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Counterdiabatic driving in the classical β-Fermi-Pasta-Ulam-Tsingou chain
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Shortcuts to adiabaticity (STAs) have been used to make rapid changes to a system while eliminating
or minimizing excitations in the system’s state. In quantum systems, these shortcuts allow us to minimize
inefficiencies and heating in experiments and quantum computing protocols, but the theory of STAs can also
be generalized to classical systems. We focus on one such STA, approximate counterdiabatic (ACD) driving,
and numerically compare its performance in two classical systems: a quartic anharmonic oscillator and the β

Fermi-Pasta-Ulam-Tsingou lattice. In particular, we modify an existing variational technique to optimize the
approximate driving and then develop classical figures of merit to quantify the performance of the driving. We
find that relatively simple forms for the ACD driving can dramatically suppress excitations regardless of system
size. ACD driving in classical nonlinear oscillators could have many applications, from minimizing heating in
bosonic gases to finding optimal local dressing protocols in interacting field theories.
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I. INTRODUCTION

Losses and noise represent a ubiquitous challenge in the
control and use of any physical system. Whether we are trying
to prepare a high-fidelity quantum state for some calculation,
maximizing the efficiency of some thermodynamic process, or
tuning some parameter of a sensitive Hamiltonian, transitions
away from the desired outcome are inevitable. Adiabatic evo-
lution represents the most direct method for combating these
inefficiencies, as asymptotically slow evolution removes all
diabatic excitations and allows us to perform arbitrary phys-
ical processes without losses. However, during the resulting
long time scales, the system suffers from environmental noise
and decoherence, making true adiabatic transport not only
costly but impossible to implement. This tension has led to the
development of many “shortcuts to adiabaticity” (STAs) [1–4]
that achieve exactly or nearly the same effect as adiabatic
transport in a fraction of the time, thereby limiting the effect of
outside forces and increasing the speed of the process. These
methods have shown great promise theoretically and experi-
mentally and apply to nearly any system where high-fidelity
control is desired.

One such STA that has found application in many differ-
ent systems is counterdiabatic (CD) or transitionless driving
[5–8]. This method adds to the bare Hamiltonian a driving
counterterm constructed out of the “adiabatic gauge potential”
(AGP). In quantum geometry, this object reveals how eigen-
states are connected to each other as the control parameter
in the Hamiltonian defining the adiabatic transformation is
tuned. This counterterm kills off all diabatic transitions ex-
actly for any tuning speed. In simple systems, CD driving
offers a powerful method for exactly transporting eigenstates
as the Hamiltonian is altered, but in most many-body systems
this approach breaks down, and the AGP generically does
not exist as a local continuous operator. Recently, however,

Ref. [9] found that in many cases an approximate local varia-
tional AGP exists, which allows one to significantly suppress
dissipative effects even in chaotic systems. This method has
been extensively applied to quantum spin systems with many
promising results [10–15]. Moreover, Ref. [14] showed that
this ACD protocol can be realized using Floquet engineering
with only the Hamiltonian and the control field.

Although ACD driving can easily be generalized to clas-
sical spins, the method outlined in the original paper [9]
does not apply to systems with unbounded local Hilbert
spaces. As such, the original procedure is limited in scope
to spin chains and fermionic systems, leaving out coupled
oscillators and collections of bosons. While exact CD driving
(and other related STAs like fast-forward driving) has been
implemented in potential wells before [16–18], the varia-
tional method naively breaks down. In this work, we fill in
the gaps and generalize ACD driving to systems with un-
bounded Hilbert spaces of any dimension. In particular, we
focus on coupled nonlinear oscillators, where the classical
phase space and local quantum Hilbert space are unbounded.
Our formalism and the developed protocols apply equally to
quantum and classical systems. However, in order to verify
the performance of the ACD protocol, we have to rely on
numerical simulations, which are currently out of reach for
quantum systems with many degrees of freedom. In small
systems, we are able to show that quantum and classical
ACD protocols perform very similarly. We begin by working
with a single anharmonic oscillator to explain the procedure
before moving to a more complicated system: the β Fermi-
Pasta-Ulam-Tsingou (FPUT) lattice. This nonlinear chain not
only provides a simple many-body Hamiltonian to study but
also has many deep connections to statistical mechanics and
thermalization. Originally, Fermi, Pasta, Ulam, and Tsingou
investigated this system numerically with the expectation that
the nonlinearity would cause the chain to thermalize quickly
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and reach equipartition [19]. However, when they initialized
the system with all the energy in the first normal mode, they
famously discovered that almost all the energy returned to
this initial mode in what are now called FPUT “recurrences.”
In contradiction with the expectation of equipartition, these
recurrences continue as the simulation progresses, keeping the
system in a “metastable state” before finally thermalizing after
very long time scales [20–22]. Recently, it was discovered that
recurrences themselves oscillate in a periodic fashion as well,
a feature dubbed “higher-order recurrences” [23,24].

This intimate connection between the FPUT system,
thermalization, and chaotic dynamics also motivates an ap-
plication of ACD driving. Indeed, it was recently shown that
the AGP can act as an extremely sensitive probe of chaos
in certain quantum systems [25]. Developing approximate
AGPs for the β FPUT lattice in future work could therefore
reveal why the system remains quasiperiodic for certain initial
conditions. In addition, FPUT-like recurrences come up in
many theoretical [26–29] and experimental [30,31] models.
ACD driving can be used to efficiently prepare such systems
in different nearly stationary initial conditions, where these
recurrences are expected to be strongly suppressed, to study
the effects of long-time thermalization.

The paper is organized as follows. We first introduce the
concept of ACD driving in Sec. II and discuss its subtleties
before explaining our modifications to the variational method.
We then apply the procedure to a simple anharmonic oscillator
in Sec. III as an example implementation. In Sec. IV, we apply
the same machinery to the β-FPUT lattice and show how our
results survive in the thermodynamic limit. Finally, we discuss
instabilities that arise when one considers long-wavelength
initial states like those in the original FPUT problem. We
argue that these instabilities arise because the correspond-
ing initial distribution is far from any statistical equilibrium
and is very fragile against adding nonlinearity to the system.
Nevertheless, even in this situation we provide a method for
combating this instability by adding fluctuations to the initial
state and variationally optimizing the AGP over a broader
range of phase space than the actual initial distribution. We
show that in this way we can stabilize the variational method,
albeit at the expense of reducing its accuracy somewhat.

II. APPROXIMATE COUNTER-DIABATIC DRIVING

The concept of CD driving is most easily explained in a
quantum sense, so we will begin there and then move to the
classical regime. Consider a Hamiltonian H0(β(t )) dependent
on some parameter β(t ) that varies in time, and let the system
start in some stationary state |ψi〉 at time t = 0. We now want
to ramp β from some initial value β(t = 0) = βi to some final
value β(t = τ ) = β f over some “turn-on time” τ . Assuming
there are no degeneracies on the way, if we take an infinite
time to ramp up the perturbation (τ → ∞), the system will
undergo adiabatic evolution, finishing in a new stationary
state |ψtarget〉 of the final Hamiltonian H0(β(τ )). However, for
any finite value of τ , the system will inevitably experience
diabatic transitions away from this state. The origin of these
transitions is easy to understand by going to the moving frame
defined by the time-dependent instantaneous basis of H0(β ).
Here, the effective moving Hamiltonian picks up an extra term

familiar, e.g., from doing a Galilean transformation or going
to a rotating frame:

H eff
0 = H0 − β̇Aβ, (1)

where Aβ is the adiabatic gauge potential (AGP), the gen-
erator of perturbations in β. Because the Hamiltonian H0 is
diagonal in its own instantaneous basis, all transitions from
our initial stationary state occur due to the presence of the
second term. Exact CD driving provides a method for exactly
reaching our target state |ψtarget〉 by evolving under a CD
Hamiltonian:

HCD(t ) = H0(β(t )) + β̇(t )Aβ (β(t )). (2)

In the moving frame, we can see that the two terms with the
AGP will cancel, making the effective quantum Hamiltonian
fully diagonal and eliminating transitions. It is straightforward
to show that, as the generator conjugate to changes in β, the
AGP satisfies [10]

〈m|Aβ |n〉 = ih̄
〈m|∂βH0|n〉

En − Em
, (3)

or, equivalently,

[H0, ih̄∂βH0 − [Aβ, H0]] = 0. (4)

In simple systems, we can solve Eq. (4) to find the exact
AGP and implement transitionless driving. However, one can
show that in general, the AGP blows up exponentially with the
system size in chaotic systems [25]. More specifically, quan-
tum chaotic systems suffer from small denominators in Eq. (3)
as a result of the eigenstate thermalization hypothesis (ETH)
[10]. Intuitively, this blowup occurs because we are trying to
follow eigenstates that, according to the ETH, are essentially
random vectors and therefore require fine-tuning. Instead of
exactly canceling off transitions for this exponentially difficult
cost, we want to suppress transitions as much as possible, i.e.,
maximize the fidelity of our evolved state with the target state.

Reference [9] outlines a method for finding an approximate
form of the AGP in what is known as approximate CD (ACD)
driving. First, we choose some Ansatz for the form of the
AGP, ideally one that does not suffer from the nonlocal terms
typically present in chaotic systems [10,25]. Once we have our
Ansatz, we can compute an action that will optimize the free
parameters of the AGP Ansatz as functions of β. Consider the
object

Gβ (A∗
β ) ≡ ∂βH0 + i

h̄
[A∗

β, H0], (5)

where A∗
β is our Ansatz. It can be shown that Eq. (4) follows

from minimizing the following action S with respect to the all
possible operators A∗

β [10]:

S (A∗
β ) = 〈

G2
β (A∗

β )
〉 − 〈Gβ (A∗

β )〉2, (6)

where the angular brackets denote an average with respect
to some equilibrium density matrix ρ commuting with the
Hamiltonian H0. If the variational Ansatz is complete, i.e.,
if it spans the operator basis, then this minimization leads to
the exact AGP. If the variational manifold is restricted to, for
example, a class of local operators, the minimization leads
to the best variational AGP within this class. One can use
flexibility in choosing the equilibrium density matrix ρ to
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target specific states of interest. For example, ρ = |ψ0〉〈ψ0|
optimizes the AGP with respect to the ground state, which
could be beneficial for quantum annealing protocols. A dif-
ferent choice of ρ = I = 1

D

∑
n |n〉〈n|, where D is the Hilbert

space size, optimizes the AGP with respect to all states. Other
choices of ρ can include, e.g., finite temperature Gibbs en-
sembles or microcanonical ensembles targeting states in a
specific energy range. Once we fix the form of ρ, we find our
optimal approximate AGP by extremizing the action in the
usual sense:

δS (A∗
β )

δA∗
β

= 0. (7)

If our operator A∗
β is expanded in a set of some fixed basis

operators Xj : A∗
β = ∑

j γ jXj , then variational optimization
with respect to A∗

β is equivalent to minimization with respect
to the set of parameters γ j . Note that by construction, the
action is quadratic in γ j , so this minimization is simply a
minimization of a quadratic form. After finding the variational
AGP, we can then construct the approximate CD Hamiltonian

HACD(t ) = H0 + β̇A∗
β, (8)

which reduces transitions compared to the bare protocol.

From quantum spins to classical oscillators

Previous work on ACD driving has focused on the infinite-
temperature norm, where the average in Eq. (6) is taken with
respect to the identity matrix and focused mostly on quan-
tum spin systems [9,10,14,32]. Such an infinite temperature
optimization is ill-defined in systems like the FPUT model,
where the local Hilbert space is unbounded and the infinite
temperature state corresponds to infinite energy density. To
proceed, we therefore have to choose a different ρ. As we are
dealing with classical systems, let us also briefly discuss how
the variational approach extends to them from the quantum
regime.

In classical chaotic systems, exact CD driving is also im-
possible due to formal divergence of the AGP [33]. As such,
we will turn to ACD driving for our classical systems. To
make this shift, most of the standard relations between quan-
tum and classical are involved: operators become functions
and commutators become Poisson brackets, so now Eq. (5)
becomes

Gβ (A∗
β ) ≡ ∂βH0 − {A∗

β, H0}. (9)

The classical analog of the equilibrium density matrix ρ is
a stationary probability distribution P(�q, �p), where �q, �p are
canonically conjugate phase space variables. The approximate
AGP can again be found from the minimization of the action
(6), where the average is now taken with respect to the proba-
bility distribution Pβ , i.e.,

〈Gβ〉 =
∫

P(�q, �p, β ) Gβ (�q, �p) D�qD �p, (10)

and similarly for 〈G2
β〉, where D�qD �p denotes a differential vol-

ume of phase space. There is the same flexibility in choosing
the stationary probability distribution P(�q, �p) in classical sys-
tems as in choosing a stationary density matrix ρ in quantum
systems. In particular, a single quantum eigenstate averaging

in a chaotic system corresponds to averaging over a micro-
canonical ensemble: Pβ (�q, �p) ∝ δ(E − H (�q, �p, β )); similarly
a finite-temperature Gibbs density matrix corresponds to
a finite-temperature classical Gibbs probability distribution
Pβ (�q, �p) ∝ exp[−H (�q, �p, β )/(kbT )].

It is intuitively clear that the optimal choice of the prob-
ability distribution P(�q, �p) should be closest to the one
adiabatically connected to the initial state. That is, if we
initialize the system in some microcanonical ensemble, then
Pβ should remain a microcanonical distribution with respect
to the instantaneous Hamiltonian H (�q, �p, β ) at the energy
corresponding to constant initial entropy. The easiest way to
generate such a distribution, which we use in this work, is
by slowly evolving the initial distribution in time to some
coupling β between initial and final values. We then sample
from this distribution to minimize the action (6) and find the
approximate AGP. This procedure does not require finding
the adiabatically connected distribution Pβ , and it has an-
other clear advantage in that it applies both to integrable and
nonintegrable systems, as it does not require the system to
thermalize. In principle, one can repeat this procedure itera-
tively: evolve the initial state with the ACD protocol to find a
better adiabatically connected state and reminimize the action
to find a better AGP. We find that this reoptimization is not
necessary, and even the first iteration gives excellent results.

III. SINGLE ANHARMONIC OSCILLATOR

To illustrate the approach, we first start with a single anhar-
monic oscillator with a Hamiltonian given by

H0 = p2

2
+ x2

2
+ β

x4

4
, (11)

where units have been chosen to set the mass and frequency
to 1. Because this one-dimensional (1D) system is integrable,
it is amenable to exact CD driving, and progress has already
been made on this front for both scale-invariant systems [18]
and using the Lax pair formalism familiar from classical non-
linear integrable systems [34]. Other STAs like fast-forward
driving have seen success in anharmonic traps as well [16,17].
The work here differs in that variational ACD driving allows
us to drive any trapping potential, target any manifold of
states without knowing exact wave functions, and also drive
under any sort of ramp protocol β(t ). However, even beyond
these differences, the following section simply functions as an
illustrative example before we dive into the complex dynamics
of FPUT.

We initialize our system with a value of β(t = 0) = 0 in a
microcanonical distribution of energy E0 = 1. We then ramp
up to β(t = τ ) = 1 using the protocol

β(t ) = sin2

[
π

2
sin2

(
πt

2τ

)]
, t ∈ [0, τ ] (12)

from Ref. [9]. This protocol is smooth at the boundaries, sup-
pressing spurious nonadiabatic transitions related to turning
on and turning off the drive, which appear if β̇ jumps at the
protocol boundaries. Under perfect adiabatic evolution (τ →
∞), the system would end in a microcanonical distribution
of the new Hamiltonian. In the quantum language, this new
state would have the same “eigennumber” as the original.
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Any finite turn-on time τ will cause transitions away from
this transport. Our goal is to minimize these transitions for all
τ . In passing, let us note that for single-particle systems an
alternative approximate approach based on classical flow field
was recently developed in Refs. [17,35].

A. Ansatz

First, we must choose an Ansatz for the form of our driving
term. Following Ref. [14], we can take a series expansion of
the AGP, truncate the series at a finite order, and then insert
this into our variational procedure. In the classical limit, this
Ansatz takes the form

A(
)
β =


∑
k=1

(−1)kγk {H0, {H0, . . . {H0︸ ︷︷ ︸
2k−1

, ∂βH0}}}, (13)

where 
 is the order at which we truncate the expansion, γk are
the variational parameters that we will optimize as functions
of β, and the factor (−1)k is introduced for convenience.
Here we will only consider Ansätzes with one and two driving
parameters, so we have

A(1)
β = γ1x3 p,

A(2)
β = γ1x3 p + γ2(−6p3x + 10px3 + 12βpx5). (14)

Notice that the last term in the expression for A(2)
β is propor-

tional to β and vanishes in the limit β → 0. Therefore, it is
not very important at least at small values β, and we will
exclude it from the variational Ansatz. The px3 term in A(2)

β is

identical to the one from A(1)
β , so they can be merged together.

Therefore for the remainder of the paper we will refer to our
first- and second-order Ansätzes as

A∗
1 ≡ γ̃1x3 p,

A∗
2 ≡ γ̃1x3 p + γ̃2xp3, (15)

where γ̃1 and γ̃2 are our new variational parameters.
Let us point out that there is an alternative way to justify

this variational Ansatz by finding the AGP in the harmonic
limit β → 0. In Refs. [33,36] it is shown that AGP can be
represented through the following time integral:

Aβ = − lim
ε→0+

1

2

∫ ∞

−∞
dt sgn(t )e−ε|t |(∂βH0)(t ), (16)

where in quantum language (∂βH0)(t ) is the Heisenberg repre-
sentation of the operator ∂βH0, which in the classical language
translates to the function ∂βH0 evaluated on time-dependent
trajectories, which are solutions to the equations of motion
(EOM) (x(t ), p(t )) for the full nonlinear Hamiltonian. In the
leading order in perturbation theory, we can use the solutions
of the noninteracting problem β = 0:

x(t ) = x cos t + p sin t,

p(t ) = p cos t − x sin t, (17)

where x and p correspond to time-independent Schrödinger
operators in the quantum language. In this limit, Eq. (16)
yields the following form for the AGP:

Aβ → − 5
32 x3 p − 3

32 xp3. (18)

We thus see that the exact AGP at β → 0 is described by the
Ansatz (15) with a particular choice of the coefficients γ̃1 and
γ̃2. At β > 0 this Ansatz is no longer exact, but we can still
variationally optimize γ̃1 and γ̃2 hoping that the resulting AGP
will accurately describe the nonlinear system. We checked
that both Ansätzes (14) and (15) lead to a similar performance,
so the extra px5 appearing in Eq. (14) has a very small effect
on the ACD protocol.

B. Optimization

As we discussed above, in order to perform optimization
of the variational parameters, we slowly evolve the initial
distribution corresponding to a microcanonical ensemble at
β = 0 to a finite value of nonlinearity and then minimize
the action (6), sampling from this probability distribution. In
quantum language, this procedure corresponds to sampling
from an instantaneous energy state adiabatically connected to
the initial state of the harmonic oscillator. We discuss details
of this procedure and show the obtained functional forms of
the variational coefficients γi(β ) in Appendix A.

C. Figures of merit

Once we simulate the driven system, we need a method for
evaluating the performance of the given Ansatz. In quantum
systems, the golden standard is the fidelity of the final state
with the target state. This figure of merit (FOM) tells us
exactly how close we are to achieving adiabatic transport, as
it ensures not only that we approach a stationary state but also
that it is the correct stationary state. In the classical regime,
this task becomes much harder. In principle, we could eval-
uate some distance such as the KL-divergence between the
obtained and target probability distributions. But finding this
distance is not easy, especially when we extend this analysis to
systems with many degrees of freedom. We find that there is
a much simpler measure, which is the energy variance of the
final Hamiltonian in the obtained distribution. It works both
in quantum and classical setups and is easy to evaluate. If we
start in an exact microcanonical state and evolve it adiabati-
cally, we should also end up in a microcanonical state such
that the energy variance is zero. Similarly, in quantum me-
chanics if we start from a single eigenstate and adiabatically
evolve in time we should remain in a single eigenstate and the
energy variance is again zero. In both cases, nonzero energy
variance indicates that the evolution was not adiabatic. For the
remainder of this paper, we will focus on this FOM. We also
checked other FOMs like fidelity or temporal fluctuations of
observables and found that they contain similar information
(see Appendix B for more details.)

D. Results

In Fig. 1, we show the results of implementing the ACD
protocols with the optimized AGPs and compare their perfor-
mance against a bare, unassisted ramp for various values of the
turn-on time τ . In these simulations, we initialize our system
in a microcanonical distribution of E0 = 1 and evolve while β

grows according to the protocol (12).
Note that, as expected, all turn-on curves interpolate be-

tween some asymptotic value at small τ and zero at large τ .
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FIG. 1. Final energy variance after ramps of β of various du-
rations τ for a single anharmonic oscillator. Orange (green) lines
correspond to first- (second-) order CD driving protocols. In the
limit of τ → 0, which corresponds to driving only with the AGP,
the first-order CD protocol gives the energy variance suppression of
the order of 5.7 compared to the unassisted (quench) protocol; the
second-order CD protocol increases this suppression to a factor of
∼2700.

All protocols in the limit τ � 1 give zero energy variance in
agreement with the adiabatic theorem. In the opposite τ → 0
limit, which corresponds to the instantaneous (quenched) pro-
tocol for unassisted driving and the protocols where one drives
the system only with the AGP for ACD driving, we see the
largest difference between the three protocols. In particular, in
this limit the unassisted protocol gives the largest energy vari-
ance, and the first-order ACD suppresses the energy variance
by an approximate factor of 5.7, which pales in comparison to
the performance of the second-order ACD, which suppresses
the energy variance by a factor of 2700. We thus see that the
addition of the rather unusual xp3 to the Hamiltonian yields
a dramatic improvement in its performance. The difference
becomes even larger if we analyze the quantum fidelity of
the state preparation or the temporal variance of the harmonic
energy as FOMs (see Appendix B). Incidentally, this xp3 term
also appears in the exact CD driving of a potential in the shape
of a KdV soliton moving in a gas of noninteracting quantum
particles [10,37], and Ref. [34] also encounters a CD term like
p3. Clearly, the xp3-term plays a crucial role in creating the
efficient CD driving protocol. However, this presents a unique
challenge when implementing this protocol in experiments,
as such terms do not naturally appear in typical Hamiltonians.
These terms can be, however, designed using periodic lattice
potentials, where the dispersion relation generally contains
sin(p) type terms, where p is the lattice momentum.

E. Floquet implementation

Generally the expansion (13) can be implemented through
the experimentally accessible Floquet protocols [14]. Such
protocols only involve H0 and ∂βH0 as driving terms. Specifi-
cally choosing

HFE (t ) = f (t )H0 + g(t )∂βH0, (19)

where f (t ) and g(t ) are periodic functions in time, one can
always realize a CD protocol with the AGP given by Eq. (13)
with arbitrary time-dependent coefficients γk . If the function
f (t ) is positive at any time, then one can further simplify
the protocol by rescaling time, i.e., dividing the Schrödinger
equation ih̄∂tψ = HFE(t )ψ by f (t ). One can define a new
“physical” time as

τ (t ) =
∫ t

0
f (t ′)dt ′. (20)

Then the Schrödinger equation becomes

ih̄∂τψ = H̃FE(τ )ψ, H̃FE(τ ) = H0 + κ (τ )∂βH0, (21)

where t is now a parameter, which depends on the physi-
cal protocol time τ through inverting Eq. (20) and κ (τ ) =
g(t (τ ))/ f (t (τ )). Thus, we can implement the Floquet protocol
by only varying the coupling ∂βH0 in time.

Note that generally the Floquet protocols found in Ref. [14]
require nonpositive f (t ) and the mapping (20) is not possible
without inverting the sign of H0. Finding a class of general
protocols with f (t ) > 0 remains an open problem. In Ref. [38]
it was solved for a particular setup leading to a finite speed
limit.

IV. β-FPUT CHAIN

Now that we have a method for implementing ACD driving
in classical oscillators, we want to apply it to the more com-
plex β-FPUT chain. The Hamiltonian for this system is given
by

H0 =
N∑

n=1

p2
n

2
+

N∑
n=0

1

2
(qn+1 − qn)2 + β

4
(qn+1 − qn)4, (22)

where N is the number of active oscillators in the system. We
work with fixed boundary conditions, such that p0 = pN+1 =
0 and q0 = qN+1 = 0. We initialize our state in a single normal
mode with a fixed momentum k keeping all other modes
empty. The normal modes are defined through a canonical
transformation

qn =
√

2

N + 1

N∑
k=1

Qk sin

(
nkπ

N + 1

)
, (23)

and similarly for pn and Pk . As long as β = 0, each of
these modes corresponds to a stationary orbit in phase space
with a conserved energy E (k)

0 = P2
k /2 + ω2

k Q2
k/2, where ωk =

2 sin( πk
2(N+1) ). Before proceeding to a general case, we will

analyze a simpler two-oscillator system with N = 2, which is
already chaotic in the presence of nonlinearity and hence does
not have a closed-form AGP. We will choose a normal mode
with k = 1 initially populated with the energy E (k)

0 ≡ E0 = 1.
If we compute the AGP in the noninteracting point, we

will get four independent terms. This number grows rapidly
if we add more oscillators. Keeping all of these terms in the
variational Ansatz is costly. For this reason, we will use the
full Ansatz (13) truncating the expansion at second order and
optimizing for the two variational coefficients γ1 and γ2.

Following the same process outlined in Sec. III, we op-
timize and simulate our ACD driving in the N = 2 FPUT
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FIG. 2. Final energy variance (over system size) after turn-ons of
various durations τ for the β-FPUT chain with N = 2 active sites.
A(1)

β corresponds to first-order driving using the Poisson bracket
expansion and suppresses energy variance by a factor of ∼4.9 rel-
ative to no driving. A(2)

β corresponds to second-order driving and
suppresses energy variance by a factor of ∼176 relative to no driving.

chain. We plot the results in Fig. 2. We can see that essentially
the same results are produced: first-order driving suppresses
energy variance over the unassisted protocol by about a factor
of 5 in the τ → 0 limit. The second-order driving gives a sig-
nificantly more substantial improvement, reducing the energy
variance by a factor of ∼180. This improvement is somewhat
less than the one for the single-oscillator case, where the
suppression factor was ∼2700, but it is still fairly impressive
and almost completely eliminates nonadiabatic transitions.

We can now extend the analysis to the thermodynamic limit
N → ∞. This limit is well defined if we choose initial con-
ditions with a fixed wavelength of the excited mode and the
fixed amplitude of the normal mode in the initial state, which
also corresponds to fixed momentum and energy densities in
the system. Specifically, we choose the initial state where the
initial momenta of particles are zero (pn = 0) and the initial
displacements of particles are given by qn = A sin (nkπ/(N +
1)). A stationary probability distribution, where we want to
initialize the system and which corresponds to a quantum
stationary state, is obtained by time-averaging the initial prob-
ability distribution with the initial noninteracting Hamiltonian
H0(β = 0). In practice, this means that before starting the
ramp of the nonlinearity, one has to evolve the system with
H0(β = 0) for a random time within one period of oscillation
Tk = 2π/ωk (for our simulations, we implemented this by
choosing a set of times uniformly distributed between 0 and Tk

and averaging over them). It is easy to see that the wavelength
and the energy corresponding to these states are given by

λ = 2(N + 1)

k
,

E0 = A2(N + 1) sin2

(
kπ

2(N + 1)

)
. (24)

Now consider our two-site problem. Plugging in our values
of N = 2, E0 = 1, and k = 1, we see that our wavelength and

FIG. 3. Final energy variance (over system size) after turn-ons of
various durations τ for the β-FPUT chain with N = 50 active sites.
A(i)

β still correspond to ith order driving using the Poisson bracket
expansion, and they have the same factors of suppression as Fig. 2.

amplitude are λ = 6 and A = 2/
√

3. To approach our desired
thermodynamic limit, we have to find a way to increase N
while keeping λ and A fixed. This can be done by fixing
the amplitude at A = 2/

√
3 and the wavelength at λ = 6 and

choosing N = kλ/2 − 1 ↔ k = 2(N + 1)/λ, where k is an
integer. It is easy to see that this choice corresponds to the
system size-independent energy density in the system E0 =
k ∝ N . It is expected that the protocol performance quickly
becomes N-independent as we are dealing with a local Hamil-
tonian, a local Ansatz for the AGP, and local initial conditions.
The only way the system knows about its size is through the
boundary conditions, which are expected to play a negligible
role at large N . For concrete calculations we choose k = 17,
corresponding to N = 50. We checked that the results indeed
do not change if we further increase N and k. We show the
results of such simulations in Fig. 3. Aside from the different
scale on the vertical axis, they look identical to Fig. 2. The
relative suppression between each curve is also preserved:
increasing N does not sacrifice the performance of the ACD
driving. We also note that the optimized driving coefficients
γi(β ) show essentially no N-dependence, testifying to the
stability and applicability of the method.

V. LONG-WAVELENGTH INSTABILITY

Traditionally, the FPUT problem was analyzed for a very
special initial condition corresponding excitation only in the
first mode, k = 1. Note that as we fix the total energy in the
system given by Eq. (24), the amplitude A scales as

√
N as

one increases the system size. Such a state is not very stable
thermodynamically. This instability is precisely reflected in
the very large amplitude oscillations in the mode occupancy,
which emerge after quenching the nonlinearity [19,24,39]. In
other words, studying the FPUT problem is equivalent to turn-
ing on β instantaneously in our setup. Note that should we fix
the energy density while keeping k = 1, A would scale even
faster, linearly with N , leading to even stronger instability.
For N = 2 this initial condition is identical to the one we
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FIG. 4. Final energy variance (over system size) after turn-ons
of various durations τ for the β-FPUT chain with N = 5 active sites.
Rather than hold wavelength and amplitude fixed as N increases, we
keep our initial mode number and energy fixed at 1. We clearly run
into an instability at second-order driving in this limit.

used earlier, but as N increases we start to see a difference.
In particular, we find that the second-order driving performs
slightly worse and worse in terms of suppression of the energy
variance until we reach N = 5, where the variational protocol
essentially breaks down as illustrated in Fig. 4. Our optimiza-
tion method, which previously led to dramatic suppression of
excitations, has now gone awry and made our second-order
Ansatz perform worse than the first-order Ansatz in the quench
limit τ → 0. Note, however, that at intermediate speeds τ �
2, the second-order ACD protocol strongly outperforms the
first-order one, which indicates that some instability develops
as the protocol duration gets shorter.

This failure of the second-order ACD protocol looks some-
what mysterious at first sight, so we checked and confirmed
that it is not due to some artifact of the numerical integra-
tion. We also note that Ref. [8] found long-wavelength states
difficult to drive, so this issue is not without precedent. We
found that the origin of the failure of the variational method
in this case is high sensitivity of the dynamical response of
the system to the energy of the state. In particular, the ACD
protocol tries to keep the system close to the adiabatically
connected state. However, because the variational AGP does
this only approximately, the actual state of the system under
fast ACD protocol deviates from the adiabatically connected
state. Normally this deviation is not important, as the varia-
tional AGP is very stable with respect to small changes in the
system. But for our thermodynamically unstable state, this is
not the case, and the evolution is highly sensitive to the precise
form of the AGP, so any deviation of the probability distri-
bution from the target one is amplified. We found that even
in this situation, one can fix the ACD protocol by choosing
the initial distribution with fluctuating energy. Specifically,
we choose an initial Gaussian ensemble, where we populated
the first k = 1 mode with the mean energy Ē0 = 1 and the
standard deviation dE = 0.4. As the energy must always be
positive, we suppressed the tail of the distribution correspond-
ing to E0 < 0. The total action is then defined as the weighted

FIG. 5. Final energy variance (over system size) after turn-ons
of various durations τ for the β-FPUT chain with N = 5 active sites.
We fight the instability in Fig. 4 by evaluating the action along a
distribution of adiabatic trajectories over a broadened distribution of
initial energies (see text for details).

average of the actions corresponding to different values of
E0 weighted with this distribution. For calculations we used
a set of 40 different realizations of E0. As illustrated in Fig. 5,
the outlined procedure stabilizes the performance of the ACD
driving, although the enhancement of the second-order AGP
is not as pronounced as in the previous thermodynamically
stable case of initial constant λ and energy density. These re-
sults suggest that in nontrivial situations where ACD is used to
drive the system through some unstable regime, one needs to
carefully choose the distribution Pβ (�q, �p) defining the action:
too broad a distribution might lead to poor performance of the
ACD protocol, while too narrow a distribution might lead to
developing instabilities at short protocol times. In Appendix C
we provide a more detailed analysis of the origin of this
instability.

VI. DISCUSSION AND CONCLUSIONS

Counterdiabatic driving can find applications in a broad
range of systems as a way to control the evolution of a state
under changes to the Hamiltonian. With ACD driving, one can
find protocols suppressing excitations even when the protocol
durations are short, and unassisted protocols lead to large
irreversible losses. In this work, we have successfully gener-
alized ACD driving from quantum spin systems to classical
nonlinear oscillator systems. In particular, we have shown
that ACD driving can dramatically suppress transitions in
both a single anharmonic oscillator and the β-FPUT chain
for the cost of a couple of driving parameters. We showed
that our results survive in the thermodynamic limit and do not
require fine-tuning for generic initial states corresponding to
populating a normal mode with fixed system size-independent
wavelength and amplitude.

We found that the dramatic suppression of dissipation at
short protocol durations requires adding counterterms to the
Hamiltonian, which are cubic in momentum. Such terms are
rather unusual and do not naturally appear in standard setups.
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However, they can be engineered either in periodic potentials
having nonquadratic dispersion or using Floquet protocols.
Precise implementation of such ACD protocols might depend
on the details of the system and available controls. Our work
shows that ACD can be potentially extended to both quan-
tum and classical systems of interacting particles and fields.
Because the AGP can also be used to find effective degrees
of freedom [40], our work shows considerable potential for
finding effective nonperturbative low-energy descriptions of
such systems as well as efficient computational methods of
simulations of these systems.
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APPENDIX A: NUMERICAL OPTIMIZATION

Here we outline how we optimize γi(β ) for A∗
2 in Eq. (15).

First, we can analytically expand Gβ into three terms:

Gβ = ∂βH0 − γ1{x3 p, H0} − γ2{xp3, H0}
= G00 + γ1G10 + γ2G01. (A1)

When we square Gβ to find the action, we get

G2
β = G2

00 + γ 2
1 G2

10 + γ 2
2 G2

01 + 2γ1G00G10

+ 2γ2G00G01 + 2γ1γ2G10G01. (A2)

It is also easy to see that

〈Gβ〉2 = 〈G00〉2 + γ 2
1 〈G10〉2 + γ 2

2 〈G01〉2 + 2γ1〈G00〉〈G10〉
+ 2γ2〈G00〉〈G01〉 + 2γ1γ2〈G10〉〈G01〉. (A3)

Taking the expectation value of Eq. (A2) and subtracting
Eq. (A3), we get the action in Eq. (6). We can now write this
object in the form

S (A∗
2 ) = a00 + a10γ1 + a20γ

2
1

+ a01γ2 + a02γ
2
2 + a11γ1γ2. (A4)

If we now adiabatically transport the system in our simulation,
we can numerically compute {ai j} at each separate value of
β ∈ [0, 1]. For each of these values, we can independently
optimize the action by requiring ∂S/∂γi = 0, which yields

γ1 = 2a02a10 − a01a11

a2
11 − 4a02a20

,

γ2 = 2a01a20 − a10a11

a2
11 − 4a02a20

. (A5)

FIG. 6. Driving coefficients γi as functions of β for the N = 2
FPUT system discussed in the text. These are the functions spit out
by the variational procedure after fitting the numerical data.

At this point, our program will spit out an array of optimal
values for each γi, with each element corresponding to the
optimal value for a certain value of β on our interval. We can
now fit these arrays to functional forms, and we will have our
optimal driving protocol. For the entirety of this paper, we
used the fitting Ansatz

γ (β ) = b0 + b1β + b2β
2 + b3β

3 + · · ·
1 + c1β + c2β2 + c3β3 + · · · . (A6)

We restrict ci � 0 to improve the stability of the fit and bypass
possible singularities.

In Fig. 6, we plot the fitted driving coefficients γi(β ) as
functions of the nonlinearity for the N = 2 β-FPUT system
discussed in Sec. IV. Note that, although the magnitude of γ1

is always significantly greater than γ2, the presence of this sec-
ond term allows us to achieve dramatic suppression with ACD
driving. In Fig. 7, we plot the same optimized coefficients but

FIG. 7. Driving coefficients γi as functions of β for the N = 50
FPUT system discussed in the text. Note the essentially identical
results compared to Fig. 6.
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for the N = 50 FPUT system discussed in the text. Note that
these optimized functions are essentially identical to those in
the N = 2 case, indicating that our thermodynamic limit is
stable and that the same driving parameters can be applied to
systems with drastically different N .

APPENDIX B: FIGURES OF MERIT

Here we will discuss other figures of merit we consid-
ered as ways to quantify nonadiabatic effects. To begin, we
will start in the quantum version of the single anharmonic
oscillator. Here, we can compare our classical FOMs to the
gold standard: the overlap of the final state with the target
state. More specifically, we look into 1 − F 2, where F =
|〈ψtarget|ψ f 〉| is the fidelity. Once this is calculated, we can
compare it to 〈ψ f |H2

0 |ψ f 〉 − 〈ψ f |H0|ψ f 〉2, the quantum ver-
sion of the FOM used in the body of the paper, to determine
whether or not the two measures give similar information
about the performance of the ACD protocols.

In addition to these two FOMs, we also considered a third
candidate: temporal variance. If our transport is not adiabatic
and |ψ f 〉 is not a steady state, a general observable O will
have time-dependent matrix elements. As long as O is not
conserved (like total energy), we can take its expectation value

〈O〉(t ) and find its infinite-time variance: 〈O〉2 − 〈O〉2
, where

the overline denotes time averaging over t ∈ [τ,∞). For our
single anharmonic oscillator, we chose the observable to be
the harmonic part of the Hamiltonian, such that our temporal
variance became

δQM ≡ 〈Hlin〉2 − 〈Hlin〉2
, t ∈ [τ,∞), (B1)

where Hlin = (p2 + x2)/2. With these definitions, we can now
simulate them in the quantum-mechanical version of our
single anharmonic oscillator. Standard substitutions between
quantum and classical apply: functions become operators,
averages become expectation values, and Poisson brackets
become commutators up to a factor of ih̄. Because in quantum
systems position and momentum operators do not commute,
we use symmetrized (Weyl) ordering of the quantum operators
in the variational Ansatz (see, e.g., Ref. [41] for details):

A(1)
β = γ1x3 p → Â(1)

β = γ1

2
(x̂3 p̂ + p̂x̂3), (B2)

where we have added hats to emphasize the difference be-
tween functions and operators. Similarly for the second-order
Ansatz we use

Â(2)
β = γ1

2
(x̂3 p̂ + p̂x̂3) + γ2

4
(x̂ p̂3 + p̂x̂ p̂2 + p̂2x̂ p̂ + p̂3x̂).

(B3)

We can now optimize these Ansätzes and test our candidate
FOMs. The results are shown in Fig. 8. First, consider unas-
sisted driving: all three FOMs interpolate between a quench
plateau and zero in the adiabatic limit. However, both fidelity
and temporal variance develop peaks at intermediate turn-
on times, which likely emerge from some resonant process
in the system. Next, look to first-order ACD driving. With
the fidelity FOM, this Ansatz only suppresses transitions at
intermediate times relative to no driving; it has essentially
no effect in the τ → 0 limit. Temporal energy fluctuations

FIG. 8. Candidate FOMs in a quantum anharmonic oscillator.
Note that all three FOMs agree only when the suppression is dramatic
(second-order driving). The FOMs do not agree on the performance
of first-order driving.

even slightly increase at short first-order ACD protocols com-
pared to unassisted driving. Overall this analysis suggests
that while first-order ACD suppresses energy fluctuations, it
does not really bring the system closer to the adiabatic limit
at short protocol times. The situation changes dramatically

014131-9



GJONBALAJ, CAMPBELL, AND POLKOVNIKOV PHYSICAL REVIEW E 106, 014131 (2022)

FIG. 9. Classical definition of temporal variance vs turn-on time
for the single harmonic oscillator in Sec. III. Note that these curves
closely match those in Fig. 1.

if we analyze the second-order ACD driving where now all
three FOMs show dramatic improvement over the unassisted
protocol. We conclude that both in quantum and in classical
systems, significant suppression of diabatic transitions comes
from the presence of the cubic in momentum counterterm.

We can now move to the classical anharmonic oscillator.
In this limit, the fidelity FOM obviously will not survive, but
we also have to modify our temporal variance FOM. In the
quantum case, the discrete spectrum allowed us to take an
infinite-time variance and have a nonzero, sensible answer.
However, when we move to the classical limit, our spectrum
becomes continuous. This fact means that for a distribution
with nonzero spread in energy, the infinite-time average of
temporal fluctuations will vanish. Although at short times
observables will oscillate, the continuum of frequencies will
cause the system to dephase and relax to a steady state. To
construct a sensible FOM, we must focus our attention on this
period of transient oscillations before relaxation, and as such,
we need some characteristic time to average over.

Because this behavior arises from energy spread, we take
our characteristic time to be

Tchar ≡ E0

ωσE
, (B4)

where σE is the standard deviation in energy over the distribu-
tion, measured immediately after a quench turn-on. Because
E0 = 1 and ω = 1 for our system, the characteristic time is
just the inverse of this deviation. We can now redefine our
temporal variance FOM as

δCM ≡ 〈Hlin〉2 − 〈Hlin〉2
, t ∈ [τ, τ + Tchar], (B5)

where Hlin is the classical version of the harmonic Hamilto-
nian, and the angular brackets now indicate a classical average
over our probability distribution.

In Fig. 9 we plot our classical temporal variance as
a function of turn-on time for the same simulation as in
Fig. 1. Comparing the two figures, we see that both classical
FOMs essentially agree on performance, although their turn-
on curves have slightly different shapes.

FIG. 10. Functional overlap of driving coefficients γi(β ) at width
dE with the same coefficients at width dE = 0. The values interpolate
smoothly and remain close to 1 by the time dE = 0.4, indicating that
the instability does not appear during optimization.

We find that for the analyzed β-FPUT problem, energy
variance is a preferable FOM because it is less ambiguous
than δCM and does not require choosing some rather arbitrary
energy window. However, we point out that in other situations,
temporal fluctuations might be preferable. For example, it is
easy to check that for our initial conditions in the α-FPUT
model, the energy variance remains zero even in the quench
limit because the cubic nonlinear term identically vanishes.
Even in the β model, temporal fluctuations might also be
easier to detect experimentally, so the corresponding FOM is
easier to measure.

APPENDIX C: LONG-WAVELENGTH SENSITIVITY

In this Appendix, we present evidence for why the long-
wavelength instability in the text seems to arise because our
system (and FOM) is very sensitive to changes in γi rather
than the γi’s being sensitive to changes in energy or phase
space manifold. Although this analysis is by no means exhaus-
tive, it does function as a preliminary treatment to be improved
upon in future work.

1. Optimization sensitivity

Our first goal is to investigate the sensitivity of γi(β ) to
changes in our chosen region of phase space. We will quantify
this “region” by choosing different values of dE correspond-
ing to different widths of our microcanonical distribution. To
quantify the sensitivity of the coefficients, we will compute
the functional overlap of γi(β ) for some dE in question with
γi(β ) for dE = 0. More specifically, we use

F 2
i (dE ) =

( ∫ 1
0 γi(β, dE )γi(β, dE = 0)dβ

)2

( ∫ 1
0 γ 2

i (β, dE )dβ
)( ∫ 1

0 γ 2
i (β, dE = 0)dβ

) . (C1)

If the optimization process is not sensitive to small changes
in dE , we would expect this overlap to smoothly interpolate
between 1 and some value 1 − ε as our width increases from
0, indicating that the coefficients are not very sensitive to dE .
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FIG. 11. Final energy variance (over system size) after quench
turn-on (τ ≈ 3 × 10−4) as a function of perturbation �. We perform
the simulations in the N = 5 β-FPUT chain with E0 = 1 and dE = 0.

However, if they are sensitive, we would expect a sharp drop
in the overlap to some value near zero.

In Fig. 10, we plot this metric for dE ∈ [0, 1.5] in our
long-wavelength N = 5 setup. As is evident from the plot, F 2

interpolates smoothly as we vary the width, and by the time
dE = 0.4, the lowest overlap is still around 0.97. As such, we
can conclude that the sensitivity of the ACD protocol is not
coming from an unstable variational minimization procedure.

2. System sensitivity

Our next goal is to investigate the sensitivity of our energy
variance FOM to small changes in our driving parameters
γi(β ). To simplify the process of adding perturbations to
these functional forms, we will use the following method:
first, choose a perturbation strength �. Then, to each of the
optimized coefficients, perturb the rational fit from Eq. (A6)
such that it becomes

γ ′
i (β ) = b0 + b1(1 + �)β + b2β

2 + b3β
3 + · · ·

1 + c1β + c2β2 + c3β3 + · · · . (C2)

FIG. 12. Final energy variance (over system size) after quench
turn-on (τ ≈ 3 × 10−4) as a function of perturbation �. We perform
the simulations in the N = 5 β-FPUT chain with E0 = 1 and dE =
0.4.

Now, simulate a quench turn-on (sufficiently small τ ) and
measure the energy variance FOM. Repeat for many different
values of �. The dependence of the FOM on this perturbation
will reveal how sensitive the system is to small changes in the
driving.

In Fig. 11, we plot the FOM as a function of � for the case
in which our width is dE = 0. We use a quench turn-on time
of τ ≈ 3 × 10−4 and the same E0 = 1, so just as expected the
� = 0 line corresponds to the far left of Fig. 4. We see that
near � = 0, the first-order curve is essentially flat, indicating
that the system is not very sensitive to perturbations in this
driving. Meanwhile, the curve for second-order has a large
negative slope when � = 0, indicating a strong dependence
on the driving coefficients. It is here that we observe the sen-
sitivity necessary to explain the long-wavelength instability,
not in the optimization process.

We can also perform the same analysis when optimizing
for width dE = 0.4, the results of which are plotted in Fig. 12.
Now, both curves are essentially flat in the neighborhood of
� = 0. These attributes indicate that our method of fighting
the instability actually worked: exploring a larger neighbor-
hood of phase space suppressed the system’s sensitivity to
driving coefficients.
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