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Microseismic event detection in noisy environments with instantaneous spectral Shannon entropy
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The detection of information-bearing signals in a time series is very important for describing and analyzing a
wide variety of complex physical systems. However, identifying events in low signal-to-noise ratio circumstances
remains a challenge once heavy data preprocessing is usually required. In this work, we propose a robust
methodology based on the instantaneous-spectral Shannon entropy for capturing microseismic events in noisy
environments without the requirement of data preprocessing. We call our proposal the instantaneous spectral
entropy detection (ISED) method. We tested the ISED in a couple of real empirical seismic records to detect
microseismic events. Our methodology detects microseismic patterns even without any preprocessing, in contrast
to usual methods in the literature which need appreciable data preprocessing.
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I. INTRODUCTION

The detection and mapping of information-bearing signals
is very important in the analysis of physical systems. In recent
years, a variety of techniques have been developed to improve
the data-transmission quality [1–3] and the low-magnitude
signal detection [4–6] for understanding, for instance, the
complexity of quantum algorithms [7–9], small movements
associated with volcanism [10–12], as well as in biomedical
signal analysis [13]. It is worth noting that the extraction
of useful information from noisy signals consists of the ap-
plication of complex approaches that involve sophisticated
mathematical, physical and scientific computation techniques.
Such a detection task becomes especially difficult when it
comes to capturing low-magnitude signals. An example of
a low-magnitude signal pattern that is commonly recorded
in extremely noisy environments is microseismic events (or
low-magnitude tremors).

The detection of microseismic events is very important for
studying the seismicity of a region [14,15] as well as for un-
derstanding the dynamics of several complex systems, such as
the rock mass response to mine exploration [16], reactivation
of geological faults [17], and estimation of earthquake-
triggering focal mechanisms [18], among many others.
However, due to the strong noise scenarios and the low energy
of these events, detecting microseismic remains a great chal-
lenge. Thus, the scientific community has sought practical so-
lutions for microseismic event detection from time series sig-
nals using, for instance, machine learning techniques [19–21]
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and spectral analysis [6,22]. In this way, high-quality de-
tecting methodologies are need for a robust microseismic
analysis.

Nowadays, the conventional approach for detecting micro-
seismic events is based on the estimation of the average energy
of a seismic signal in two moving-time windows, named
short-term average (STA) and long-term average (LTA) [23].
The idea behind this framework is to incorporate information
that is sensitive both to the seismic event (through the STA
window) and to the local seismic noise (through the LTA win-
dow). If the ratio between these two time windows (STA/LTA
ratio) exceeds a predefined value, the existence of an event is
declared. Due to its simplicity and effectiveness, the STA/LTA
ratio has been widely used for detecting seismic events, for in-
stance, in earthquake early warning [24] to alert people about
a quake arriving, which saves lives from destructive shaking.
However, the STA/LTA method is very sensitive to the signal
energy, which makes this technique inaccurate for capturing
microseismic events recorded in a noisy environment [25].

To improve the detection quality of the classical STA/LTA
method in a strong noisy environment, we propose in this
work a robust algorithm based on instantaneous spectral
Shannon entropy (ISSE) [26], which measures the signal
spectral-power distribution in a preset time window [27]. The
ISSE is useful in biomedical signal analyses [13] and also
in fault diagnosis in mechanical systems [27]. Based on the
ISSE, we introduce in this work the instantaneous spectral
entropy detection (ISED) method, which is a robust algorithm
for capturing seismic waves in noisy environments without
preprocessing requirement. In this regard, the ISED is efficient
to separate the coherent seismic signal from the noise via
information entropy (or Shannon entropy), since there is an
increase in the complexity of the spectrogram close to the
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FIG. 1. A simple example to illustrates the STA/LTA method. (a) Waveform recorded at 2019-03-20 in the Peru-Ecuador border region.
(b) STA (green (light gray) curve) and LTA (blue curve) series by considering 4 and 24 seconds of time-window lengths. (c) STA/LTA ratio.
(d) A low magnitude natural earthquake to illustrate the limitations of the STA/LTA method, which is a waveform recorded at 2019-06-27 in the
California-Nevada border region. In addition, panel (e) depicts the STA and LTA series using 4 and 24 seconds for computing the time-window
lengths and panel (f) shows the corresponding STA/LTA ratio.

seismic event signal to be distinguished. In other words, the
spectrogram around the seismic event has much more Fourier
components compared to the background noise and, as the
entropy is a measure of complexity, the ISED is revealed as
a powerful method in this situation.

The outline adopted in this work is as follows. In Sec. II,
we start by presenting a brief review of the STA/LTA method,
including some examples, from which we illustrate the poten-
tial and inability of this classical framework. Then, we present
the theoretical foundations and mathematical basis of our pro-
posal: the ISED method. To demonstrate the robustness and
effectiveness of our proposal, we consider in Sec. III a real
seismic data set of low magnitude natural earthquakes under a
very strong background noise. Finally, in Sec. IV, we present
the final remarks and perspectives.

II. METHODOLOGY

A. Brief STA/LTA method review

The classical method in seismic event detection, introduced
by Allen in Ref. [23], is the ratio of short-term average to long-
term average (STA/LTA). Let the seismic data consist of N
samples: x = {x1, x2, . . . , xN }; the STA/LTA method consists
of calculating the average energy for two time windows (STA
and LTA):

STA
i

= 1

S

i∑

j=i+1−S

CF
j

, (1)

LTA
i

= 1

L

i∑

k=i+1−L

CF
k

, (2)

where CF is the so-called characteristic function, S and L
are the lengths of short- and long-term sliding windows, and
i = 1, 2, . . . , N . Usually, the CF is defined as an energy func-
tion of the signal inside the windows (CF j = x2

j ), absolute
value (CF j = |x j |), or envelope function [28], among others
[29–31]. If the ratio between the STA, Eq. (1), and LTA,

Eq. (2), exceeds a pre-defined threshold, STA
LTA > ε, the exis-

tence of a seismic event is declared.
To illustrate the working principle of the classical

STA/LTA method, we consider waveforms from two earth-
quakes: the first one is from an earthquake recorded in the
Peru-Ecuador border region, and the second on is from a
tremor recorded in the California-Nevada border region; see
panels (a) and (b) of Fig. 1. We notice that the waveform
shown in Fig. 1(a) is less contaminated by noise than the
waveform shown in Fig. 1(d). By considering data length
(sample size) in the short-term sliding window set to S = 4 s
and the long-term window set to L = 24 s, the respective STA
and LTA series are constructed using Eqs. (1) and (2), as
depicted in panels (c) and (d) of Fig. 1. With the STA [green
(light gray) curve in Figs. 1(b) and 1(e)] and LTA series [blue
curve in Figs. 1(b) and 1(e)], the STA/LTA ratio is computed
[see Figs. 1(c) and 1(f)]. If we consider the threshold factor
to be ε = 2, for example, we observe that STA/LTA method
correctly identifies the earthquake in the Peru-Ecuador border
region [see Fig. 1(c)], but fails to capture the earthquake in
the California-Nevada border region [see Fig. 1(f)]. In fact,
the STA/LTA method is only successful when the signal has
a high signal-to-noise ratio (SNR), which is not the case for
microseismics in areas subject to strong background noise
such as those close to urban activities [32].

B. Instantaneous spectral entropy detection (ISED)

Based on the theory of information, Shannon [33] intro-
duced the mathematical bases and foundations of communi-
cation theory, in which the characterization of information
measures are analyzed using the so-called Shannon en-
tropy. In the last years, Shannon entropy has been applied
in several areas of the science, such as statistical physics
[34–36], information theory [37,38], and inference problems
[39,40], among many others. Formally, for a set of mea-
sures x1, x2, . . . , xn, Shannon entropy provides a number that
represents the uncertainty measure, or degree of complexity,
associated with a given probability distribution p(x). This
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FIG. 2. Flowchart summarizing our proposal for robust automatic seismic event detection, which dispenses with the requirements of data
preprocessing.

entropy is written as the following functional:

H[p] = −
n∑

i=1

p(xi ) ln (p(xi )). (3)

In this work, we take into account the fact that the signal
amplitudes x computed into the signal-window and the kth fre-
quency fk are given by an instantaneous probability function
p(t, fk ). In this regard, the instantaneous spectral Shannon
entropy (ISSE) is defined as [26,41]

H(t ) = −
∑

k

p(t, fk ) ln (p(t, fk )), (4)

where p(t, fk ) computes the instantaneous probability func-
tion linked with the time-frequency power-spectrum S(t, fk )
as follows:

p(t, fk ) = S(t, fk )∑
j S(t, f j )

. (5)

It is worth noting that the entropic functional in Eq. (4)
is computed at each time window using the time-frequency
power spectrogram, and t represents the average value of that
time window. Furthermore, we notice that the ISSE, Eq. (4),
provides a measure of the homogeneity of the frequency con-
tents for each time window, revealing peaks in times of the
most energy-containing time windows [26]. In this way, it
is expected that the noise energy is spread out through the
spectrum. Thus, the peaks in the ISSE series must correspond
to seismic events, as will be shown below.

Since the noise spreads out and the coherent information
(i.e., the microseismic event) concentrates in some areas of the
spectrogram, the ISSE should be greater in the region corre-
sponding to the microseismic event (that has greater energy in
the time-frequency power spectrum regarding the noise) than
the background noise at each time instant. In this regard, we
propose a robust methodology based on the ISSE for detecting
low-energy signals in very noisy environments for unfiltered
data. Thus, our proposal, called instantaneous spectral entropy
detection (ISED), is able to identify (micro)seismic events in
a long time series, even when it is polluted by a strong back-
ground noise, without the requirement for data preprocessing.
Moreover, the independence from preprocessing makes this
tool relevant in automated projects.

We divide the ISED method into three main steps: in the
first one, we compute the signal time-frequency power spec-
trum using the windowed Fourier transform and calculate the
instantaneous probability at each time window considering its
respective spectral contents. Second, we compute the ISSE by
automatically generating a new time series associated with the
Shannon entropy of the spectral content of each time window.
Finally, the ISSE time series is employed as input to the
STA/LTA method for automatic detection of the peak of the
ISSE, which is related to the seismic events. We summarize
our proposal ISED procedure in Fig. 2.

III. MICROSEISMIC DETECTION CASE STUDY

To test the robustness and effectiveness of the ISED tech-
nique, and empirically validate our proposal, we employ a
real data set obtained from Incorporated Research Institutions
for Seismology (IRIS) [42]. The data set consists of wave-
forms of seismic events recorded in three different regions,
as summarized in Table I. It is worth noting that the seismic
records used in this work were registered by several institu-
tions that collaborate with the IRIS University Consortium.
The event #01 was recorded near the coast of Peru at the
Nana station (NNA) located in Peru [latitude 11.99◦ S and
longitude 76.84◦ W]. The events #02 and #03 were recorded
in the United States of America (USA) by the Columbia
College station (CMB) [located in Columbia, CA: latitude
38.03◦ N and longitude 120.39◦ W] and the NVAR Array Site
31 station (NVAR) [located in Mina, NV: latitude 38.43◦ N
and longitude 118.16◦ W].

We consider in the first detection test the waveform of the
event #01 (see Table I). In particular, we extract the waveform
from the vertical channel of the NNA station, which is
depicted in Fig. 3(a). In this figure, the green and magenta
color lines represent the detection of P and S waves performed
automatically by the classical STA/LTA method, while the
green and blue color lines represent the detection of P and
S waves performed automatically by the ISED method. To
apply the ISED technique, we compute the ISSE, Fig. 3(c),
from the time-frequency power spectrogram depicted in
Fig. 3(b). The travel times estimated are represented by the
green and blue color lines. As expected, the spectrogram
region corresponding to the seismic event is more strongly

TABLE I. Main information on the earthquakes, used in this study, extracted from the IRIS University Consortium [42] which consists of
each earthquake’s date, time, hypocentral location, and magnitude.

Event Region Date Time UTC Latitude Longitude Depth Magnitude
ID name (yyyy/mm/dd) (hh:mm:ss) (deg) (deg) (km)

01 Coastal region of Peru 2019/03/22 12:50:30 12.64◦ S 76.59◦ W 48.14 4.6mb

02 Columbia, CA, USA 2019/03/23 07:34:18 37.30◦ N 117.50◦ W 7.0 3.0ml

03 Mina, NV, USA 2019/06/27 17:00:07 37.23◦ N 117.68◦ W 0.96 1.9ml
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FIG. 3. (a) Unfiltered waveform of the event #01 and (b) its respective time-frequency power spectrum. Panel (c) depicts the ISSE
associated with the event #01. In panels (a) and (c), the colored vertical lines represent the identification of the P and S waves for each
method.

represented, as depicted by the colors close to green in
Fig. 3(b), than the region from the background noise. Note
that, as expected, the STA/LTA algorithm with or without the
ISSE successfully identified the P- and S-wave arrivals, since
the event #01 is not very strongly contaminated by noise.

In contrast to the previous seismic signal, the last two
seismic data have a low signal-to-noise ratio, which makes
the P- and S-wave detection difficult; see panels (a) of Figs. 4
and 5. In these two cases, the classical STA/LTA algorithm
was unable to identify the P and S waves from the unfiltered
signals recorded in the vertical channel of CMB and NVAR
stations [events #02 and #03]. In fact, in these two situations,
the amplitude of the background noise is of the same order
of magnitude as the seismic events. On the other hand, our
proposal was able to identify the P and S waves; the po-
sitions are represented by the red and blue bars in Figs. 4
and 5. Such success is due to the spread out of background
noise energy through the spectrogram and the concentration
of the seismic event energy. The strong energies of the seismic
events are visualized by colors close to red in the spectrograms
[Figs. 4(b) and 5(b)]. In this regard, ISSE has remarkable max-
imum points [Figs. 4(c) and 5(c)], which helps the STA/LTA
algorithm to identify seismic events even under adverse cir-
cumstances.

To validate our results, we process the seismograms in
Figs. 4 and 5 with the Seismic Analysis Code (SAC) [43,44] by
(i) removing the mean of the signal; (ii) applying a symmetric
Hanning taper; and (iii) filtering the signal between 2 and
20 Hz using a Butterworth filter. The processed waveforms
are shown in panels (d) of Figs. 4 and 5, where the P and S
waves are clearly visible. Using the filtered data, both method-
ologies are able to automatically identify P and S waves.
Therefore, the processed signals validate that our methodol-
ogy does not require preprocessing to correctly identify the
microseismic events from low signal-to-noise ratio recorded
data.

IV. FINAL REMARKS

In this work, we have introduced a robust methodology
for detecting low-magnitude tremor events in (strong) noisy
environments using the instantaneous-spectral Shannon en-
tropy. Since many physical systems are characterized by
information-bearing microsignals in low signal-to-noise ratio
circumstances, long (and, sometimes, tedious) data prepro-
cessing is required for starting the physical analyses. In this
way, our proposal mitigates the requirement of data prepro-
cessing, which is useful for analyzing large data sets and using
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FIG. 4. (a) Unfiltered waveform of the event #02 and (b) its respective time-frequency power spectrum. Panel (c) depicts the ISSE
associated with the event #02 and panel (d) depicts the preprocessed waveform. The colored vertical lines represent the identification of
the P and S waves for each method.

automatic methodologies such as those applied in machine
learning. We call our proposal the instantaneous spectral en-
tropy detection (ISED) method.

Since the ISED is based on the assumption that the energy
of the background noise is spread out in the spectrogram,
we compute the Shannon entropy for each time-frequency
power spectrum of the signal in order to identify the maximum
entropy associated with the microseismic event. Applications
of our proposal in real data sets demonstrated the potentialities
of the ISED to identify information-bearing signals in a very
noisy scenario, which indicates that the ISED is an effec-
tive methodology for automatically detecting microseismic

events recorded under strong background noise. In fact, our
proposal was able to successfully identify the presence of
low-magnitude seismic waves obscured by noise. In this way,
we believe that the ISED is a strong alternative for analyzing
large-scale multichannel datasets.
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FIG. 5. (a) Unfiltered waveform of the event #03 and (b) its respective time-frequency power spectrum. Panel (c) depicts the ISSE
associated with the event #03 and panel (d) depicts the preprocessed waveform. The colored vertical lines represent the identification of
the P and S waves for each method.
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