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Brownian motion theory of the two-dimensional quantum vortex gas
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A theory of Brownian motion is presented for an assembly of vortices. The attempt is motivated by a
realization of Dyson’s Coulomb gas in the context of quantum condensates. By starting with the time-dependent
Landau-Ginzburg (LG) theory, the dynamics of the vortex gas is constructed, which is governed by the canonical
equation of motion. The dynamics of point vortices is converted to the Langevin equation, which results in the
generalized Fokker-Planck (GFP) (or Smolkovski) equation using the functional integral on the ansatz of the
Gaussian white noise. The GFP, which possesses a non-Hermitian property, is characterized by two regimes
called the overdamping and the underdamping regimes. In the overdamping regime, where the dissipation
is much larger that the vortex strength, the GFP becomes the standard Fokker-Planck equation, which is
transformed into the two-dimensional many-particle system. Several specific applications are given of the
Fokker-Planck equation. An asymptotic limit of small diffusion is also discussed for the two-vortices system.
The underdamping limit, for which the vortex charge is much larger than the dissipation, is briefly discussed.
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I. INTRODUCTION

The study of vortex gas is one of the main topics in physics.
The original idea dates back to the work of Kirchhoff (see [1]),
which describes the dynamics of an assembly of point vortices
as an aggregate of particles interacting with the logarithmic
potential. This idea was transferred to the Onsager’s theory
of vortex gas [2] aiming at exploring the turbulence. Since
then, many investigations began to flourish in the study of a
quantum vortex; see, e.g., [3–5]. The topics are still in the
limelight in condensed matter physics.

The modern quantum condensed matter physics is based
on the concept of the order parameter or, more specifically, the
macrowave function [6]. The macrowave function provides a
useful device to incorporate the vortex degree of freedom in
theory. In this way it is natural to teat the quantized vortex in
the framework of the Landau-Ginzburg theory for the order
parameter of the quantum fluids such as superfluids, super-
conductivity, and Bose-Einstein condensates [7].

In treating condensed matter systems, it is inevitable to deal
with the effect of “noise” or “fluctuations.” The systematic
study of the fluctuation has been one of the central subjects in
nonequilibrium statistical physics [8–11]. The recent trend of
studying random fluctuations has been focused on Brownian
motion, which is facilitated by various physical situations
(see, e.g., [12]). As for the quantum condensates, the most
ready case is caused by the fluctuation of temperature as well
as the effect arising from existence of impurities. The effect of
random noise has been investigated for the superconductivity
vortices (see, e.g., [13–15]) and in a classic article on two-
dimensional superfluid vortices [16].
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In the present article, we address a Brownian motion model
for a quantum vortex gas. The attempt is inspired by the Dyson
theory of Coulomb gas [17], which was studied in connection
with the random matrix theory. We take it up from a renewed
viewpoint as a problem of real vortices in quantum conden-
sates. The starting point is the canonical equation of motion
(Kirchhoff equation) for the vortex center, which is facilitated
by the time-dependent LG theory: namely, we use the complex
order parameter such that it incorporates the coordinate vortex
center. The resultant Hamiltonian is given by a sum of the
logarithmic potential and the harmonic confinement potential.
The basic idea is to construct the Langevin equation by mod-
ifying the canonical equation of motion for a vortex so as to
include the dissipation and random force. This is converted to
the Fokker-Planck (FP) equation by adopting the functional
integral based on the Gaussian white noise for the random
force. The procedure follows a previous article [18], which
developed a general formulation of the stochastic theory of
the Schrödinger equation by refining the formalism so as to
adapt the present purpose. The FP theory indeed provides a
standard framework of the study of random systems (see, e.g.,
[19,20]).

The crux of the present attempt is as follows: The re-
sultant FP equation is regarded as a generalization of the
conventional FP equation [hence we call it a generalized
FP equation (GFP)]. The GFP is characterized by three pa-
rameters; the diffusion constant, the dissipation constant,
and the vortex charge. Keeping the diffusion constant fixed,
there are two cases, which depend on the choice of two
constants: the dissipation (say, μ) and the vortex strength
(κ), namely, (1) μ � κ and (2) μ � κ , which is called
the “overdamping” and “underdamping,” respectively. In
the latter case the GFP is written as a form of the Li-
ouville equation, which can be connected to a transport
equation.
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Our interest is mainly focused on the case of the
overdamping, for which the GFP is described by the non-
Hermitian Schrödinger equation resulting in the standard FP
(or Smolkowski) equation using the “change of phase.” On the
basis of the general formulation, we address several aspects
of the FP equation as well as an asymptotic behavior for the
functional integral.

The content of the paper is as follows: The next sec-
tion gives a brief sketch of the dynamics of the quantum
vortex. In Sec. III a general framework of the Brownian mo-
tion theory is developed. In Sec. IV specific problems are
discussed for the FP equation. Section V is devoted to the
“semiclassical analysis” for the functional integral in the small
diffusion limit. In the last section we give a brief discussion of
the aspect of the underdamping aspect of the generalized FP
equation.

II. DYNAMICS OF THE QUANTUM VORTICES

A. Preliminaries

We start with a brief sketch for the dynamics of the as-
sembly of vortex gas occurring in the quantum boson fluids
and spin system [21,22]. Here we have in mind mainly the
Bose-Einstein condensate of atomic gas [7].

To begin, let us consider the complex order parameter writ-
ten in a polar form, that is, expressed in terms of the density ρ

and the phase φ:

ψ = √
ρ exp(−iφ). (1)

The LG Lagrangian density is written as the sum of two terms:

l = lC − lH

≡ ih̄(ψ∗ψ̇ − c.c.) − H (ψ,ψ∗). (2)

The first term is called canonical term for convention, whereas
the second term represents the Hamiltonian that consists of the
kinetic energy as well as the interaction terms:

H = h̄2

2m
∇ψ∗∇ψ + V (3)

with m being the mass of constituent particle of condensate.
Thus the Lagrangian becomes

l = ρφ̇ − H, H = 1

2
mρv2 + V (ρ), (4)

where v = h̄
m ∇φ gives the velocity field. We restrict the ar-

gument to the case where the potential term is expressed as a
function of the density.

B. Hamiltonian dynamics of planer vortices

The first problem is to construct a dynamical equation for
the vortex center [21]. In the following argument, we con-
sider the vortex in a two-dimensional plane (x, y). We derive
the equation of motion for the center of vortices which are
parametrized by Ri(t ) = (Xi(t ),Yi(t )) (i = 1, . . . , n). To carry
out this we prepare a profile for the density ρ such that the vor-
tex configuration is incorporated. The field argument x is thus
replaced by x → x − Ri(t ). The phase angle φ = tan−1(y/x)

is written in an extended form:

φ =
∑

i

κi tan−1

[
y − Yi(t )

x − Xi(t )

]
≡

∑
i

κiφi, (5)

where the winding number is chosen to be n = 1. The attached
parameter κi represents the vortex charge with |κi| = κ ≡ h̄

m
(namely, the same absolute charge for all vortices). Using the
chain rule ∂φ

∂t = Ẋ · ∂φ

∂X it follows that

LC = m
∑

i

∫
ρκivi · Ṙi d2x (6)

with vi = κi∇φi, the velocity from the ith vortex; in other
words, mρvi ≡ pi defines the canonical conjugate to Ri. In
what follows we write the effective Lagrangian for the as-
sembly of vortices in terms of the vortex center coordinates
(Xi(t ),Yi(t )).

1. Intervortex interaction

Noting the relation ∇φi = κik × ∇ log |x − Ri(t )| [k de-
notes the unit vector in the z direction that is perpendicular to
the (x, y) plane], H turns out to be

H =
∑

i j

κiκ j

∫
ρ∇ log |x − Ri(t )| · ∇ log |x − R j (t )| d2x.

(7)
The profile of density near a vortex is assumed to have a
form ρ(r) = ρ0 f (r), where f (r) is a monotonically increas-
ing function such that f (0) = 0, f (∞) = ρ0. The integral in
(7) is carried out for a pair of vortices, the centers of which
are Ri and R j . Let us write y = x − Ri j with Ri j = Ri − R j .
By partial integration we have

−
∫

∇(ρ∇ log |y|) · log |y − Ri j | d2y,

and noting log |y − Ri j | 	 log |Ri j | [23], the integral turns
out to be − log |Ri j |

∫ ∞
o

dρ

dr dr = ρ0. Thus we arrive at the
familiar form of the effective Hamiltonian for the assembly
of vortices:

Hint = −1

2
mρ0

∑
i j

κiκ j log |Ri − R j |. (8)

2. Confinement potential

Besides this well-known log potential, we have another
term coming from the common confinement potential [7],
which is written as

Hu ∼
∫

�(x, {Ri})∗�(x, {Ri})U (x) d2x.

Taking account of the vortex profile, one sees that
�∗(x)�(x) ∼ ∑

i ρ(x − Ri ). Then the contribution from each
vortex can be approximated by the well-localized function.
To obtain the actual value, we need to subtract the con-
tribution from the uniform background ρ = ρ0. The profile
of the function f (r) can be chosen as the Gaussian form
f (r) = exp[−ar2]; therefore we get the contribution from the
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confinement potential

Hu ∼
∫

ρ0U (x) d2x −
∫

ρ0(1 − f (x − R))

×U (x) d2x = U (R). (9)

As the most typical case, we adopt the harmonic oscillator
form, U = kx2. So the contribution from n vortices is given
by k

∑n
i=1 R2

i . By summarizing the log potential and the con-
finement potential term, we have the effective Hamiltonian

Heff = −1

2
mρ0

∑
i j

κiκ j log |Ri − R j | +
∑

i

kR2
i . (10)

Here we note that there are additional contributions arising
from the pinning effect caused by the presence of impurities,
which we do not use explicitly in the following argument.

3. Canonical equation of motion

We turn to the canonical term LC (the first term of the
Lagrangian). Here instead of calculating LC directly in terms
of the vortex center coordinate R, we derive the equation of
motion by using the differentiation under the integral symbol.
After some manipulation, we obtain

FC
ix = d

dt

∂LC

∂Ẋi
− ∂LC

∂Xi

= m
∫ [

∂ (ρviy)

∂x
− ∂ (ρvix )

∂y

]
d2x. (11)

Here the integral becomes the line integral
∫

ρv · ds, which
yields 2πρ0 by taking account of the boundary condition
ρ(∞) = ρ0, hence we get FC

ix = 2πmρ0Ẏi. In a similar way,
it follows that FC

iy = −mρ0Ẋi. Writing these in terms of the
vector notation, we have

FC
i = d

dt

∂LC

∂Ṙi
− ∂LC

∂Ri
= 2πmρ0(κik × Ṙi ). (12)

From the above result, one can guess the form of the La-
grangian, which is simply given as

LC = 2mρ0

∑
i

κi(YiẊi − XiẎi ). (13)

Thus the effective Lagrangian including the effective
Hamiltonian is given by Leff = LC − Heff . In the following
argument we focus the argument on the special case that
κi = κ for all indices i; namely, all vortices have the same
charge. In this way the equation of motion for the assembly of
vortices becomes

κ̄
dXi

dt
= ∂Heff

∂Yi
, κ̄

dYi

dt
= −∂Heff

∂Xi
, (14)

where we use an abbreviated symbol, κ̄ ≡ 2mρ0κ . This set
of equations of motion implies that the pairs (Xi,Yi ) form
a canonical variable with each other. Alternatively, this is
written in terms of vector notation:

κ̄k × dRi

dt
= ∂Heff

∂Ri
. (15)

This vector equation represents the balance between two types
of forces: the left-hand side represents the “Magnus force,”
and the right-hand side is the potential force.

Thus the present vortex Hamiltonian has just the same form
as the one for the charged particles interacting through the
Coulomb repulsion confined in the harmonic potential.

4. An example of a two-point vortex

For this simplest problem the Hamiltonian becomes

Heff = −1

2
mρ0κ

2 log |R1 − R2| + 1

2
k
(
R2

1 + R2
2

)
. (16)

This can be separated into the relative and center-of-mass
coordinates,

2r = R1 − R2, 2RG = R1 + R2,

by which the Heff is given by the sum

Hr = −1

2
mρ0κ

2 log |r| + kr2, HG = kR2
G. (17)

Thus the equation of motion turns out to be

d

dt
(r2) = 0,

d

dt

(
R2

G

) = 0, (18)

which results in the energy surfaces, Hr = Er, HG = EG. This
case of two vortices will be used for the solution for the FP
equation in a later section.

III. THE BROWNIAN MOTION

A. The Langevin equation

Now we discuss the stochastic aspect on the basis of the
vortex dynamics given above. The effect of fluctuations arises
from a variety of origins mainly caused by impurities. If these
impurities are distributed in an irregular way, the vortex cen-
ters will acquire randomness as a result of, for example, the
effect of scattering. Apart from such a scattering effect among
vortices, the thermal effect may provide the more direct effect.
Then it is natural to expect that the Brownian motion of the
vortex centers occurs, which can be described by a random
fluctuation denoted as ξ .

Besides the random fluctuation, we have to take account
of the effect coming from dissipation, which is required from
the fluctuation-dissipation theorem (see, e.g., [10]). Indeed,
the dissipation can be caused by the inevitable effect of ab-
sorption of the vortex energy caused by an interaction with
environment; more specifically the dissipation arises from the
interaction with the normal fluid component (see, e.g., [16]).

Here we mention an early attempt of the Langevin and
FP approach of the quantum vortex that was worked out in
[16]. This paper gave a dynamical theory of the vortex pairs
of opposite charge aiming at a description of dissociation of
a bound pair of vortices. On the other hand, in the present
attempt we are concerned with a quite different aspect of a
two-dimensional vortex gas, namely, the repulsive Coulomb
gas in the confinement potential.

To be noted here is that the random force ξi acting on
the ith vortex is independent of ξ j , that is, these have no
correlation with each other. Furthermore, the dissipative force
is common to all the vortices, which is denoted by μ. Indeed,
this assumption on the fluctuation and dissipation is simplest
and and most reasonable.
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Now taking account both dissipation and random noise, the
gradient force in Eq. (15) can be simply modified such that

∂Heff

∂Ri
→ ∂Heff

∂Ri
+ μ

dRi

dt
+ ξi.

This modification is somehow a well-known procedure in gen-
eral condensed matter physics. We here borrow the procedure
used for ferromagnetic particles [24], which deals with the
thermal fluctuation of the magnetic moment. In the present
case the magnetic moment is replaced by the velocity of the
vortex center Ṙ. By taking account of this prescription, the
equation of motion is given as follows:

κ̄

(
k × dRi

dt

)
= ∂Heff

∂Ri
+ μ

dRi

dt
+ ξi. (19)

Multiplying k by (19) one obtains

κ̄
dRi

dt
= −Ri ×

(
∂Heff

∂Ri
+ μ

dRi

dt
+ ξi

)
. (20)

Using these two equations (19) and (20), the equation for Ṙi

can be derived [25]:

dRi

dt
= −Ai + ζi, (21)

where we adopt the following scaling of time variable t →
(μ2 + κ̄2)t [26] and Ai and ζi are given as

Ai =
[
μ

∂Heff

∂Ri
+

(
κ̄k × ∂Heff

∂Ri

)]
, (22)

ζi = −(μξi + κ̄k × ξi ). (23)

The expression (23) can be written in terms of (x, y) compo-
nents:

ζ x
i = μξ x

i − κ̄ξ
y
i , ζ

y
i = κ̄ξ x

i + μξ
y
i , (24)

which means the orthogonal transformation in a two-
dimensional plane with the rotational angle, tan � = κ̄

μ
;

namely, (24) represents just a rotation of the original fluctu-
ation ξ , so that the “additive nature” is safely kept.

Without ζ , Eq. (21) is an analogy of the “Landau-Lifschitz
equation,” which is well known in ferromagnetic theory
[24,27]. We note that the vector Ai consists of two terms: the
first term can be called the gradient term, and the second term
the gyration term, which can be a counterpart of the “Magnus
force.” The mutual interplay between these two terms charac-
terizes the stochastic process of the vortex motion, which we
discuss below.

Now we put an Ansatz of the Gaussian white noise for ξi,
which satisfies the correlation〈

ξα
i (t )

〉 = 0,〈
ξα

i (t )ξβ
j (t + u)

〉 = hδαβδi jδ(u), (25)

where the suffix (α, β ) represents (x, y) and δ(u) means the
delta function. The diffusion constant h is assumed to take a
common value for all components i. The correlation (25) is
transferred to the resultant random force (23) ζ = (ζ x, ζ y);
we have that the same form of the correlation〈

ζ α
i (t )

〉 = 0,〈
ζ α

i (t )ζ β
j (t + u)

〉 = (κ̄2 + μ2)hδαβδi jδ(u). (26)

Taking into account this feature, it is possible to replace
(κ̄2 + μ2)h → h in the following argument. Thus the above
set of the Langevin equations obeys a set of the random forces
ζi:{i = 1 ∼ n} which satisfy the common correlation relation
independent of the vortex indices.

B. The functional integral and non-Hermitian
Schrödinger equation

If we recall that constituent vortices are independent of
each other, the probability distribution for an assembly of
vortices is given by the product of the Gaussian noise for
(ζi:i = 1 ∼ n), which becomes the standard Gaussian func-
tional form [28]:

P{[ζi(t )]} =
n∏

i=1

exp

[
− 1

2h

∫ t

0
ζ 2

i (t ) dt

]
. (27)

Using this distribution, the transition probability from R(0) to
R(t ) is given by the path integral

K[R(t )|R(0)] =
∫ R(t )

R(0)

∏
i

exp

[
−

∫ t

0

ζ 2
i (t )

2h
dt

]
D[ζi(t )],

(28)
where the notation for a set of vortex centers R ≡
(R1, . . . , Rn) is used. With this expression, the process of
transition caused by the random noise can be built in an
implicit way.

In order to explicate the process of building up the path
integral over the orbits in the space of vortex center R, we
adopt the following steps: To ensure the Langevin equation,
we insert the expression of the δ-functional integral

∫ n∏
i=1

∏
t

δ[Fi(t ) − ζi(t )]DFi(t ) = 1, (29)

where we use the notation

Fi = dRi

dt
+ Ai (30)

and
∏

t means the continuous product over time interval [0, t].
Using the above delta functional, the transition rate (28) can
be brought to the path integral

K[R(t )|R(0)] =
∫ R(t )

R(0)

∏
i

exp

[
−

∫ t

0

ζ 2
i (t )

2h
dt

]

×
n∏

i=1

∏
t

δ[Fi(t ) − ζi(t )]DFi(t )D[ζi(t )],

(31)

which enables us to derive the FP equation in most direct way.
The intermediate step will be given in Appendix A. Noting
this result, we use an “imaginary time trick,” that is, we define
τ = −it , and then the propagator is written in the quantum
mechanical path integral form

K[R(τ )|R(0)] =
∫

exp

(
i

h

∫
L dτ

)
D[R]. (32)
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Here the Lagrangian becomes

L =
∑

i

[
1

2

(
dRi

dτ

)2

+ iAi · dRi

dτ

]
− W (33)

with the potential function

W =
∑

i

(
A2

i

2
− Mih

)
, Mi = 1

2

∂

∂Ri
· Ai, (34)

where the second term in W comes from the Jacobian written
in an imaginary time form (see Appendix A):

J = exp

(
i

h

∫ τ

0

∑
i

Mih dτ

)
. (35)

Now by introducing the “wave function” �(R, τ ), we write
the integral equation:

�(R, τ ) =
∫

K[R(τ )|R(0)]�(R, 0) dR(0). (36)

Following the standard procedure of a Feynman path integral,
we obtain the Schrödinger equation [29]:

ih
∂�

∂τ
= 1

2

∑
i

(pi − iAi )
2� + W �, (37)

where p = −ih ∂
∂R . This form of the wave equation has the

same form as the particle in the presence of the vector po-
tential A. We note that (37) is apparently non-Hermitian in
general (see, e.g., [30]); more details on this point will be
discussed later).

By replacing the imaginary time τ with the original
(genuine) time t , namely, τ → −it , and rewriting the wave
function � by the distribution function P, then one arrives at

∂P

∂t
= h

2

∑
i

∂2P

∂R2
i

,

+
∑

i

∂

∂Ri
·
{[

μ
∂Heff

∂Ri
+

(
κ̄k × ∂Heff

∂Ri

)]
P

}
. (38)

Here use is made of the relation (∇ · A)P + A · ∇P = ∇ ·
(AP). Equation (38) is the main consequence of the present
paper, though it looks simple enough. This can be regarded
as a two-dimensional generalization of the FP (Smolkowski)
equation used in Dyson’s theory [17], where the second term
in A, namely, the gyration term is missing. We rewrite this
generalized FP equation in the form of the conservation of
current:

∂P

∂t
+ ∇ · j = 0 (39)

with ∇ ≡ ∑
i

∂
∂Ri

. The probability current is defined as the
sum

j = j1 + j2,

j1 = −h

2
∇P − μ

∑
i

∂Heff

∂Ri
P, (40)

j2 = k ×
(

−h

2
∇P − κ̄

∑
i

∂Heff

∂Ri
P

)
. (41)

These expressions are significant; the first term of the re-
spective terms stands for a diffusion effect, and the second
term represents the “transport of probability mass,” namely,∑

i
dRi
dt P. This feature suggests that the FP equation thus ob-

tained describes a diffusive behavior of the vortex gas.
Now we recall that the vector A consists of two terms: the

gradient and the gyration terms. These two terms are con-
trolled by a competition between two parameters, κ̄ and μ, the
vortex charge and the magnitude of dissipation, respectively.
We have two extreme cases. (1) The relation μ � κ holds,
that is, the gradient term becomes dominant, and the gyration
term is discarded in (38). This case is called “overdamping.”
(2) On the other hand, if μ � κ̄ , this corresponds to “under-
damping,” for which the gyration is dominant. The original
idea to separate these cases dates back to the articles [31,32].

In what follows, we restrict the argument to the overdamp-
ing approximation, and the underdamping case will be briefly
sketched in the last section. Thus we obtain

∂P

∂t
= h

2

∑
i

∂2P

∂R2
i

+
∑

i

μ
∂

∂Ri
·
[(

∂Heff

∂Ri

)
P

]
≡ LFPP. (42)

If (42) is regarded as a nonperturbed term, the term coming
from the gyration j2 can be treated as a perturbation.

IV. SPECIFIC ASPECTS OF THE FP EQUATION

A. Statistical mechanical consequences

1. Statistical average using the FP equation

We first examine the general properties concerning the FP
equation. Here we take up a typical example, the evolution of
the statistical average for the function 〈KR1, . . . , Rn)〉. Using
the FP equation this satisfies the equation

μ
d
〈
K

〉
dt

= −
∑

i

〈
∂Heff

∂Ri

∂K

∂Ri

〉
+ h

2

∑
i

〈
∂2K

∂R2
i

〉
. (43)

As a special case, we consider the moment of the vortex
center: K = ∑

i R2
i , for which we have

μ
d〈K〉

dt
=

(
hN

2
− k2

)
− 2k〈K〉, (44)

which leads to

〈K〉 = K0

[
1 − exp

(
−2k

μ
t

)]
(45)

with K0 = 1
μ

( hN
2 − k2).

2. Stationary distribution: Two-dimensional Coulomb gas

Let us consider the stationary state, namely, distribu-
tion function satisfies ∂P

∂t = 0. If we put an Ansatz P =
exp[−βHeff ] and substitute this into (42), we get the relation

(
hβ

2
− μ

){∑
i

[
∂2Heff

∂R2
i

− β

(
∂Heff

∂Ri

)2]}
= 0. (46)
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From the requirement that this relation should hold for arbi-
trary Hamiltonian, we get

hβ

2
= μ, (47)

which is nothing other than the content of the fluctuation-
dissipation relation [10]. In this way the equilibrium state of
the assembly of vortices is realized as the two-dimensional
Coulomb gas [17], for which P = exp[−βHeff ] becomes the
Boltzman factor

P = exp

[
κ2β

∑
i j

log |Ri − R j |
]

× exp

(
−1

2
kβ

∑
i

|Ri|2
)

(48)
with β ≡ 1/kBT being the inverse temperature. It is to be
mentioned that exp[−βHeff ] is the eigenfunction of LFP with
the zero eigenvalue, namely, LFP[exp(−βHeff )] = 0 (see the
argument below).

B. Reduction to a quantum mechanical many-particle system

As has been noted in the previous section, the “wave equa-
tion” (37) is a non-Hermitian Schrödinger equation. In the
overdamping case, for which the gyration term is discarded,
one can eliminate the vector potential A by adopting the
change of phase [33], � = exp(−i f )�̃, where f is chosen
such that the following equation holds:

∇ f = 1

h

∑
i

Ai (49)

from which one sees that f is proportional to Heff ; hence
noting the relation (47), then we write the transformation like

P = exp

(
−βHeff

2

)
P̃. (50)

Thus one can reduce the FP equation to the familiar form of
the Schrödinger-type equation for P̃:

∂P̃

∂t
= h

2

∑
i

∇2
i P̃ + μ

[
1

2

∑
i

∇2
i Heff

− β

4

( ∑
i

∇iHeff

)2]
P̃ ≡ ĤFPP̃, (51)

ĤFP = exp

(
βHeff

2

)
LFP exp

(
−βHeff

2

)
, (52)

which is explicitly written as

∂P̃

∂t
=

[
h

2

∑
i

∇2
i − V (R1, . . . , RN )

]
P̃ ≡ ĤFPP̃,

V = μ

(
B

∑
i

R2
i + A

∑
i, j

1

|Ri − R j |2
)

,

A =1

4
(mρ0)2κ4, B = 4k2 (53)

up to some additional constant. We see that the following
equation holds:

ĤFP

[
exp

(
−βHeff

2

)]
= 0,

which indicates that exp[− βHeff

2 ] ≡ P̃0 is an eigenfunction of
ĤFP corresponding to zero eigenvalue. Here (53) is a typical
two-dimensional many-body problem, which had once been
studied as a major topic (e.g., [34,35]), for which a brief
sketch will be given in Appendix B.

C. Special case of two vortices

For this case, as is seen from (17), the relative and the
center-of-mass coordinates are separated, and one can put
aside the center-of-mass degree. Hence we can treat the prob-
lem in such a way that one vortex is fixed at the origin,
say, R2. So let us write the “wave function” in the form
P̃ = exp[−εt]G, then it turns out to be[

h

2
∇2 + (ε − V (r))

]
G = 0, (54)

where r ≡ |R1|, and hence the potential becomes

V (r) = Br2 + A

r2
. (55)

Let us put G(r, θ ) = v(r)u(θ ) and choose the angular part to
be constant.

The time-dependent distribution function (the solution for
the reduced FP equation) is written in the form

P̃(r, t ) = P̃0(r) +
∑
n=0

cn(t ) exp(−εnt )Gn(r). (56)

Here we need to separate the zero energy solution from the
other parts and the coefficients cn(t ) are determined by the
initial condition P̃(r, 0), which will be given below. We first
solve the eigenvalue equation (54), for which we change the
eigenfunction: v(r) = √

ru(r), then (54) turns out to be

d2u

dr2
+ 2

r

du

dr
+

[
ε −

(
Br2 + A

r2

)]
u = 0, (57)

where A shifts by an amount 1
4 , namely, A → A − 1

4 : The
eigenvalue equation is known to be analytically solved [36],
from which we simply borrow the result: namely, by putting
ξ = √

2B/hr2, u(r) satisfies

ξ
d2u

dξ 2
+ 3

2

du

dξ
+

[
n + s + 3

4
− ξ

4
− s(s + 1/2)

ξ

]
u = 0,

(58)
where s, n is settled such that 2s(s + 1) = √

B/h and√
B/hε = 4(n + s) + 3. Hence the eigenvalue ε is given by

εn =
√

hB

2

[
4n +

√
4(A − 1/8)

h

]
(59)

with n being the nonnegative integer. From this expression
A � 1/8 should hold. The corresponding eigenstate is given
by the hypergeometric function

un(ξ ) = F

(
− n, 2s + 3

2
, ξ

)
. (60)

014130-6



BROWNIAN MOTION THEORY OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW E 106, 014130 (2022)

Hence we obtain the solution up to the lowest “excited state,”
namely, by choosing only the case n = 0, 1:

P̃(r, t ) = exp

(
− βHeff

2

)
[P̃0 + c0u0(r) exp(−ε0t )

+ c1u1(r) exp(−ε1t )]. (61)

In this way, we see that in the limit of t → ∞, the equilibrium
state is recovered: P 	 exp(−βHeff ). The above result can be
used for a basis of the more complicated system.

Here a remark is in order concerning the above solution.
The problem is connected with the confinement harmonic
potential that is reflected in the coefficient B. About this point,
we note that it is possible to choose the more general case that
the confinement potential is anisotropic and even letting it to
allow time varying. By extending the problem to such a gen-
eral case, there may appear a variety of problems; e.g., if this
anisotropy of the harmonic oscillator changes adiabatically,
we expect adiabatic control of the stochastic behavior of the
vortex system.

V. SMALL DIFFUSION LIMIT

If we get back to the starting functional integral, it is in-
triguing to examine an asymptotic limit in which the diffusion
constant h is regarded as small. We here look for an alternative
way to obtain an approximate scheme so as to approach to ran-
dom behavior for the vortex gas apart from the FP equation.

We consider a system of two vortices for which one vortex
is pinned at the origin as before; hence the functional integral
is written in the form

K =
∫

exp

[(
− 1

h

∫
Ldt

)]
D(r).

Here the “Lagrangian” is given as

L =
(

dr
dt

+ μ
∂Hr

∂r

)2

. (62)

Using the polar coordinate, one write dr
dt = ṙr̂ + rθ̇ θ̂ (r̂ and θ̂

stand for the unit vector of radial and its perpendicular direc-
tion). In the limit of h 	 0, the functional integral is treated by
the stationary phase approximation, which is written in a form
Kcl = exp(− 1

h Scl ). Here Scl denotes the classical action that
satisfies the extreme condition δS = 0. The extreme condition
leads to the Euler-Lagrange equation. We have the contribu-
tion from the deviation of an extreme path that is written in
terms of the Gaussian functional integral with respect to the
deviation from the extreme path. However, we discard this
for the sake of simplicity. We note a peculiar feature of the
Lagrangian: The variable θ does not appear in the Lagrangian,
namely, θ is cyclic coordinate, so the “momentum” conjugate
to θ is the constant of motion, which is given by r2θ̇ = C.
Thus, following the well-known procedure in analytical dy-
namics, we construct the Rouse function [37], in which the θ

variable is eliminated to be

R = Cθ̇ − L = −
(

ṙ + μ
∂Hr

∂r

)2

+ C2

r2
. (63)

Thus the equation of motion is derived using the Euler-
Lagrange equation

d

dt

(
∂R

∂ ṙ

)
− ∂R

∂r
= 0.

By substituting the solution (classical orbit) of this equa-
tion into the expression L:

Kcl = exp

{
− 1

h

∫ t f

ti

[(
ṙ + μ

dHr

dr

)2

+ C2

r2

]
dt

}
. (64)

We look for a further reduced form of Kcl ; that is, we consider
the case that C is regarded as small enough such that it is
treated as perturbation parameter. Hence we can omit the last
term in (63); so the equation of motion becomes in a simple
form

ṙ + μ
dHr

dr
= 0, (65)

which is solved to lead to the orbit, (r, θ ):

r2(t ) = α + (
r2

i − α
)

exp

(
− 2μ

k
t

)
, θ = C

∫ t

ti

dt

r2
(66)

putting α = mρ0κ
2

2k . The orbit describes the spiral which starts
with the initial point r = ri and converges to the limiting
radius, r = √

α. Then noting that the first integral in Kcl

vanishes as a result of (65), we have

Kcl = exp

[
− C2μ

kh

∫ r f

ri

dr

r(r2 − α)

]
. (67)

Then we get Kcl (r f , ri ) = exp(X ) with

X = β

[
log

(
r2

f − α

r2
i − α

)
− log

(
r f

ri

)]
, (68)

where we put β = C2μ

2khα
. Using the transition amplitude thus

calculated, the probability is calculated to be

P(r f ) =
∫ ∞

0
Kcl (r f , ri )P(ri ) dri, (69)

and choosing the initial distribution P(ri ) = δ(ri − r0), one
gets

P(r f ) =
[ r0

(
r2

f − α
)

r f
(
r2

0 − α
)]β

. (70)

This result indicates that the probability beyond the limiting
radius vanishes.

VI. AN ASPECT FROM THE TRANSPORT THEORY

Up to now our consideration of the generalized FP equa-
tion has been restricted to the overdamping case, that is,
μ � κ̄ . Owing to this restriction, the standard FP equation is
converted to the Schrödinger equation, by which we can use
the resources of quantum mechanics. Now there arises a prob-
lem: What about the opposite case, namely, the current j2 is
dominant. That is, the extremely opposite limit μ � κ̄ holds
together with the simultaneous restriction that h is enough
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small to be discarded, then (38) turns out to be

∂P

∂t
= κ̄

∑
i

∂

∂Ri
·
[(

k × ∂Heff

∂Ri

)
P

]
, (71)

which is alternatively written as the Liouville equation

∂P

∂t
= −{P, κ̄Heff}, (72)

where {·, ·} denotes the Poisson bracket

{A, B} =
∑

i

(
∂A

∂Xi

∂B

∂Yi
− ∂A

∂Yi

∂B

∂Xi

)
.

The right-hand side of (72) is proportional to ∇ · (
∑

i viP),
which can be the divergence of the probability flow with the
“phase space velocity” for each vortex:

vi

(
= dRi

dt

)
= k × ∂Heff

∂Ri
.

Thus (72) apparently suggests that there does not occur the
equilibrium state in the vortex motion, whereas the gradient
term in (38) drives the equilibrium state. In other words, the
underdamping regime means that the dissipative as well as
fluctuation force is rather weaker than the repulsive forces
acting between vortices. As a result of this, there might not
maintain the stable equilibrium state among the vortex gas.
As such, if the remaining term of (42) coming from j1, written
as G, namely,

G =
∑

i

(
h

2

∂2P

∂R2
i

+ μ
∂

∂Ri
· ∂Heff

∂Ri
P

)
, (73)

which can be treated as if the “collision term,” (72) can con-
nect with the transport equation [38]:

∂P

∂t
− {κ̄Heff , P} = G. (74)

This can be treated by applying the perturbation scheme using
an iteration procedure. Let us write P = P0 + P1, where P0

means the unperturbed term, which satisfies the stationary
equation {Heff , P} = 0. By introducing the linear operator de-
fined as

{Heff , P} ≡ LH P, (75)

then we have the equation for the perturbed term P1,

∂P1

∂t
− LH P1 = G(P0), (76)

and G(P0) is the one for which the unperturbed solution P0

is substituted in (73). The formal solution for (76) can be
obtained with the aid of the method of variation of parameters.
First, the homogenous equation is formally solved as

P1(t ) = exp(LHt )P1(0). (77)

To look for a special solution of the inhomogeneous equation,
we put P(t ) = exp(Lt )Q(t ). By substituting this into (76) the
equation for Q is derived as

dQ

dt
= exp(−LHt )G(P0), (78)

from which we obtain a special solution

Ps(t ) = exp(LHt )
∫

exp(−LHt ′)G(t ′) dt ′. (79)

This serves as a formal perturbation solution for the transport
equation. The more detailed analysis will be left for a future
study.

VII. CONCLUDING REMARKS

The stochastic approach to the quantum vortex gas in two
dimensions has been investigated. The starting point is the
Hamiltonian dynamics for the vortex gas in which the co-
ordinates (Xi,Yi ) form a canonical pair each other. This can
be transcribed to the Langevin equation with the Gaussian
white noise. Owing to the white noise, the Langevin equa-
tion is converted to the functional integral, which results in
the generalized Fokker-Planck (FP) equation. In particular we
have examined the overdamping limit yielding the standard
FP equation, for which we have examined several aspects in
detail. As for the underdamping case, we have discussed it
briefly, but there may still remain a variety of problems to
be explored. The study will be left for future research. As
a final remark, it would be interesting to address the prob-
lem to extend the present Langevin and FP formalism to the
three-dimensional dynamics that shows an intricate process of
entanglement of vortex curves [39,40].

APPENDIX A: REDUCTION TO THE PATH INTEGRAL

Here a prescription is given for the some step leading to
the path integral form (32). Using the Fourier transform of the
delta functional in (31), it follows that

K[R(t )|R(0)] =
∫ R(t )

R(0)

∏
i

exp

[
−

∫ t

0

ζ 2
i (t )

2h
dt

]

×
n∏

i=1

∏
t

exp{2π i
∫

λi(t )[Fi(t ) − ζi(t )] dt}

× DFi(t )D[ζi(t )]D[λi(t )]; (A1)

then by carrying out the Gaussian functional integral over ζ (t )
and λ(t ), one gets

K[R(t )|R(0)] =
∫

exp

[
− 1

2h

∫ t

0

∑
i

F2
i (t ) dt

]
n∏

i=1

DFi.

(A2)
This is converted to the functional integral over the vortex
centers:

K[R(t )|R(0)] =
∫ R(t )

R(0)
exp

[
− 1

2h

∫ t

0

∑
i

(
dRi

dt
+ Ai

)2

dt

]

×
∏

i

J (Ri )D[Ri]. (A3)

Here J (R) is the functional Jacobian given by

J (R) = det

(
δF(R(t ))
δR(t ′)

)
, (A4)

014130-8



BROWNIAN MOTION THEORY OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW E 106, 014130 (2022)

and after some steps of calculating the functional determinant
[18], this leads to

J = exp

(∫ t

0

1

2

∂

∂R
· A dt

)
. (A5)

Noting the exponential form, this factor can be incorporated
into the action function, and hence it plays a crucial role in
determining the form of the FP equation given in the main
text.

APPENDIX B: A BRIEF SKETCH FOR THE N-PARTICLE
PROBLEM

We give an outline for treating the reduced quantum
many-particle system described by the short-range repulsive
force coming from the inverse square interaction that balances
with the attractive force coming from the harmonic potential.
We adopt the procedure of the method of the collective
coordinate [34]. The central idea is to separate the original
particle degree of freedom into the collective degree and
the internal one. In what follows we borrow it aiming at an
application to the present problem. According to Tomonaga,
a natural candidate of the collective coordinate for the present
case can be chosen as Qc = 1

2

∑
i(X

2
i − Y 2

i ) together with the
conjugate momentum

Pc = 1

2

∑
i

(
Xi

∂

∂Xi
− Yi

∂

∂Yi

)
. (B1)

The commutation relation for these becomes

[Qc,Pc] = 1

NR2
0

〈∑
i

(
X 2

i + Y 2
i

)〉
, (B2)

where 〈·〉 is an average appropriately defined and R0, which
is a circle radius, chosen such that (B2) satisfies the canonical
commutation relation. The quantum mechanical Hamiltonian

Heff is thus written as a form of the coupling between the
collective coordinate Qc,Pc and the internal coordinate, say,
(Qin,Pin):

ĤFP =H0(Qin,Pin) + H1(Qin,Pin)Qc

+ H2(Qin,Pin)Q2
c + 1

2I
P2

c . (B3)

Having accomplished the separation of variables, the wave
function can be expressed as the direct product:

P̃ = ψc(Qc)ψin(Qc, {Qin,Pin}). (B4)

When the adiabatic separation is assumed, the internal co-
ordinates are fixed and eliminated by integrating over them,
namely, H0,H1, and H2 are replaced by the expectation value
with respect to the internal state ψin which results in the
wave function, which is written in terms of the collective
coordinate Qc.

As a special case, we consider three vortices of special
configuration. Namely, we suppose that the third and second
vortices are pinned at the origin, R3 = (0, 0) and R2 = (1, 0),
respectively, and hence the stationary counterpart of the eigen-
value equation becomes Heff P = εP with the “Hamiltonian”
(53):

Heff = H0 + V,

H0 = −h

2
∇2

1 + Bμ

μ2 + κ̄2
R2

1 + Aμ

μ2 + κ̄2

1

R2
1

,

V = Aμ

μ2 + κ̄2

1

(X − 1)2 + Y 2
. (B5)

The crude estimate for this can be carried out by applying the
perturbation procedure if H0 is regarded as nonperturbative
term and treating V as the perturbation: The solution for H0

has been obtained for the two vortices case, and the lowest en-
ergy change can be simply obtained by taking the expectation
value with respect to the lowest eigenstate state of H0.
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