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Dynamic crossover towards energy equipartition in the Fermi-Pasta-Ulam-Tsingou
β model with long-range interactions
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Energy equipartition can be established in short-range systems after the dynamic process of thermalization.
However, energy distribution between different degrees of freedom in systems with long-range interactions is
unclear. We study the dynamics of energy relaxation in the Fermi-Pasta-Ulam-Tsingou β model with long-range
quartic interactions, which decay as 1/dδ with d being the lattice distance. The dynamic crossover of a mode-
energy distribution from localized to equipartitioned with the increase of the power δ is observed. A transition of
mode-energy distribution is identified around the value of δ = 1, which usually serves as the distinction between
strong and weak long-range couplings. We elucidate that the varying frequency overlapping of the mode-energy
power spectrum is responsible for this dynamic crossover. Through further calculation of the spectral entropy,
the minimum duration of quasistationary states, τQSS, is found at δ = 2, which may provide possible dynamic
explanations for the peculiar behavior of heat transport in long-range lattice chains. In addition, the double
scaling in τQSS as a function of energy density is also observed in our long-range lattices. Our results not only
contribute to understanding the dynamics of energy relaxation in long-range systems, but also shed light on the
longstanding problem of thermalization and low-dimensional heat transport in short-range systems.
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I. INTRODUCTION

As one of the central concepts of thermodynamics, energy
equipartition hypothetically states that energy will be equally
shared among all degrees of freedom in classical systems
in thermal equilibrium. Studies of the underlying dynamic
processes of energy equipartition can be traced back to the pi-
oneering numerical experiments [1,2] by Fermi, Pasta, Ulam,
and Tsingou (FPUT), where a peculiar recurrent behavior was
observed instead of energy equipartition. Since then, extensive
investigations in the FPUT nonlinear lattices have shown that
energy equipartition can be reached above an energy threshold
[3–7] or is slowly achieved through a metastable stage with
varying equipartition time [7–18], depending on the energy
density, nonlinear coupling strength, etc. In general, the pro-
cess in which the system achieves thermal equilibrium with
energy equipartition is referred to as thermalization. Other
extrinsic factors such as disorder [19,20] and pressure [21]
can affect the process of thermalization.

Long-range interactions [22–25] are present at various
scales in nature, ranging from astrophysics [26,27] to atomic
scales such as cold atoms [28] and quantum spin sys-
tem [29–32]. As a result of the violation of additivity
[22–25] in systems with long-range interactions, both the
thermodynamic and dynamic properties of these systems are
very different from the traditional Gibbs statistical physics
with short-range interactions. For example, these thermody-
namic features of long-range interactions include negative
specific heat [33–36], ensemble inequivalence [37], non-
Maxwellian momentum distributions [38–40], quasistationary

*phcwj@hotmail.com

states [41–45] during the dynamical evolution, and the exotic
heat transport properties [46–51]. Long-range interactions
manifest [52] between either the internal or the external de-
grees of freedom of the particles and may lead to different
behaviors of energy relaxation and distributions. The problem
of how energies are distributed among normal modes in sys-
tems with long-range interactions is an interesting problem,
but is rarely studied [53–57].

In this work, we take the Fermi-Pasta-Ulam-Tsingou
(FPUT)-β model with the power-law decaying nonlinear in-
teractions as an example to study energy relaxation and
distribution in long-range systems. We find that the dynamic
crossover of the mode-energy distribution from localized
to equipartitioned can be observed, as the power exponent
δ increases. Using the spectral entropy, we further study
the effects of long-range interactions on the duration of
quasistationary states (QSS) during energy relaxation. Our
findings contribute to understanding the dynamic process of
energy relaxation in the long-range system and may also
shed light on the longstanding problem of thermalization
and low-dimensional heat transport in short-range systems.
The paper is organized as follows. In Sec. II, we first intro-
duce the model and describe the adopted numerical methods
during calculations. In Sec. III, we then present our main
results of energy relaxation and distribution in the long-
range system. Finally, conclusions and remarks are made in
Sec. IV.

II. MODELS AND METHODS

A. Models

We consider the long-range FPUT-β model with the power-
law decaying nonlinear interactions with periodical boundary
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conditions. The Hamiltonian is given by

H =
N∑

i=1

[
p2

i

2mi
+ 1

2
(qi+1 − qi )

2

+ 1

4Ñ

N∑
j=1, j �=i

(qi − q j )4

|di j |δ
]
, (1a)

Ñ = 1

N

N∑
i=1

N∑
j=1, j �=i

|di j |−δ, (1b)

where pi and qi denote the momentum and displacement of
the ith particle with mass mi, which has been set to one for
convenience. Here, i, j are the lattice sites and also correspond
to the indices of particles on the lattice sites, respectively.
di j = 1, 2, 3, . . . is the shortest distance between the i, jth
lattice sites under periodical boundary conditions. N is the
total number of particles considered. The prefactor with Ñ in
the quartic potential energy of Hamiltonian (1) is introduced
in order to yield [58] the extensive total energy. Compared
with the generalized mean-field Hamiltonian with long range
interactions [24,25], the present long-range interactions are
included in the quadratic part of Hamiltonian (1), which
has the power-law decrease with lattice distant d−δ

i j . There
are two limits: (i) δ → 0 means that each particle interacts
equally with other particles, independent of the distance be-
tween them, which is similar to the mean-field Hamiltonian
[24,25]; (ii) δ → ∞ corresponds to the nearest-neighbor non-
linear interaction, recovering the Hamiltonian of the historical
FPUT-β model. In the work, we concentrate on the FPUT-β
model with only long-range quartic interactions since most of
the interesting dynamic behaviors of long-range systems can
be obtained [55,57,59] in the present model. For example, a
decrease of the largest Lyapunov exponent with system size
[55,59] and q-statistics of velocity distributions [57,59] has
been observed in the present model when δ < 1. The peculiar
behavior of heat transport is also observed [46–51] in the
present model.

B. Methods

Fourier transform of momentum and displacement should
be adopted since energy partition is investigated in terms
of normal modes. Under the periodical boundary conditions,
i.e., qN = q0, we take the following Fourier transform of the
momentum pi and displacement qi:

Qk = 1

N

N−1∑
j=0

q je
−i2πk j/N , Pk = 1

N

N−1∑
j=0

p je
−i2πk j/N , (2)

where k = 0, . . . , N − 1 are discrete wave numbers, and Qk

and Pk are the amplitudes of displacement and momentum in
the Fourier space. The angular frequency ωk and the harmonic
energy Ek of the kth normal mode are then expressed, respec-
tively, as

ωk = 2| sin(kπ/N )|, Ek (t ) = 1
2

(
ω2

k Q2
k + P2

k

)
. (3)

To describe the varying normal-mode energy distribution up
to time t , the time average mode energy [11,13] Ēk (t ) is

calculated in the running time window μt � s � t by

Ēk (t ) = 1

(t − μt )

∫ t

μt
Ek (s)ds. (4)

In our calculations, the time window μ is set as μ = 2/3.
According to the principle of energy equipartition, we can
expect that Ēk (t → ∞) � ε, where ε is the constant energy
density for each normal mode.

Based on the calculation of Ēk (t ) in Eq. (4), the spectral
entropy s(t ) can be introduced [3,4,14],

s(t ) =
N−1∑
k=1

fk (t ) ln fk (t ), fk (t ) = N − 1∑N−1
j=1 Ē j (t )

Ēk (t ). (5)

Here we have used N − 1 instead of N because the first
mode k = 0 is not involved in the dynamics under periodical
boundary conditions. When the state of energy equipartition
is reached, the value of spectral entropy is theoretically zero.
To measure the dynamic process towards energy equipartition
quantitatively, the normalized effective relative number of the
degrees of freedom [4] can be defined,

n(t ) = eξ (t )

N − 1
, ξ (t ) = −

N−1∑
k=1

wk (t ) ln wk (t ), (6)

with the normalized spectral entropy given by wk (t ) =
fk (t )/(N − 1). Therefore, the energy relaxation process of
normal modes can be dynamically characterized by the
normalized effective relative number n(t ), where n(t ) = 1
theoretically for the state of energy equipartition. The values
of s(t ) and n(t ) generally depend on the initial configures of
the normal modes if equipartition is not reached.

In our simulations, the velocity-Verlet algorithm is adopted
for integrating the motion equations with the time step, h =
0.125. The energy conservation with the relative accuracy of
about 10−4 is checked for energy fluctuation during the sim-
ulation. Because of the heavy computations, we employ the
graphics processing unit (GPU) to implement the parallel ac-
celeration of molecular dynamics simulation and the Fourier
transform. To overcome fluctuations statistically, the value
of spectral entropy s(t ) and the normalized effective relative
number n(t ) have been further averaged over more than 10 re-
alizations of random initial velocities during our calculations.

III. RESULTS AND DISCUSSIONS

We systematically explore energy relaxation for the long-
range FPUT-β model in Eq. (1) with different values of the
decaying power δ. To focus on the effect of long-range cou-
pling, the length of the FPUT-β chain is fixed during our
simulations. We first present the distribution of energies along
normal modes and then investigate the time duration of qua-
sistationary states for the energy relaxation process.

A. Distributions of energies of normal modes

The energy distributions along normal modes at time step
t = 0, 105, and 108 for the long-range FPUT-β models with
the power-law decaying coefficient δ = 0, 2, 8 are shown in
Figs. 1(a), 1(b) and 1(c), respectively. To describe how the
system nontrivially interpolates between the initial condition
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FIG. 1. The energy distributions along normal modes at different times for the long-range FPUT-β models with different power-law
decaying coefficient δ: (a) δ = 0, (b) δ = 2.0, (c) δ = 8.0, (d) δ = ∞ (i.e., the nearest FPUT-β model). The time is indicated in each figure.
The initially excited lowest and highest modes at t = 0 are indicated by the black square. The energy density is set to ε = 0.5 and the chain
length N = 1024.

and the long-time solution at δ = 2, the curve at t = 104 is
also plotted in Fig. 1(b). For comparison, the energy distri-
bution for the nearest-neighbor FPUT-β model is plotted in
Fig. 1. In order to better show the process of energy relaxation,
only the lowest and highest modes are initially excited at
t = 0, as indicated by the black square in the figures. As the
system evolves, the energies of initially excited modes spread
to other normal modes owing to the nonlinear interactions.
The blue circle and red triangle in the figures correspond
to the energy distributions at time step t = 105 and t = 108,
respectively. Our longer time simulations give similar results
as that of t = 108 in the figure. Therefore, the energy distri-
bution at time t = 108 can be treated as the steady state. It
can be seen from Fig. 1 that the energies of normal modes
gradually tend to be equally distributed with the increase of
the coefficient δ. We can clearly find that the distributions
of normal energies vary from localized for the long-range
coupling to equipartitioned for the nearest-neighbor coupling.
To demonstrate the crossover of mode-energy distribution
explicitly, a comparison of the steady distributions of mode
energies at time step t = 108 for the FPUT-β models with the

various coefficient δ is further plotted in Fig. 2. It can seen
from Fig. 2(a) that the curves of mode-energy distribution
almost coincide for δ = 0 and 1, where a strong long-range
interaction [24] can be assumed. We can find that energy
in the Fourier space is strongly localized during the regime
δ � 1. This localization behavior of normal modes may pos-
sibly be related to the nonergodicity characterized [55,60] by
the vanishing value of the maximal Lyapunov exponent with
system size N . In the weak long-range coupling [24] regime of
δ > 1, the energy distribution along normal modes gradually
tends to be flattened as δ increases, possibly resulting from
the increased overlap of the power spectrum of normal modes
in the following. Therefore, it can intuitively be expected
from Fig. 2(a) that energy relaxation among normal modes is
enhanced such that energy equipartition will be reached when
δ → ∞. From Fig. 2(a), we may assume that the transition
of the energy distribution for normal modes can be estimated
around δ = 1. To investigate the finite-length dependence of
the energy distribution in the Fourier space, we have calcu-
lated the energy distribution at δ = 0 with different lengths
N = 512, 1024, 4096, respectively. The steady distributions
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FIG. 2. (a) Comparison of the steady distributions of normal-mode energies for the FPUT-β models with different decaying power δ. The
energy density is set to ε = 0.5 and the chain length N = 1024. (b) The steady distributions of normal-mode energies for the long-range
FPUT-β model (δ = 0) with different lengths N = 512, 1024, and 4096, respectively.

are shown in Fig. 2(b). We can find that the energy distribution
tends to be more localized with the increase of N. However,
the difference of energy distribution of normal modes between
N = 1024 and N = 4096 is not very big. Therefore, we think
that the length of N = 1024 may be a suitable choice as far as
the heavy computations is concerned.

Furthermore, we expound the possible reasons for the
crossover of energy distribution from localized to equipar-
titioned with the varying power δ. As for the short-range
FPUT models, the energy relaxation to equipartition has been
theoretically described [10,14,17,20] by the wave-turbulence
approach in the weak-nonlinear limit. However, there is no
theoretical approach to energy relaxation in the long-range
FPUT models due to the complexity of long-range interac-
tions. The energy transfer from one normal mode to other
modes can be explained [17] by the resonant overlap of nor-
mal modes with nonlinear frequency broadening. In order
to understand energy relaxation for the long-range FPUT-β
models, we plot the power spectrum of different normal-mode
energies with the various long-range coefficient δ in Fig. 3
as a function of frequency. Each spectrum of normal-mode
energy E (k, ω) is obtained through the Fourier transform of
a normal-mode energy Ek (t ) in Eq. (3) with time t after the
steady state of the system is reached. It can be seen from Fig. 3
that high-frequency modes show quite different behaviors of
frequency broadening from that of low-frequency modes as
the long-rang power exponent δ increases. We can find that
the frequency broadening of low-frequency modes decreases
with increase of δ, as indicated by the black square and red
circle in Fig. 3. On the contrary, the frequency broadening
of high-frequency modes is strongly enhanced with increase
of the long-range power exponent δ, as shown by the lines
with the wave number such as k = 15 and 16. in Fig. 3. Ow-
ing to the varying broadening of frequency with the power
exponent δ, different overlapping of resonance occurs in the
range of the low and high frequencies. For example, there
is no noticeable overlapping of resonance between the power
spectrum of low-frequency modes and that of high-frequency

modes for δ = 0.0 and 1.0 at frequency about ω � 0.75, as
shown in Figs. 3(a) and 3(b). This existence of a band gap
between the high- and low-frequency power spectrum implies
that there is a weak energy exchange between high and low
modes such that energy is hard to be equally distributed, lead-
ing to localized distribution of energy along normal modes as
shown in Figs. 1(a), 1(b), and 2 with δ = 0, 1. Conversely,
the overlap of the power spectrum between low and high
frequencies is apparent in Figs. 3(c)–3(e) when the long-range
power exponent δ � 2. Therefore, the energy exchange be-
tween high- and low-frequency modes can be easily carried
through the overlapping of the resonant power spectrum so
that energy equipartition can be gradually approached with
the increasing value of the long-range power exponent δ.

B. The duration of quasistationary states

Out of equilibrium, the relaxation to equilibrium of lat-
tice systems with long-range pair interaction is characterized
[41,43] by the existence of quasistationary states, which is
similar to the metastable state [10,14,17] in short-range lat-
tices during thermalization. We further investigate the time
duration of quasistationary states for the long-range FPUT-β
models with increasing values of power exponent δ.

As an indicator of thermalization, the spectral entropy s(t )
given by Eq. (5) measures the degree to which the energies
of the entire system are equally distributed among normal
modes. Theoretically, s(t ) = 0 if energy equipartition is estab-
lished for the system. The results of time evolution of spectral
entropy s(t ) for the long-range FPUT-β models with different
values of δ and for the nearest-neighbor FPUT-β model are
shown in Fig. 4. To overcome fluctuations, the spectral en-
tropy s(t ) as well as the normalized effective relative number
n(t ) in the following has been averaged from more than 10 re-
alizations of random initial velocities during our calculations.
It can be observed from Fig. 4 that the spectral entropy s(t )
of the long-range interaction system with δ = 0, 1, 2, 3, 4 first
decreases and then tends to be stabilized as the relaxation time
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FIG. 3. Power spectrum of different normal-mode energies as a function of frequency for the long-range FPUT-β model with various
power coefficient δ: (a) δ = 0, (b) δ = 1, (c) δ = 2, (d) δ = 3, (e) δ = 8, (f) δ = ∞, i.e., the short-range FPUT-β model. For brevity, the length
of system N is set to N = 32 with the energy density of ε = 0.5.

increases. The stabilized states correspond to the steady distri-
butions of mode energy in Fig. 2. We can find that the value of
stabilized s(t ) decreases with increase of the power exponent
δ, implying the process of transition towards energy equipar-

FIG. 4. The evolution of spectral entropy s(t ) as a function of
time t for the long-range FPUT-β models with different values
of power exponent δ = 0, 1, 2, 3, 4, 8 and for the nearest-neighbor
FPUT-β model. The length of lattice chain N is 1024 and the energy
density ε = 0.5.

tition. The stabilized values for δ = 0, 1 coincide with each
other after time t > 107, which is consistent with the result in
Fig. 2. In addition, the spectral entropy s(t ) for the long-range
FPUT-β with δ = 8 collapses to that of the nearest-neighbor
FPUT-β at small values, suggesting the crossover of normal-
mode energy distribution towards equipartition.

Similar to the calculation of thermalization time [10,14,17]
for short-range systems, we propose that the duration of qua-
sistationary states τQSS can be further estimated from the
normalized effective relative number n(t ) defined in Eq. (6).
The time evolution of the normalized effective relative number
n(t ) for the long-range FPUT-β models with the power expo-
nent δ is plotted in Fig. 5(a). Energy equipartition theoretically
corresponds to n(t ) = 1. However, energy equipartition in the
long-range FPUT-β models cannot be reached exactly so that
a small value of deviation from the theoretical value of one
exists, as shown in Fig. 5(a) after the time step of 107. To
estimate the duration time τQSS, we introduce a threshold
nshr of the normalized effective relative number n(t ). Dur-
ing our calculations, the threshold nshr is taken as Cnmax,
where nmax is the maximal value of the stabilized effective
relative number n(t ). The threshold nshr for each n(t ) with
different power exponent δ is indicated by the vertical dashed
lines in Fig. 5(a). Our approach to estimate the duration
time τQSS is similar to the method to calculate thermalization
time [11]. Because the choice of value C is highly arbitrary,
we have numerically verified that the choice of different value
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FIG. 5. (a) The time evolution of the normalized effective relative number n(t ) for the long-range FPUT-β models with the power exponent
δ = 0, 1, 2, 3, 4. The dashed lines indicate the positions of threshold with nshr = nmax. The length of lattice chain N is 1024 and the energy
density ε = 0.5. (b) The duration of quasistationary states τQSS varying with the power-law decay exponent δ.

of the factor C in some broad range is insensitive to the estima-
tion of the duration time τQSS. Note that the duration time τQSS

of quasistationary states in long-range systems can also be es-
timated [38] by the transition of kinetic energy (temperature).
Our approach is based on the transition of mode-energy dis-
tribution from localized to equipartitioned, while the method
in Ref. [38] depends on the transition of velocity distribu-
tion from non-Maxwellian to Boltzmann-Gibbs. We think that
both of the approaches may be essentially similar because
the transition of either the mode-energy distribution or the
velocity distribution is underlined by the change of the same
intrinsic dynamics in long-range systems.

The calculated duration τQSS versus the long-range power
exponent δ is shown in Fig. 5(b). Here, we focus the value of
long-range power exponent δ around δ = 2 because a puzzling
ballisticlike heat transport is observed [48,50,51] in the long-
range FPUT-β with δ = 2. It can be observed from Fig. 5(b)

the duration τQSS has the minimum value at δ = 2. We expect
that this agrees with the fast heat diffusion [50] obtained
from the spatiotemporal correlation of fluctuation function
and with the ballisticlike heat transport [51] around δ = 2.
We have also verified a ballistic heat diffusion at δ = 2 in our
present models. The reason these two observations are con-
sistent may lie in the fact that faster thermal diffusion around
δ = 2 may make normal modes reach the final steady state
quickly.

We further explore the dependence of the duration of
quasistationary states τQSS on energy density at δ = 2. Com-
parison of the evolution of the normalized effective relative
number n(t ) for the long-range FPUT-β models at δ = 2
with different energy densities ε is plotted in Fig. 6(a).
The calculated time duration τQSS as a function of energy
density is given in Fig. 6(b) with the given threshold nshr =
0.95, as indicated by the dashed lines. We can obviously

FIG. 6. (a) Comparison of the evolution of the normalized effective relative number n(t ) for the long-range FPUT-β models at δ = 2 with
different energy densities ε. The dashed lines indicate the positions of threshold, nshr = 0.95. The length of lattice chain N is 1024. (b) The
time duration of quasistationary states τQSS as a function of energy density with the power-law decay exponent δ = 2. The square represents
numerical simulations. The straight line corresponds to the fitted power law of 1/ε3.73 (dashed line) and of 1/ε0.83 (solid line), respectively.
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observe the double scaling relationship τQSS ∼ 1/ε3.73 and
τQSS ∼ 1/ε0.83, respectively. Similar behavior of double scal-
ing in the relaxation time has been previously reported [17]
in the nearest-neighbor FPUT-β model with the relation
τeq ∼ 1/ε4 and τeq ∼ 1/ε1, respectively. We speculate that
the mechanism behind both may be similar [17]: the steep-
est τQSS ∼ 1/ε3.73 at lower energy density results from the
irreversible six-wave interactions, while the τQSS ∼ 1/ε0.83

at higher energy density is associated with the nonlinearity
in the dynamical equation for the overlap over broadening
frequency.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have studied the dynamics of energy
relaxation along normal modes in the long-range FPUT-β
model with the power-law decaying quartic interactions. The
dynamic crossover of energy distribution from localized to
equipartitioned versus wave numbers k is clearly observed
as the power exponent δ increases from 0 to ∞, i.e., the
nearest-neighbor FPUT-β. We show that the different fre-
quency overlapping of the mode-energy power spectrum is
responsible for the crossover of the energy distribution, since
the frequency broadening of the high- and low-frequency
energy modes varies with the long-range coupling power δ.
Through further calculation of the spectral entropy, the mini-
mum duration of quasistationary states (QSS) τQSS is found at
δ = 2, implying faster relaxation of the mode energies, which
may provide possible dynamic explanations for the peculiar
behavior of heat transport in long-range lattice chains. Similar

to that of the nearest-neighbor FPUT-β model, the double
scaling in τQSS as a function of energy density is also observed
in our long-range lattices.

Our results not only contribute to understanding the dy-
namics of energy relaxation in long-range systems, but also
shed light on the longstanding problem of both thermalization
and low-dimensional heat transport in short-range systems.
Note that our present wok is focused on the long-range
FPUT-β model only with the long-range quartic interactions
and the fixed system length. Actually, long-range interactions
can be imposed either on the quadratic potential or on the
quartic one, or on both simultaneously. The difference in
dynamics and statistics for different ranges of long interaction
has been discussed in Ref. [59], which suggests that more
interesting dynamic phenomena appear in the FPUT-β model
with the long-range quartic potential. We think that the reason
may lie in the fact that the oscillation with only the long-
range harmonic part can be transformed into the renormalized
normal modes [56] so that the deviation of its dynamics from
that of the nearest-neighbor FPUT-β is not large. Due to heavy
computations, we leave the problem of energy relaxation with
different conditions such as the long-range quadratic coupling
and different energy densities for future pursuit.
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