(t )〉, Eq. (21), in the steady-
state regime onto the pure Fock state with s = N − i0 − η,
i = 0, and r = i0 + η, we find from Eq. (12) the probability
distribution of an epidemic of total size η,

p(η) =
∑

ν

aν 〈N − i0 − η, 0, i0 + η|λν〉 , (24)

with the sum only over null eigenvalues. Since in our ordering
the null eigenvalues λν = 0 are associated with the eigen-
vectors |N − ν + 1, 0, ν − 1〉, for ν = 1, 2, . . . , N + 1, then
p(η) = aν=η+i0+1. From this result the epidemic’s average size
〈η〉 is readily obtained as a function of the parameters α and
β of the stochastic SIR model.

The Fock-space approach also provides a way to esti-
mate the mean duration of an epidemic. Consider the subset
{|N − j, 0, j〉} of pure Fock states (also eigenvectors) with
i = 0 infected individuals, where j = 0, 1, . . . , N . The prob-
ability that none of these states has been reached in time t = τ ,
so that the epidemic have persisted up to this time, is given by

pnot(τ ) = 1 −
∑

j

〈N − j, 0, j|�(τ )〉 . (25)

Therefore, the probability that the epidemic ceases at some
subsequent time is 1 − pnot(τ ), and so the probability density
that the epidemic duration equals τ reads

ρ(τ ) = ∂

∂τ

∑
j

〈N − j, 0, j|�(τ )〉 . (26)

Again, all statistical moments of ρ(τ ) of the stochastic SIR
model can be determined from Eqs. (21) and (26). In partic-
ular, the average duration of the epidemic is calculated in the
Fock-space approach as

〈τ 〉 =
∫ ∞

0
τρ(τ )dτ = −

∑
j,ν

aν

λν

〈N − j, 0, j|λν〉 , (27)

with the sum in ν extending over non-null eigenvalues λν .
We end this section by considering the basic reproduction

number R0 of an epidemic process, generally defined [2] as
the expected number of infected cases caused by a single
infected individual in a completely susceptible population. So
R0 gives a measure of the potential for disease spread in a
population: the larger the value of R0, the easier the epidemic
spreads and the harder its control becomes.

Complying with usual notation [2], we denote b(a) to be
the average number of individuals that caught the disease from
a single individual (patient zero), who remained infectious
from t = 0 to t = a. In addition we further define F (a) to be
the probability that a newly infected individual has remained
infectious during this time interval. In the asymptotic steady-
state limit t → ∞ one thus has [2]

R0 =
∫ ∞

0
b(a)F (a)da. (28)

In the case of the stochastic SIR model with infection (α) and
recovery (β ) rates defined in processes (8), we note that [35]

0 2 4 6 8 10
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,i,
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|n> = |0,0,35>
|n> = |0,10,25>
|n> = |0,15,20>
|n> = |0,20,15>
|n> = |0,25,10>
|n> = |0,5,30>
|n> = |30,5,0>
|n> = |34,1,0> N = 35

β = 1.0
α  = 0.5

FIG. 1. Probability P(s, i, r, t ) of some selected Fock states |n〉 =
|s, i, r〉 with s susceptible, i infected, and r recovered individuals in
a population of size N = 35 as a function of time t , for infection
and recovery rates α = 0.5 and β = 1.0, respectively. One individ-
ual was initially infected, i0 = 1, as indicated by the maximum in
P(34, 1, 0, t ) in t = 0 (dashed line with black circles). P(0, 0, 35, t )
(solid line with black circles) approaches saturation with all previ-
ously infected individuals recovered in the t → ∞ steady-state limit.
The solid and dashed lines are to guide the eye in interpreting the
overall behavior.

b(a) = α 〈S〉(a) and F (a) = e−βa, implying

R0 = α

∫ ∞

0
e−βa 〈S〉(a) da, (29)

with 〈S〉(a) given in the Fock-space approach by Eq. (22). It is
also possible to convert the integral above into a Riemann sum
over discrete unit time intervals to speed up the calculations
with negligible difference in the steady-state limit.

In Appendix A we present a novel derivation of Eq. (29).
We stress that this is an original contribution for the calcula-
tion of the basic reproduction number R0 in the context of the
Fock-space approach to the stochastic SIR model.

IV. RESULTS AND DISCUSSION

We now present results of the quantities worked in the pre-
vious section for populations of small (N = 20 and N = 35)
and large (N = 104) sizes.

A. Cases N = 20 and N = 35

We start by considering the case of a population with N =
35 susceptible individuals and a single one infected at the be-
ginning of the epidemic, i0 = 1 in t = 0. This means that the
initial state of the system is |�(0)〉 = |s0 i0 r0〉 = |34, 1, 0〉.

In Fig. 1 and Fig. 2 we have chosen the infection and recov-
ery rates as α = 0.5 and β = 1.0, respectively. From Eq. (8)
this corresponds to the situation in which the epidemic should
evolve toward a regime with most individuals recovered on
average at sufficiently long times.

By calculating the eigenvalues {λν} and right eigenvectors
{|λν〉} following the prescription of last section, the system
dynamics is driven by Eqs. (20) and (21). Figure 1 presents in
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FIG. 2. Average numbers of susceptible (〈S〉), infected (〈I〉), and
recovered (〈R〉) individuals in a population of size N = 35 as a func-
tion of time t , for infection and recovery rates α = 0.5 and β = 1.0,
respectively. The mean number of infected cases (red) peaks at an
intermediate time and then decreases to zero as the t → ∞ saturation
limit approaches with all previously infected individuals recovered.
The solid lines are to guide the eye in interpreting the overall
behavior.

circles some probability distributions P(s, i, r, t ), Eq. (12), as
a function of time t (with the solid and dashed lines to guide
the eye in interpreting the overall behavior). While the prob-
ability P(34, 1, 0, t ) of the initial state with i0 = 1 infected
individual rapidly decreases from one to zero (dashed line
with black circles), we note that the probability P(0, 0, 35, t )
to have the full population recovered (r = N = 35) grows
progressively with time (solid line with black circles). We
also observe in Fig. 1 that the probability of pure Fock states
with intermediate numbers of recovered individuals (colored
symbols) displays a maximum at values of t that increase
with r.

The average numbers of susceptible (〈S〉), infected (〈I〉),
and recovered (〈R〉) individuals are calculated from Eq. (22)
and analogous equations, and plotted in circles as a function
of t in Fig. 2. We notice at any time that 〈S〉(t ) + 〈I〉(t ) +
〈R〉(t ) = N , as expected. We also observe that the initial
growth of 〈I〉 eventually recedes, giving way to an increase
in 〈R〉 toward the limit of full recovery of previously infected
cases, consistent with Fig. 1.

In Fig. 3 we investigate the variability of the total size η

of the epidemic (not counting the initially infected individual,
i0 = 1) by plotting the corresponding probability distribution
p(η), Eq. (24). We now keep α = 1 fixed and show curves
of p(η) versus η for various β. Interestingly, we observe a
dominant maximum at η = 0 for high recovery rates β � 25,
indicating that in this regime very few individuals are infected,
yielding p(η) ≈ 0 for η � 1. On the other hand, for β 
 10
the entire population tends to be infected by the disease and
recovered at some point of the epidemic dynamics (up to the
steady-state limit), as shown by the increase of the height
of the second maximum at η = N − i0 = 34 for lower β in
this regime. For intermediate β this second maximum takes
place at 0 < η < N − i0, showing that in this case it is more

0 5 10 15 20 25 30 35
η

0

0.1

0.2

0.3

0.4

0.5

p(
η) β = 8

β = 10
β = 15
β = 25
β = 30

N = 35
α = 1

FIG. 3. Probability p(η) of total epidemic size η in a population
with N = 35 individuals and i0 = 1 initially infected case, for vari-
ous recovery rates β and fixed infection rate α = 1. For β � 25 very
few individuals become infected as p(η) ≈ 0 for η � 1. In contrast,
for β 
 10 the entire population tends to be infected at some point of
the epidemic, since the height of the maximum at η = N − i0 = 34
increases for lower β in this regime. For intermediate β this max-
imum occurs at 0 < η < N − i0, indicating that the epidemic does
not reach all individuals but a fraction of the population. The solid
lines are to guide the eye in interpreting the overall behavior.

likely that the epidemic does not reach all individuals, but a
somewhat considerable fraction of the population.

The average duration of the epidemic 〈τ 〉 and basic repro-
duction number R0 as a function of α are shown, respectively,
in Fig. 4 and Fig. 5 for β = 0.5, 1.0, 2.0. To proceed with
less time consuming computation we considered the Riemann

0 0.2 0.4 0.6 0.8 1
α

0

2

4

6

8

<
τ>

β = 0.5
β = 1.0
β = 2.0

N = 20

FIG. 4. Mean epidemic duration 〈τ 〉 as a function of the infection
rate α for some fixed recovery rates β, in a population of size
N = 20 with i0 = 1 individual initially infected. 〈τ 〉 grows with α

but rapidly saturates, indicating that a further increase of α in the
strongly infectious regime does not impact significantly the epidemic
dynamics of a small population. The solid lines are to guide the eye
in interpreting the overall behavior.
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FIG. 5. Basic reproduction number R0 as a function of the in-
fection rate α for some fixed recovery rates β, in a population of size
N = 20 with i0 = 1 individual initially infected. Likewise Fig. 4, R0

also increases with α, though with a somewhat lower growth rate, as
epidemics are harder to control in stronger infectious regimes. The
solid lines are to guide the eye in interpreting the overall behavior.

sum form of the integrals in Eqs. (27) and (29) with N = 20
individuals.

We observe in Fig. 4 that the mean epidemic duration
increases with α for fixed β, but nearly saturates for α � β.
Likewise, the basic reproduction number also grows with α,
see Fig. 5, indicating that the trend for disease spread is
higher for larger α, as expected. In both cases we note that
increasing α for fixed β in the strongly infectious regime does
not make a significant impact on the mean duration and basic
reproduction number of the epidemic process.

B. Case N = 104

Finally, we turn to the study of the epidemic evolution in
a large population with N = 104 individuals. We aim here at
building the large-N correspondence between the stochastic
SIR model in the Fock-space approach and the determinis-
tic SIR model. We also make explicit below the influence
of fluctuations by comparing analytical expressions for the
basic reproduction number of these models for not so large
populations.

As discussed, for large N relative fluctuations of order
O(1/

√
N ) around the mean value of key quantities are not

as relevant when compared to the previous cases of small
populations. So the gain in addressing the epidemic dynam-
ics problem in the large-N regime through stochastic SIR
models is not so significant if contrasted with the approach
from deterministic SIR models. Furthermore, when applying
the Fock-space method with large populations, the dimension
Nh × Nh of the Hamiltonian-like matrix h grows as Nh ≈
N2, hampering considerably the symbolic computation of the
eigenvectors. Nevertheless, by combining [37] the second
quantization formalism with the statistical properties [2] of
the moment generating function associated with P(s, i, r, t ), a
number of results in the large-N regime can still be obtained

in the Fock-space approach as follows, without the need to
diagonalize h.

The generating function of the moments of the distribution
P(s, i, r, t ) is defined [2] as

M(θs, θi, θr, t ) =
∑
s,i,r

P(s, i, r, t )eθss+θi i+θr r, (30)

with the constrained sums as before. From Eqs. (22) and (30)
it can be seen that

∂2M

∂θs∂t

∣∣∣∣
θs=θi=θr=0

= d〈S〉
dt

, (31)

with analogous expressions for d〈I〉/dt and d〈R〉/dt .
Another way to obtain the above second derivative of M is

by combining Eqs. (5), (11), and (14) to find dP(s, i, r, t )/dt .
Then, multiplying dP/dt by eθss+θi i+θr r , summing over s, r, i,
and comparing with Eq. (31) yields

d〈S〉
dt

= −α〈SI〉,
d〈I〉
dt

= −β〈I〉 + α〈SI〉,
d〈R〉

dt
= β〈I〉. (32)

We note that the constraint 〈S〉(t ) + 〈I〉(t ) + 〈R〉(t ) = N at
any t is compatible with Eq. (32). Further, in the large-N
regime it is also interesting to observe that the mean-field-
type approximation 〈SI〉 ≈ 〈S〉〈I〉 turns [39] the system (32)
identical to that of the conventional SIR model [1], consistent
with the above discussion.

By solving Eq. (32) with the initial condition 〈S〉(0) =
N − 1, 〈I〉(0) = 1, 〈R〉(0) = 0 in mean-field approximation
through symbolic computation, we find the average subpop-
ulations sizes and the basic reproduction number, respectively
shown in circles in Figs. 6(a) and 6(b) for N = 104 (solid lines
are to guide the eye in interpreting the overall behavior). No-
ticeably, these plots for large N show behaviors qualitatively
similar to those for much smaller N , Fig. 2 and Fig. 5.

On the other hand, as discussed, the effect of fluctuations
is central in smaller populations, implying significant differ-
ences between the results of the stochastic and deterministic
SIR models in this regime. Clearly, however, this effect be-
comes gradually less important as N grows. For instance, in
Appendix B we present the analytical expressions for R0 with
N = 3, 4, 5. If we write, e.g., the result for N = 4, Eq. (B4), as
a function of the (not normalized) basic reproduction number
of the deterministic SIR model [2], Rdet

0 = Nα/β, then the
difference between R0 and Rdet

0 can be readily inferred from
the expression

R0 = Rdet
0

[
226

5
(
3Rdet

0 + 8
) + 2048

7
(
3Rdet

0 + 16
) − 2349

70
(
Rdet

0 + 3
)

+ 18

Rdet
0 + 4

− 567

5
(
Rdet

0 + 6
) + 96

5
(
Rdet

0 + 8
)
]
. (33)

Moreover, if we consider R0 for a larger N = 20 (whose
expression is too cumbersome to be displayed), then it is also
possible to determine the relative difference (Rdet

0 − R0)/Rdet
0 ,

as presented in the heatmap plot of Fig. 7. Indeed, we note
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FIG. 6. (a) Average numbers of susceptible (〈S〉), infected (〈I〉),
and recovered (〈R〉) individuals in a population of size N = 104 with
i0 = 1 initially infected case as a function of time t , for several infec-
tion rates α and fixed recovery rate β = 1. (b) Basic reproduction
number R0 as a function of α, for fixed β values and N = 104.
Despite the much larger population size, qualitative behaviors similar
to those of Fig. 2 and Fig. 5 are noticed. In particular, when lower
α values are considered the number of infectious cases decreases
and reaches a maximum later in time (compare in (a) the solid and
dashed red lines for α = 10 and α = 2, respectively). The solid lines
in (b) are to guide the eye in interpreting the overall behavior.

that this difference becomes increasingly significant as the
infection rate surpasses the recovery rate, α � β. Finally, by
calculating R0 via the Fock-space approach for progressively
larger N , we find

R0 =
(

N − 1

N

)
fN

(
Rdet

0

N

)
Rdet

0 , (34)

where the function fN is such that fN → 1 as N → ∞,
explicitly confirming the expected result that R0 → Rdet

0
as N → ∞.

V. CONCLUSIONS

The importance of improving the knowledge about the gen-
eral dynamics of epidemic processes can be hardly overstate
in current days. Over nearly a century SIR and related models

FIG. 7. Heatmap plot displaying the relative difference (Rdet
0 −

R0)/Rdet
0 between the basic reproduction number of the stochastic

and deterministic SIR models for N = 20. Larger differences are
noted in the important regime in which the infection rate surpasses
the recovery rate, α � β.

have been applied with this aim, since the seminal article by
Kermack and McKendrick [1].

In this work we have addressed the stochastic SIR model in
the Fock-space formalism, in which a master equation governs
the transition probabilities among the system’s states defined
by SIR occupation numbers. This approach is particularly in-
teresting for relatively small populations in which fluctuations
not accounted for by conventional SIR models play a relevant
role.

We have found for any population size N exact analytic
expressions for the eigenvalues of the second-quantization
Hamiltonian-like operator in Fock space that drives the
epidemic infection and recovery processes. We have also
presented small- and large-N results for the average subpopu-
lations sizes and basic reproduction number as functions of
the SIR model parameters α and β. For small N we have
obtained the probability distributions of SIR states, epidemic
sizes, and durations, which cannot be found from conventional
SIR models based on ordinary differential equations for the
populations sizes.

More generally, the Fock-space approach enables the
derivation of higher moments and other measures of vari-
ation for stochastic systems, such as the individual-based
SIR epidemiological model explored in this work, without
the need for the stochastic simulation method or Monte
Carlo approaches (for example, Refs. [7,49,50]). In partic-
ular, with such approaches the calculation of a likelihood,
that is the probability of observed data conditioned on pa-
rameter values, requires extensive computation. In turn, this
renders well-established techniques based on maximising the
likelihood or Bayesian inference impractical, instead neces-
sitating the extensive simulations required of likelihood free
methods, such as approximate Bayesian computation [52]. In
contrast, Fock-space methods render the calculation of the
likelihood directly tractable, enabling immediate access to
well-established and relatively efficient techniques for param-
eter inference, hypothesis testing and model selection, based
on likelihood maximization or Bayesian inference. Thus the
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current study in particular provides a framework for efficiently
relating individual-based stochastic SIR models to observed
data. Such features are of particular relevance to fitting, or
selecting on, modeling predictions for variability arising from
small number fluctuations, which cannot be captured by de-
terministic models, but are nonetheless particularly relevant in
driving an initial epidemiological outbreak and the prospect of
disease-variant emergence.

In addition, the derivation of analytical expressions such
as the mean duration of an epidemic and the especially
pertinent measure of whether disease will spread, the repro-
duction number, are presented for stochastic SIR systems for
the first time to the best of our knowledge. Such expres-
sions offer not only benchmarking for numerical algorithms
of larger systems [40] but also fundamental insight into the
how important features of disease dynamics may alter with
stochasticity. Furthermore, a complete analytical characteri-
sation of small stochastic epidemiological systems developed
here offers the ability to efficiently incorporate large num-
bers of small stochastic subsystems, such as households and
offices, within much larger city and national-scale epidemio-
logical simulations.

We also remark that generalizations of the Fock-space ap-
proach to treat other epidemic models (e.g., SEIR, SITR, and
SEQIJR) are readily feasible by changing the Hamiltonian and
compartments in each case. Moreover, by including proper
spatial constraints the study of the SIR stochastic lattice gas
model could also be considered. Given the remarkable differ-
ences between the deterministic and stochastic SIR models in
the small population regime, as well as the relevance of this
regime at the beginning of an epidemic, these possibilities will
be considered in forthcoming works.

We finally hope that the Fock-space approach discussed
here can help to improve the understanding and characteri-
zation of the dynamics of epidemic processes, an issue that
has become increasingly relevant in present days.
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APPENDIX A: DERIVATION OF THE BASIC
REPRODUCTION NUMBER R0 IN THE

FOCK-SPACE APPROACH

Here we present a novel derivation of Eq. (29) for the basic
reproduction number R0 in the context of the Fock-space
approach to the stochastic SIR model.

We start by defining z(t ) as the average number of infected
cases in time t due to a single infected individual that re-
mained infectious since t = 0 (patient zero). Consider, also,
the three following statistical events: Patient zero does not in-
fect any susceptible individual in the time interval [t, t + t )
(E0), patient zero infects only one individual in this interval
(E1), and more than one susceptible individual is infected by
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FIG. 8. (a) Mean epidemic duration 〈τ 〉 and (b) basic reproduc-
tion number R0 as a function of the infection rate α, for some fixed
recovery rates β, and population size N = 3. Plots are taken from
Eqs. (B2) and (B3), respectively. Behaviors similar to those of Fig. 4
and Fig. 5 are observed.

patient zero in this time interval (En>1). Here we take the
infections of any two individuals as statistically independent
events, so that the respective event probabilities must obey
P(E0) + P(E1) + P(En>1) = 1 at any time t .

For sufficiently short time intervals (i.e., for t → dt) the
probability P(En>1) is negligible. So, from the definitions of
the events above we write up to order O(t ),

z(t + t ) = z(t )P(E0) + [z(t ) + 1]P(E1). (A1)

Recall from Eq. (8) that α and β are, respectively, the in-
fection and recovery rates of the stochastic SIR model. So, in
order to obtain P(E1) we have to multiply the average number
〈S〉(t ) of susceptible individuals in time t by the probability
αt that one new infection occurs during this short time
interval, and by the probability Pnr (t ) that patient zero has not
been removed up to time t ,

P(E1) = αPnr (t ) 〈S〉(t ) t . (A2)

We also note from Eq. (8) that 1 − βt gives the proba-
bility that an infected individual is not removed during this
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sufficiently short time interval. We therefore write

Pnr (t + t ) = Pnr (t )(1 − βt ), (A3)

which in the limit t → 0 becomes
dPnr

dt
= −βPnr, (A4)

with solution for the initial condition Pnr (0) = 1 given by

Pnr (t ) = e−βt . (A5)

Now, by substituting Eq. (A5) into Eq. (A2) we find

P(E1) = α〈S〉(t ) te−βt . (A6)

Next, by using that P(E0) + P(E1) = 1 [up to order O(t )],
we substitute P(E0) and P(E1) into Eq. (A1) and take the limit
t → 0, so that

dz

dt
= αe−βt 〈S(t )〉 . (A7)

Considering that patient zero is the only infected individual at
t = 0 then z(0) = 0, and by integration

z(t ) = α

∫ t

0
e−βτ 〈S(τ )〉 dτ. (A8)

The basic reproduction number then reads

R0 = α

∫ ∞

0
e−βτ 〈S(τ )〉 dτ, (A9)

which corresponds to Eq. (29) of the main text. We remark
that this result has been previously derived [35] but in a
distinct context using a different technique.

We can also use the eigenvectors expansion of the state
vector, Eq. (21), along with Eq. (22) and |s i r〉 = ∑

μ bμ |λμ〉,
to obtain from Eq. (A9),

R0 = α
∑
s,i,r

s
∑
ν,μ

aνbμ

〈λμ|λν〉
β + λν

, (A10)

where 〈λμ| denotes the complex conjugate of the right eigen-
vector |λμ〉 and the first sums are restricted to s + i + r = N ,
as usual.

APPENDIX B: CASE N = 3

We illustrate in this Appendix the calculation of explicit ex-
act closed-form expressions for some important quantities of
the stochastic SIR model in the Fock-space approach. Our aim
is to show that this is actually feasible for small population
sizes N . However, as larger N are considered the expressions
become increasingly cumbersome.

In the case N = 3 the basis {|n〉 = |s i r〉} of the Fock space
has dimension Nh = (N + 1)(N + 2)/2 = 10, comprising the
following ordered set of pure Fock states:

{|0, 0, 3〉 , |0, 1, 2〉 , |0, 2, 1〉 , |0, 3, 0〉 , |1, 0, 2〉 ,

|1, 1, 1〉 , |1, 2, 0〉 , |2, 0, 1〉 , |2, 1, 0〉 , |3, 0, 0〉}.

From Eq. (15) we express the Hamiltonian-like matrix h on
this basis as a function of the infection (α) and recovery (β )
rates,

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −β 0 0 0 0 0 0 0 0
0 β −2β 0 0 0 0 0 0 0
0 0 2β −3β 0 −α 0 0 0 0
0 0 0 3β 0 0 −2α 0 0 0
0 0 0 0 0 −β 0 0 0 0
0 0 0 0 0 α + β −2β 0 0 0
0 0 0 0 0 0 2(α + β ) 0 −2α 0
0 0 0 0 0 0 0 0 −β 0
0 0 0 0 0 0 0 0 2α + β 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

According to the discussion in Sec. III, the ma-
trix h has N + 1 = 4 null eigenvalues λν = 0, associ-
ated with the eigenvectors |λν〉 = |N − ν + 1, 0, ν − 1〉 =
|4 − ν, 0, ν − 1〉, for ν = 1, . . . , 4. The complete ordered set
of exact eigenvalues is promptly obtained from Eqs. (18) and
(19),

{λν} = {0, 0, 0, 0, β, 2β, 3β, α + β, 2(α + β ), 2α + β},
for ν = 1, . . . , 10, with corresponding right eigenvectors,

|λ1〉 = |3, 0, 0〉 , |λ2〉 = |2, 0, 1〉 , |λ3〉 = |1, 0, 2〉 ,

|λ4〉 = |0, 0, 3〉 , |λ5〉 = − |0, 0, 3〉 + |0, 1, 2〉 ,

|λ6〉 = |0, 0, 3〉 − 2 |0, 1, 2〉 + |0, 2, 1〉 ,

|λ7〉 = − |0, 0, 3〉 + 3 |0, 1, 2〉 − 3 |0, 2, 1〉 + |0, 3, 0〉 ,

|λ8〉 = 2β2

β2 − α2
|0, 0, 3〉 + 2β

α − β
|0, 1, 2〉

+ α

β − α
|0, 2, 1〉 − β

α + β
|1, 0, 2〉 ,

|λ9〉 = β3(5α + 2β )

(α + β )2(4α2 − β2)
|0, 0, 3〉

+
[

2α

(
− 1

α + β
+ 1

2α + β
+ 3

β − 2α

)
+4

]
|0, 1, 2〉

+ β(5α + 2β )

(2α − β )(α + β )
|0, 2, 1〉 + 2α

β − 2α
|0, 3, 0〉

+ β2

(α + β )2
|1, 0, 2〉 − 2β

α + β
|1, 1, 1〉 + |1, 2, 0〉 ,
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|λ10〉 = 2(5α − 2β )β2

4α3 − 4βα2 − β2α + β3
|0, 0, 3〉

+
[
− 4α

β − 2α
+ 6α

β − α
+ 4

]
|0, 1, 2〉

+2α

(
1

β − 2α
+ 3

α − β

)
|0, 2, 1〉

− 2α2

(α − β )β
|0, 3, 0〉 + 4β

2α + β
|1, 0, 2〉 − 4 |1, 1, 1〉

+2α

β
|1, 2, 0〉 + |2, 0, 1〉 − β

2α + β
|2, 1, 0〉 .

From the above sets of eigenvalues and eigenvectors we
find, e.g., the mean duration of the epidemic and the basic
reproduction number, respectively given in the Fock-space
approach by Eqs. (27) and (A10),

〈τ 〉 = α

(α + β )2
+ 5

6

(
1

2α + β
− 2

α + β

)
+ 11

6β
, (B2)

R0 = α

(
27

2α + 3β
− 8

α + 2β
− 3

α + β

)
. (B3)

Figures 8(a) and 8(b) display 〈τ 〉 and R0 calculated from
Eqs. (B2) and (B3), respectively. We notice that these plots

are qualitatively similar to Fig. 4 and Fig. 5, respectively, so
that the associated discussion in Sec. IV.A also holds in the
present case.

The above procedure can be readily applied to calculate
significant quantities of the stochastic SIR model for smaller
population sizes N . For example, by defining the ratio ρ ≡
α/β, we list below the results for the basic reproduction
number with N = 4 and N = 5, respectively,

R0 = 2ρ

35

(
315

ρ + 1
+ 336

ρ + 2
− 3969

2ρ + 3
+ 791

3ρ + 2

+ 5120

3ρ + 4
− 2349

4ρ + 3

)
, N = 4, (B4)

R0 = ρ

[
(129886ρ + 59213)

1800(2ρ + 1)2
− 15

ρ + 1
− 80

9(ρ + 2)

+ 2349

7(3 + 4ρ)
− 9228

35(2 + 3ρ)
+ 11583

40(3 + 2ρ)

+ 78125

84(4ρ + 5)
− 192512

175(4 + 3ρ)

]
, N = 5. (B5)

We mention that both expressions were obtained from Math-
ematica in about one minute of running time in a notebook
with Intel Core i7 processor.
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