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Slow dynamics and large deviations in classical stochastic Fredkin chains
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The Fredkin spin chain serves as an interesting theoretical example of a quantum Hamiltonian whose ground
state exhibits a phase transition between three distinct phases, one of which violates the area law. Here we
consider a classical stochastic version of the Fredkin model, which can be thought of as a simple exclusion
process subject to additional kinetic constraints, and study its classical stochastic dynamics. The ground-state
phase transition of the quantum chain implies an equilibrium phase transition in the stochastic problem, whose
properties we quantify in terms of numerical matrix product states (MPSs). The stochastic model displays slow
dynamics, including power-law decaying autocorrelation functions and hierarchical relaxation processes due to
exponential localization. Like in other kinetically constrained models, the Fredkin chain has a rich structure in its
dynamical large deviations—which we compute accurately via numerical MPSs—including an active-inactive
phase transition and a hierarchy of trajectory phases connected to particular equilibrium states of the model. We
also propose, via its height field representation, a generalization of the Fredkin model to two dimensions in terms
of constrained dimer coverings of the honeycomb lattice.
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I. INTRODUCTION

The Fredkin spin chain [1,2] is a one-dimensional lattice
model with local three-body interactions, whereby hardcore
particles can hop to adjacent sites if allowed by constraints
involving next-to-nearest neighbors. This model has been of
interest in the quantum many-body community over the last
few years for a number of reasons. In its original formu-
lation [1,2], the Fredkin chain can be expressed exactly as
an equal superposition of all Dyck paths, i.e., random walk
(RW) excursions, with appropriate endpoints, with an entan-
glement entropy which scales logarithmically in system size,
thus violating the area law [1–4]. Furthermore, the model
has slow unitary evolution [5–8] due to dynamical jamming.
With the addition of particular potential energy terms, the
model features a ground-state phase transition between states
of bounded and extensive entanglement entropy [9,10]. These
interesting properties have brought about further studies into
generalized Fredkin models [11], including versions which
present quantum scars [12].

Dynamical constraints, such as those present in the Fredkin
model, are responsible more generally for many interesting
phenomena in many-body dynamics. A striking example of
this are the kinetically constrained models (KCMs) of struc-
tural glasses [13,14]—simple lattice models equipped with
local dynamical constraints, leading to slow relaxation and
dynamical heterogeneity [15,16]. Such models can also be
considered as systems under closed unitary [17–20] and open
dissipative [21–23] quantum dynamics. A recent example of
these is the quantum PXP model [24,25] of Rydberg atoms

in optical lattices under blockade conditions, which has been
shown to exhibit nonthermal eigenstates (often called quan-
tum scars [26]). Another area where dynamical constraints
lead to interesting nonequilibrium dynamics is in determin-
istic cellular automata [27–43] (for a review, see Ref. [44]).
Recently, cellular automata circuits have also been used to
study Fredkin-like systems [45,46], revealing a universality
class of hydrodynamics. While the connection of the Fredkin
quantum spin chain to stochastic dynamics has been previ-
ously mentioned [2], it has not yet been extensively explored
(other than briefly in Ref. [47]). Here we provide such sys-
tematic study of both typical dynamics and rare fluctuations.

Classically, the Fredkin model resembles the simple ex-
clusion process (or SEP, for reviews see Refs. [48,49]). Like
the SEP, it describes particles hopping stochastically to neigh-
boring empty lattice sites with at most one particle per site.
The key difference is the presence of further local kinetic
constraints to motion. These, together with specific boundary
conditions, specifically that of an open segment with fixed
boundaries, restrict the dimensionality of the state space.
For example, for a length N = 2M chain half filled with
M particles, the dimensionality is the Catalan number CN =

1
M+1

(2M
M

)
rather than the binomial coefficient

(2M
M

)
. Although

the difference in configurational entropy is not extensive, this
constrained state space plays an important role in the dynam-
ics, as we explain below.

SEPs and KCMs display interesting dynamical properties
which can be studied with large deviation (LD) methods (for
reviews, see Refs. [50–53]). A central result in the dynamics
of these systems is the existence of phase transitions in the
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space of trajectories, indicated by singularities in the LD func-
tions that quantify the dynamical fluctuations in the long-time
limit, both in terms of time-integrated currents [54–57], or
dynamical activities [58–62]. In the case of the Fredkin model,
a preliminary study [47] indicated that it also displays LD
transitions. Here we make this finding concrete by studying
LD functions using matrix product states (MPSs).

The paper is organized as follows. In Sec. II, we start
by defining the model and reviewing its basic properties.
We highlight its relationship to Catalan combinatorics and
RW excursions [63]. In Sec. III, we consider the equilibrium
states which follow from the properties of the ground state
of the quantum problem [1,9]. We study the properties of the
equilibrium phases in detail by means of numerical density
matrix renormalization group (DMRG) [64]. An interesting
observation is that there are three distinct equilibrium phases
and a transition between them, despite the fact that this is
a one-dimensional system with local dynamical rules. This
apparent contradiction with the Landau principle is a conse-
quence of the constrained configuration space of the model.
In Sec. IV, we study the relaxation dynamics. As in the case
of the quantum model [8], the stochastic Fredkin spin chain
exhibits slow dynamics. We provide evidence for power-law
decaying autocorrelations, and for a pattern of hierarchical
relaxation when quenched from extremal initial states into
the different equilibrium phases. In Sec. V, we study the LD
statistics of dynamical observables by means of numerical
MPSs. As in other constrained models, the phase transitions
at the LD level underpin the slow dynamics and fluctuations
seen in typical relaxation trajectories. We reveal the existence
of an active-inactive transition, as in other KCMs, but also
a hierarchy of trajectory transitions connected to hierarchical
relaxation dynamics. In Appendix B, we speculate on a possi-
ble generalization of the Fredkin model to a two-dimensional
setting defined in terms of fully packed dimers on the honey-
comb lattice (that is, rhombus coverings of the plane). We give
our conclusions in Sec. VI.

II. MODEL

The Fredkin model is defined in terms of particles hopping
on a lattice of N sites with binary occupation, n j = 0 (for
empty or down) or 1 (for occupied or up) with j = 1, · · · , N .
The system evolves under stochastic continuous-time Markov
dynamics with generator

W =
N−2∑
i=2

fi{c[σ+
i σ−

i+1 − (1 − ni )ni+1]

+ (1 − c)[σ−
i σ+

i+1 − ni(1 − ni+1)]}, (1)

where σ±
i are Pauli creation and annihilation operators on site

i. The factor in curly brackets in each term is the same as
the local generator of the asymmetric SEP (ASEP) [48,49],
with rates for hops to the left or right given by c and 1 − c,
respectively. What distinguishes the Fredkin model from the
ASEP is the kinetic constraint

fi = ni−1 + (1 − ni+2), (2)

FIG. 1. Fredkin spin chains. (a) The local stochastic transition
rates for neighboring occupied and unoccupied sites, given by all
choices of their neighbors. The fourth transition is not allowed.
(b) The disallowed configuration change in the height representation.
The troughs (· · · 0011 · · · ) are locally immobile. (c) An example
configuration in the chosen symmetry sector. The top shows the
RW representation of the height field, which must always satisfy
h > 0. The middle is the corresponding particle representation. The
bottom is in terms of Dyck words, where opening “(“ must always
be matched with a closing ”)”.

which means that hopping between sites i and i + 1 is not
allowed if ni−1 = 0 and ni+2 = 1, see Fig. 1(a) [65]. In Eq. (1),
we are considering open boundary conditions on a segment
[1, N] with no injection/ejection of particles at the bound-
aries. The fixed sites at the edges, which are not acted on by
the generator, we fix to be n1 = 1 and nN = 0.

Note that at c = 1/2, Eq. (1) is equivalent to the quantum
Hamiltonian of the original Fredkin model defined in Ref. [1],
up to a minus sign and boundary terms. For c �= 1/2, the gen-
erator Eq. (1) obeys detailed balance despite the asymmetry
in the hopping rates [66], meaning that for all values of c we
expect to find an equilibrium stationary state of W . Notice
that under a similarity transformation (see below), it becomes
equivalent to the deformed Fredkin model of Ref. [9].

The model discussed here has various symmetries. The
most obvious one is the conservation of the total number
or particles (or occupied sites): M = ∑

i ni. This property is
shared with the SEP. The constraint Eq. (2) gives rise to a
further subdivision of each subspace of fixed M, which is most
easily understood by a representation of the allowed moves in
terms of matched brackets [1]. In this representation, particles
and holes correspond to opening and closing parentheses, and
the dynamics respects normal matching rules. Thus the move

· · · 0101 · · · ←→ · · · 0011 · · · , (3)

· · · )()(· · · ←→ · · · ))((· · · (4)

is forbidden because both sides cannot simultaneously be
matched configurations [this forbidden transition is shown
in Fig. 1(b)]. Thus a complete specification of a subspace
of allowed configurations involves specifying the M pairs of
matched brackets, a unmatched opening brackets (particles),
and b unmatched closing brackets (holes) for a total N =
2M + a + b.
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For concreteness, here we will focus on the case of half
filling by fully matched particles and holes, i.e., M = N/2 a =
b = 0. In this case, the accumulated number of particles start-
ing from the left is never smaller than the accumulated number
of holes (that is, the sector that is dynamically connected to
having all particles to the left and all holes to the right, see
below), cf. Ref. [1]. We call this sector D.

It is convenient to represent a configuration x = n1:N also
in terms of a height field defined as

hi(x) =
i∑

j=1

Zj = hi−1(x) + Zi, (5)

with boundary condition h0 = 0, and where Zi = 2ni − 1. For
all configurations x ∈ D, we have hi(x) � 0 for all i. If we
think of the space direction as time and a particle (hole)
representing a step up (down), then D is the space of all paths
that correspond to RW excursions [63], that is, random paths
that return to the origin while never crossing the horizontal
axis. (In contrast, for the SEP in the height representation at
half filling, the space of dynamically connected configurations
is that of RW bridges, which are also constrained to return to
the origin but can cross the horizontal axis.). Excursions are
also known as Dyck paths. An example configuration is shown
in Fig. 1(c) with each of the representations.

III. EQUILIBRIUM STATICS

To determine the equilibrium properties of the model, we
need to find the state |ss〉 annihilated by Eq. (1). Let us con-
sider as an observable the area under the height profile of a
configuration x,

A(x) =
N∑

i=1

hi(x) =
N∑

i=1

(N + 1 − i) Zi. (6)

It is then easy to see that the the stationary state to the dynam-
ics Eq. (1) is given by [9]

|ss〉 = Nc

∑
x∈D

(
c

1 − c

) 1
2 A(x)

|x〉 , (7)

with Nc a c-dependent normalization constant to make
〈− |ss〉 = 1, where 〈−| = ∑

x∈D 〈x| is called the flat state.
The connection to RW excursions means that this prob-

ability distribution is related to the Airy function [63,67].
The properties of the stationary state at arbitrary c can also
be understood from the properties of the ground state of the
corresponding quantum model [1,9]. That is, if we perform
a similarity transformation of Eq. (1) (cf. the ASEP with the
same boundary conditions, e.g., Ref. [68]),

H = −P−1/2 W P 1/2, (8)

where P 1/2 is the diagonal matrix of the square root of con-
figuration probabilities,

〈x|P 1/2|x〉 = N 1/2
c

(
c

1 − c

) 1
4 A(x)

, (9)

we get the Hamiltonian

H = −
N−2∑
i=2

fi[
√

c(1 − c)(σ+
i σ−

i+1 + σ−
i σ+

i+1)

− c(1 − ni )ni+1 − (1 − c)ni(1 − ni+1)], (10)

whose ground state is |ψ〉 = P 1/2 ∑
x∈D |x〉. The transforma-

tion to a Hermitian form shows that, despite the asymmetric
hopping when c �= 1/2, the Fredkin model obeys detailed
balance and consequently the stationary state Eq. (7) is an
equilibrium one.

The properties of the ground state of Eq. (10) are well un-
derstood from previous studies [10,11]. Here we restate them
from the point of view of the equilibrium state of the stochas-
tic model, using MPSs (see reviews, e.g., Refs. [69–71]).

A. Exact equilibrium MPS at c = 1/2

From the connection to RW excursions at c = 1/2 the
equilibrium state |ss〉 can be written exactly as an MPS,

|ss〉 =
∑
{n1:N }

(
i|B(1)

n1
· · · B(N )

nN
| f

)|n0:1〉, (11)

where B( j)
n are site-dependent tensors and (i| and | f ) appro-

priate boundary vectors in the auxiliary (or bond) space of
the MPS (we use rounded brackets to distinguish them from
vectors in configuration space).

Consider first the slightly simpler problem of the symmet-
ric SEP (SSEP), whose generator is given by an operator like
Eq. (1) but without a constraint, fi = 1. If we consider the
same boundary conditions as for the Fredkin model, but with
extra terms in Eq. (1) that allow particle hops between sites
j = 1, 2 and N − 1, N (no longer prevented in the absence of
a constraint), then the SSEP configurations at half filling are
those of RW bridges. If the height field hj describes the posi-
tion of the RW after step j, the exact transition probabilities
at step j for generating bridges of N steps are

T br
j (h → h ± 1) = 1

2

(
1 ∓ h

N + 1 − j

)
(12)

for |h| � N + 1 − j, or zero otherwise. (These are obtained
from the naive symmetric RW transition probabilities via a
Doob transform, see, e.g., Ref. [72].) The equilibrium MPS
for the SSEP is then given by the (2N + 1) × (2N + 1)
matrices

B( j),SSEP
0 =

N∑
h=−N

|h)(h − 1| T br
j (h → h − 1), (13)

B( j),SSEP
1 =

N∑
h=−N

|h)(h + 1| T br
j (h → h + 1), (14)

with boundaries (i| = (0| and | f ) = |0). It is easy to
see that the matrices above satisfy B( j),SSEP

0 B( j+1),SSEP
1 −

B( j),SSEP
1 B( j+1),SSEP

0 = 0 for all j, which means that the MPS
Eq. (11) with tensors Eqs. (13) and (14) is annihilated by the
SSEP generator.

The construction for the equilibrium state of the stochastic
Fredkin chain at c = 1/2 is similar, but the relevant paths are
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RW excursions. In this case the Doob transition probabilities
that guarantee an excursion are (cf., e.g., Ref. [72])

T ex
j (h → h ± 1) =

⎧⎨
⎩

1
2

(
1 + 1

h+1

)(
1 − h

N+1− j

)
1
2

(
1 − 1

h+1

)(
1 + h+2

N+1− j

) (15)

for 0 � h � N + 1 − j, or zero otherwise. The corresponding
matrices now have bond dimension N + 1 and read

B( j)
0 =

N∑
h=0

|h)(h − 1| T ex
j (h → h − 1), (16)

B( j)
1 =

N∑
h=0

|h)(h + 1| T ex
j (h → h + 1), (17)

with the same boundary vectors (i| = (0| and
| f ) = |0). The relevant relations in this case
are B( j−1)

1 B( j)
0 B( j+1)

1 − B( j−1)
1 B( j)

1 B( j+1)
0 = 0 and

B( j−1)
0 B( j)

1 B( j+1)
0 − B( j−1)

1 B( j)
0 B( j+1)

0 = 0 for all j. Given
these, one can show that the MPS Eq. (11) with tensors
Eqs. (16) and (17) is annihilated by the Fredkin generator
Eq. (1). In fact, the MPS is annihilated by every local term
in the spatial sum that defines Eq. (1), so W can be said to
be a parent generator (cf. parent Hamiltonian [71]) of the
MPS Eq. (11).

Note that from the definition of the tensors B( j)
n above in

terms of transition probabilities, the MPS is in right canonical
form, and Eq. (11) therefore satisfies 〈− |ss〉 = 1. Away from
c = 1/2, we can also write Eq. (7) as an MPS if we reweigh
the coefficients in Eqs. (16) and (17) as

T ex
j (h → h ± 1) →

(
c

1 − c

)− 1
2 (h±1)

T ex
j (h → h ± 1).

These reweighed coefficients are not transition probabilities in
the height (they do not add up to one), meaning that the result-
ing MPS is not in canonical form. Finding the normalization
Nc in this case is nontrivial.

B. Equilibrium phase diagram from numerical MPS

To overcome the difficulty above, to study the equilibrium
properties for all c we resort to numerical MPS approxima-
tions. This we implement with the ITensor library [73] and
make use of the DMRG [64,74,75] to find the leading eigen-
vector of Eq. (10). We employ an adaptive bond dimension,
which is at most D = 2000 with a truncation cutoff error
ε = 10−12. Furthermore, we exploit the U(1) symmetry which
conserves the number of particles and initialize the MPS with
a product state which lies in D. We then carefully check
the relevant observables to ensure they satisfy the properties
associated with D, such as a positive height field.

By looking at various observables at stationarity, it be-
comes clear that there are three distinct equilibrium phases in
the Fredkin model: (i) c < 0.5, (ii) c = 0.5, and (iii) c > 0.5.
We denote the expectation value of an observable O with
respect to the equilibrium state as 〈O〉, with

〈O〉 = 〈−|O|ss〉 = 〈ψ |O|ψ〉 . (18)

The appropriate order parameter to characterize the equi-
librium phases is the average area 〈A〉. In Fig. 2(a), we
show 〈A〉 as a function of c for a range of system sizes
N ∈ [20, 400]. For c < 1/2, the area becomes minimal, while
for c > 1/2, the area is maximal. If we consider the area as a
function of system size N we find that 〈A〉 grows as a power
law 〈N〉 ∼ N−β , as shown in Fig. 2(b). This reveals three
distinct behaviors: the exponent β takes the values β = 1, 3/2,
and 2 for c < 1/2, c = 1/2 and c > 1/2, respectively [9].

For each phase, we show the average of the spatial oc-
cupation profile, 〈ni〉, and the average height field, 〈hi〉, in
Figs. 2(c) and 2(d), respectively. For c < 1/2, the particles
take an antiferromagnetic arrangement, Fig. 2(c) (red circles),
thus minimizing the height and therefore the area, Fig. 2(d)
(red circles). We sometimes refer to this as the flat phase (in
analogy with interacting dimers [76,77]).

At c = 1/2, all configurations occur with equal probability,
cf. Eq. (7). In terms of the RW representation of configu-
rations, this corresponds to the set of RW excursions. The
average occupation, Fig. 2(c) (blue squares) interpolates be-
tween 1 and 0, and in the thermodynamic limit, N → ∞,
the average occupation density in the bulk is 1/2 [11].
In turn, the average height field takes a semicircu-
lar form, Fig. 2(d) (blue squares). Note that this is
a phase of large fluctuations and this average height
field is not representative of typical sample profiles. This
is in contrast to the other two phases which are ex-
ponentially dominated by extremal area configurations,
cf. Eq. (7).

For c > 1/2, the particles (holes) localize to the left (right)
edge of the system [10], with a sharp change in average
occupation, Fig. 2(c) (green triangles), and with an average
height profile in the shape of a tent (with a rounded top, a finite
residue of the fluctuations of the c = 1/2 phase), Fig. 2(d)
(green triangles). This behavior is similar to that seen in the
ASEP in an open segment with fixed boundaries [68]. Simple
arguments (see Appendix A) give the profile [10]

〈nj〉 = 1

exp(( j − N/2)/λ) + 1
, (19)

with an inverse localization length λ,

λ = ln

(
c

1 − c

)−1

. (20)

We sometimes refer to the c > 1/2 phase as the tilted phase
(also in analogy with interacting dimers [76,77]). Note that
this shares no connection with the tilted generator later intro-
duced in Sec. V.

An observable which will be of importance later is the
dynamical activity 〈k〉, which measures the average number of
configuration changes per unit time in stochastic trajectories
[59,60,78]. At equilibrium, it can be measured as the average
escape rate, 〈k〉 = 〈−|R|ss〉, where R is the diagonal part of
Eq. (1). We show this in Fig. 2(e) as a function of c for
various system sizes N ∈ [20, 400]. It is immediately clear
that the dynamical activity scales with system size (up to small
finite size effects) for c � 1/2 where occupation is spread
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FIG. 2. Equilibrium properties of the Fredkin model. (a) The average area (scaled by maximum area) 〈A〉 /Am as a function of c for various
systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value for N → ∞. (b) The average area (symbols) for c = 0.4 (red/dark
grey), c = 0.5 (blue/medium grey) and c = 0.6 (green/light grey). The lines show the power laws 〈N〉 ∼ N−β with β = 1, 1.5, 2, respectively.
(c), (d) The spin occupation 〈n〉i and height profiles 〈hi〉 for each equilibrium phase with a system size N = 60. (e) The average dynamical
activity (per unit time and system size) as a function of c for various systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value
for N → ∞. All results are calculated using numerical DMRG.

out in equilibrium, cf. Fig. 2(c), leading to less constrained
and therefore more dynamics throughout the entire system.
Conversely, the activity for c > 1/2 is subextensive in system
size as expected due to the much more inactive conditions
given to the localization of the equilibrium state, cf. Fig. 2(c):
motion is limited to the center of the lattice (the tip of the tent),
where particle hops are not restricted by exclusion. By fitting
the activity with a linear form 〈k〉 = a + bN (for c � 1/2),
one can extrapolate to infinite size to determine 〈k〉 /N in
the thermodynamic limit. We show this as the black dashed
line, peaking around c ≈ 0.36. Notice that for c > 1/2, the
activity goes as O(1) and is suppressed by the scaling in N .
The differences in the active (c � 1/2) and inactive (c > 1/2)
dynamics are directly related to the dynamical LDs in Sec. IV.

C. Localization of the tilted phase

The equilibrium state for c > 1/2 is exponentially domi-
nated by maximal area configurations, that is, configurations
in which particles cluster toward the left edge of the system,
and holes cluster at the right edge. Figure 3(a) shows the
average occupation profile 〈ni〉 for various c > 1/2: for sites
beyond the halfway point, i > N/2, we observe an exponential
decay of the average occupation, 〈ni〉 ∼ e−i/λ. [Note that the
same occurs for the density of holes, 1 − 〈nN+1−i〉, coming
from the right, due to fact the generator Eq. (1) is invariant
under i → N + 1 − i and |0〉 ↔ |1〉.]

This localization can be further characterized by the den-
sity of domain walls (DWs):

〈
nDW

i

〉 = 〈ni(1 − ni+1)〉 + 〈(1 − ni )ni+1〉 . (21)

This is shown in Fig. 3(b): The DW density is close to 1 at the
center of the lattice, and decays exponentially when moving
away from it in both directions, 〈nDW

i 〉 ∼ e−| N
2 −i|/λ. Notice that

the localization is consistent for increasing system size. As we
discuss further in the next sections, exponential localization
of DWs at the center of the lattice has important implications
for the dynamics in the tilted phase: particle hops can only
occur when there are DWs, and thus activity is exponentially

suppressed away from the midpoint, and is subextensive in
system size, cf. Fig. 2(e).

The localization length λ decreases with increasing c. We
show this in Fig. 3(c) for both particle and DW densities. The
agreement with the theoretical prediction Eq. (20) is excellent.
The numerically extracted lengths here are from DMRG with
N = 100. For smaller system sizes, the localization length be-
comes comparable to system size for c ≈ 1/2, and one might
expect to see small deviations from the theoretical prediction.

FIG. 3. Localization in the Fredkin chain. (a) The occupation
profile 〈ni〉 of the steady state for c > 0.5 and N = 20. The occu-
pations exhibit an exponential decay for i > N/2. (b) The average
domain-wall occupations 〈nDW

N/2−i〉 for c = 0.75 and N = 20, 40, 60.
We see the same exponential decay of domain-wall density as we
move away from the center of the lattice. (c) The localization length λ

as a function of c. The line shows the result from the theory, Eq. (20),
and the blue circles and red crosses the numerically extracted lengths
from the occupation and DW profiles, respectively. The numerical
data is from DMRG with N = 100.
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FIG. 4. Stochastic trajectories and dynamics. (a) Representative trajectories with initial states sampled from equilibrium for c = 0.4 (top),
c = 0.5 (middle), and, c = 0.6 (bottom), respectively, for system size N = 100 and time t = 103. (b) The autocorrelation functions Eq. (22)
for each of the three distinct equilibrium phases. At large times, the autocorrelator for c = 0.5 decays as the power law t−0.464 (from size
N = 100). (c) The same autocorrelation functions plotted on a double-log ordinate scale. For small times, they show exponential decay in
the three phases. For large times, they take a stretched-exponential form for c < 1/2 and c > 1/2. (d) The numerically estimated timescales
Eq. (23) as a function of c (for N = 40, 100, and 400). (e) Example trajectories after a quench from the initial state 1010 · · · 1010 for c = 0.5
(left) and c = 0.6 (on a logarithmic time scale). The former relaxes to equilibrium quickly, while the latter shows hierarchical relaxation (both
panels for N = 100 and t = 105). (f) The area (scaled by system size) 〈A〉 /N after the same quench, for various system sizes N ∈ [20, 100]
and c = 0.6. The dashed line shows log t . All data is obtained using continuous-time Monte Carlo.

IV. TYPICAL DYNAMICS

A. Dynamics in equilibrium

Figure 4(a) shows representative trajectories in the station-
ary dynamics of each of the three equilibrium phases (with
the initial states sampled from equilibrium). The largest fluc-
tuations occur for c = 0.5. Dynamics in equilibrium can be
quantified through the (density) autocorrelation function,

C(t ) = 1

N

N∑
i=1

〈ni(0)ni(t )〉 − 〈ni〉2

〈ni〉 − 〈ni〉2 , (22)

which provides a measure of the memory of a initial configu-
ration after time t in an equilibrium trajectory. We show C(t )
for the three equilibrium phases in Figs. 4(b) and 4(c). It is
apparent from Fig. 4(b) that for c = 1/2 the autocorrelation
decays asymptotically as a power law, with a numerically
extracted exponent of just under a half. This power-law decay
can also be observed for intermediate times at c > 1/2 [cor-
responding to fluctuations of the top of the tent, cf. Fig. 2(d)],
with this intermediate regime becoming longer as c gets
closer to 1/2. While at short times, decay is exponential, see
Fig. 4(c), for long times relaxation is stretched exponential in
both the flat and tilted phases. These are signatures of slow
dynamics.

We can extract a timescale for relaxation of correlations
from C(t ) from its integral:

τeq =
∫ ∞

0
C(t )dt . (23)

This is shown in Fig. 4(d) for a range of c. This equilibrium
timescale spikes at c = 1/2, as expected from the slow law
decay of C(t ). Notice that the spike is less sharp for smaller
system sizes due to the finite-size effects from the boundaries.

B. Relaxation toward equilibrium

Also of significance is the relaxation toward the equilib-
rium state when starting from nonequilibrium conditions. We
explore this behavior by considering dynamics following from
an initial state of minimal area, x0 = 1010 · · · 1010, corre-
sponding to a quench from deep in the flat phase (c0 � 0) to
finite c > 0. When c < 1/2, equilibrium is achieved quickly
as the initial state is not far from typical states in the flat phase.
Interesting nonequilibrium dynamics occurs when quenching
to c = 1/2 or to the tilted phase at c > 1/2. In Fig. 4(e), we
show two relaxation trajectories, one for c = 1/2 (left) and
another for c = 0.6 (right) [79]. The system size is N = 100
and the overall time of trajectories t = 105 (note that the time
axis is shown on a logarithmic scale). For the case of a quench
to c = 1/2, after a slow early regime, equilibrium is reached
in reasonable times.

For a quench to c > 1/2, we observe a slow hierarchical re-
laxation, with a progressive coarsening of clusters of particles
and holes. The target state is a tilted one, cf. Fig. 2(d), and in
the height representation this hierarchical process is the merg-
ing of smaller tents in the profile into larger ones. Due to the
constraint, Eq. (2), local configurations of · · · 0011 · · · , cor-
responding to troughs in the height field, are locally trapped,
and require particles from the right edge of clusters to diffuse
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away to allow clusters to merge. This process is exponentially
scarce in the separation distance, as occupations are exponen-
tially localized, cf. Sec. III C.

The time to complete each stage of relaxation in the tilted
phases grows exponentially with the stage. This hierarchy
is evident in the growth of the average area normalized by
system size, 〈A(t )〉 /N , as shown in Fig. 4(f), where we see
the area increasing logarithmically in time. This reveals the
hierarchical nature of the relaxation process: while smaller
systems may have relaxed to equilibrium, larger systems re-
quire the merging of larger clusters, and so the growth of the
area continues.

V. DYNAMICAL LARGE DEVIATIONS

We now study the statistical properties of the stochastic
trajectories ωt = x0:t of the Fredkin model, in particular, the
LD statistics of dynamical observables.

If K (ωt ) is a trajectory observable, the probability of it
taking a value K is

Pt (K ) =
∑
ωt

π (ωt )δ[K (ωt ) − K], (24)

where π (ωt ) is the probability of the trajectory ωt being
realized under the stochastic dynamics. For a dynamical ob-
servable K that is time extensive, in the long-time limit, the
probability of K obeys a LD principle [50–53],

Pt (K ) 
 e−tϕ(K/t ), (25)

where the function ϕ(k) is called the LD rate function. The
above asymptotic equality holds as long as the spectral gap is
nonvanishing (which it is in the Fredkin model for finite size
N [2]). A LD principle also holds for the moment generating
function,

Zt (s) =
∑

K

Pt (K ) e−sK =
∑
ωt

π (ωt ) e−sK (ωt ) 
 etθ (s),

where θ (s) is the scaled cumulant generating function (SCGF)
whose derivatives at s = 0 give the cumulants of K , scaled
by time [50]. In analogy with what occurs in equilibrium
thermodynamics, the rate function and SCGF are related by
a Legendre transform:

θ (s) = − min
k

[sk + ϕ(k)]. (26)

We consider as observable K the dynamical activity. Its
SCGF is given by largest eigenvalue of the tilted generator,
Ws, which for the Fredkin model reads

Ws =
N−2∑
i=2

fi{c[e−sσ+
i σ−

i+1 − (1 − ni )ni+1]

+ (1 − c)[e−sσ−
i σ+

i+1 − ni(1 − ni+1)]}, (27)

with s being counting field. As Ws is in general non-
Hermitian, the leading eigenvalue θ (s) has right and left
eigenvectors |rs〉 and 〈ls|.

We can write the generator in a Hermitian form with the
same similarity transformation as before, Eq. (8),

Hs = −
N−2∑
i=2

fi[e
−s

√
c(1 − c)(σ+

i σ−
i+1 + σ−

i σ+
i+1)

− c(1 − ni )ni+1 − (1 − c)ni(1 − ni+1)], (28)

with ground state Hs |ψs〉 = −θ (s) |ψs〉, related to the leading
eigenvectors of Ws by

|ψs〉 =
∑

x

√
ls(x)rs(x) |x〉 , (29)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

A. Active-inactive trajectory transitions at c � 1/2

From the ground state of Eq. (28), we can study statistical
properties of the trajectory ensemble of the Fredkin model
for long-time trajectories. We do this by means of numerical
tensor networks along the lines of similar recent work in
KCMs [80–85]. Figure 5 shows the LD statistics obtained nu-
merically. The top row gives this for the flat phase at c = 0.4,
and the middle row for the c = 1/2 phase. These results are
for system sizes in the range N ∈ [20, 400] obtained using
DMRG.

Figure 5(a) shows the SCGF as a function of s = 0 for
a range of sizes. For small s � 0, the SCGF follows linear
response (LR), θ (s) ≈ −sk(0), where k(s) = −θ ′(s) is the
average dynamical activity in the ensemble tilted by s, shown
in column (b). The LR prediction is shown by the dashed black
line for N → ∞, calculated by fitting the dynamical activity
for finite sizes at s = 0 with a power law and extrapolating.
Notice that at some sc(N ) > 0, which becomes smaller for
increasing N , the behavior deviates from LR to one which no
longer scales with N (this is most apparent for c < 1/2). The
step in the average activity, Fig. 5(b), top and center, indicates
a phase transition between dynamical phases of high and low
activity. The change in activity tends to a discontinuity with
increasing size, indicative of a first-order transition.

The point sc(N ) at which the crossover occurs at finite size
can be estimated from the peak in the corresponding dynami-
cal susceptibility, χ (s) = θ ′′(s), shown in column (c) of Fig. 5.
As the system size is increased, the crossover point shifts
towards s = 0 and becomes sharper. The change in dynamics
can be seen in the broadening of the LD rate function ϕ(k)
around the equilibrium average, shown in Fig. 5(d). The rate
functions show the characteristic Maxwell construct of a first-
order transition between two phases, an active one with large
k and an inactive one with vanishing k. Note that while the
transition in activity looks less sharp for c = 0.5, we expect
to recover the usual first-order behavior for increasing system
sizes as seen by the broadening of the rate function.

For c � 1/2, the location of the crossover can be fit by a
power law sc(N ) ∼ N−α . The upper panel of Fig. 5(e) shows
this for c = 0.4 and c = 1/2. The lower panel of Fig. 5(e)
shows the dynamical exponents α as a function of c. When c is
far from 1/2, we have approximately α ≈ 1.2. The exponent
increases quickly as we approach c = 1/2, to around α ≈ 2.5,
a value similar to that found in other exclusion processes [83].
It could be that for values close to (but not equal to) c = 1/2,
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FIG. 5. Finite-size scaling of dynamical LD transitions. The dynamical LD statistics for each equilibrium phase. The top (middle) row of
(a)–(d) shows c = 0.4 (c = 0.5) with N ∈ [20, 400] obtained via DMRG and the bottom row shows c = 0.9 obtained through ED. (a) The
SCGF θ (s) as a function of s. The upper and middle panels are scaled by system size, with dotted lines showing the value for s → ∞ and
the dashed line showing the linear response prediction (see the main text). (b) The average dynamic activity k(s) as a function of s. The
top and bottom panels are shown on log-log scales, whereas the middle one is shown in linear scale. The dashed lines in the bottom panel
correspond to integer multiples of k(0). (c) The dynamical susceptibility χ (s) = θ ′′(s) as a function of s. (d) The LD rate function scaled by
system size ϕ(k)/N as a function of activity k. The black dashed lines show a Poisson distribution with mean k(0)/N in the thermodynamic
limit N → ∞, extrapolated from finite-size DMRG data. (e) We estimate the critical point as a function of system size from the peaks of the
dynamical susceptibility for c = 0.4, 0.5 in the top panel. The dashed lines shows a fitted power law sc ∼ N−α , with the bottom panel showing
the obtained α for various c.

the measured exponent would be lower if we accounted for
larger system sizes.

B. Dynamical phases for c > 1/2

Obtaining accurate estimates of θ (s) for c > 1/2 at large
system sizes is difficult due to a proliferation of dynamical
phases. In particular, it is hard for DMRG to converge to the
correct phase due to a large density of states. For this reason,
for c > 1/2 we limit our studies to system sizes N = 6, 12, 18
with large c = 0.9 � 1/2, which allows us to effectively
study the hierarchy of dynamical phases using exact diago-
nalization (ED) [86]. The bottom row of Fig. 5 shows these
results.

Since the typical dynamics (s = 0) of the tilted c > 1/2
phase is itself inactive, cf. Fig. 2(e), we expect transitions to
the active phase to occur at s < 0 for finite size systems. In
fact, Fig. 5(b) shows several points where the behavior of the
SCGF changes. The number of these points seems to increase
with system size. In each case, this change in behavior corre-
sponds to transitions in the dynamics. At each of these points,
we see a sharp drop in the activity, this becoming sharper with
increasing N . The values at which the activity plateaus are
multiple integers of the equilibrium activity, k(s = 0), and are

shown by the black dashed lines. With the limited range of
sizes accessible via ED, it is not possible to do a finite-size
scaling analysis as we did for c < 1/2. From the systems stud-
ied, we observe that the first away from equilibrium inactive
behavior happens at increasing s (that is, getting closer to 0)
for increasing N , which shows in the flattening of the rate
function, see bottom panel in Fig. 5(d).

C. Structural properties of the dynamical large deviations

The difference in the behavior of the various dynamical
phases also manifests in the structural properties of the con-
figurations visited by the trajectories. The eigenvector |ψs〉
obtained from either DMRG and ED contains the probability
amplitudes for each configuration, making it easy to calculate
averages of configuration observables O(x) in the tilted en-
semble [87]:

〈O〉s = 〈Ls|O |Rs〉 =
∑

x

O(x)ψs(x)2. (30)

In Fig. 6, we show the local occupations 〈ni〉s (top panels),
and the average area 〈A〉s (middle and bottom panels), for
(a) c = 0.2, (b) c = 1/2, and (c) c = 0.9. It is clear that the
limit of large activity (s < 0 with |s| large) particles spread out
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FIG. 6. Structural properties of the LDs. We show observables for each equilibrium phase with (a) c = 0.2, (b) c = 0.5, and (c) c = 0.9.
The top row shows the average occupations 〈ni〉s for site i (with differing system sizes and ranges of s). The middle row shows the area scaled
by system size 〈A〉s /N for s < 0. Finally, we show the area scaled by system size squared 〈A〉s /N2 for s > 0 in the bottom row.

to maximize the activity. This is evident by the average area
〈A〉s, which scales linearly with system size N , resembling
the structures associated with the equilibrium flat phase for
c < 1/2. Thus, the active phase for all values of c is also a
structurally flat one. Conversely, in the inactive limit for all
values of c (large s > 0), particles cluster at the left edge of
the system and maximize the area, which scales as N2. Thus,
irrespective of the equilibrium static phase, the inactive phase
of the dynamics is structurally tilted.

Interestingly, we observe very sharp transitions for c �= 1/2
even at smaller sizes—this is unusual when compared to other
constrained models [80,83]. This could be due to the sharp
transition in activity at equilibrium, cf. Fig. 2. Indeed, for
c > 1/2 we notice sharp structural changes at the location of
the sharp points of Fig. 5. It is clear that the corresponding
structures are related to the assembly of excited states at
equilibrium (s = 0) obtained by joining multiple ground states
of smaller system sizes (compared to what occurs in the ex-
cited states of the quantum East model [19]). Of course this
makes sense, as despite the scarcity of the configurations asso-
ciated with these states, they have large lifetimes (as discussed
in Sec. III) with impactful consequences on the relaxation
behavior.

D. Entanglement entropy

We now consider the bipartite von Neumann entanglement
entropy of the MPS approximations to Eq. (28). We parti-
tion the system into two subsystems A and B, which denote
the spins i ∈ [1, N/2] and i ∈ [N/2 + 1, N] respectively. The
bipartite entanglement entropy between the two partitions is
then calculated by

SE (s) = −Tr[ρA log ρA], (31)

where ρA = TrB[ρ] denotes the reduced density matrix for A,
and ρ = |ψs〉 〈ψs| is the density matrix for the full system.

The Hamiltonian Eq. (28) exhibits a ground-state phase
transition in the bipartite entanglement entropy for s = 0. In
particular, it scales as SE (0) ∼ log N for c = 1/2 and SE (0) ∼
1 for c �= 1/2 [1–4]. We now extend this analysis to s �= 0.
Figure 7 shows the entanglement entropy for increasing sys-
tem size N ∈ [20, 200] for c = 0.4 (top) and c = 0.5 (bottom)
and a range of s. Notice that for c < 1/2, the entropy obeys
an area law for all s (although we observe spikes around
the transition from active to inactive dynamics). For c = 1/2,

FIG. 7. Entanglement entropy of the LD eigenvectors. The bi-
partite entanglement entropy SE (s) for c = 0.4 (top) and c = 0.5
(bottom) and system sizes N ∈ [20, 200]. For c = 0.5, the entangle-
ment entropy scales as approximately SE ∼ log N .
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FIG. 8. Extreme active limit. (a) The rescaled SCGF θ̃/N (top)
and the area 〈A〉−∞ /N (bottom) as functions of N measured via
DMRG. We fit the SCGF as a + bN−1, allowing us to extrapolate the
value in the thermodynamic limit N → ∞ (see main text), shown by
the dashed line. The value for the area quickly settles with increasing
system size, indicated by the dashed line. (b) The occupation profiles
〈ni〉−∞ for N = 40.

we observe for large magnitude s < 0 the states clearly also
obey an area law. As s approaches s = 0, the entanglement
entropy appears to grow significantly toward SE (0), and looks
to scale logarithmically. It is important to note, however, we
only show a small range of system sizes, and it is most likely
that for some fixed s < 0, the entanglement entropy will be
bounded as N → ∞, and thus obeys an area law. This can be
seen by the branching behavior seen in Fig. 7. An important
consequence is that for large enough N , one is able to con-
struct a state with arbitrarily high entropy by tuning the value
of s toward s = 0. For the inactive phase s > 0, ψs clearly
also obeys an area law, again with the entanglement entropy
spiking as s approach s = 0.

E. Limits of maximal and minimal activity

The limit of maximum activity is that at s → −∞. In
this limit, the diagonal parts of Ws (and Hs) are suppressed
and only the off-diagonals are left. Notice that for Hs, the
dependence on c falls out as a prefactor. As the tilting in Ws

grows exponentially with −s for negative s, we rescale the
SCGF as

θ̃ = lim
s→−∞

esθ (s)√
c(1 − c)

, (32)

when taking the limit. The (rescaled) eigenvalue θ̃ coincides
with the (similarly rescaled) dynamical activity. We show this
in Fig. 8(a) as a function of N ∈ [10, 400] (circles, shown
divided by N), and fit it with the function of aN + b (blue
dashed line, shown divided by N). By extrapolating to infinity,
we find that

lim
N→∞

θ̃/N ≈ 0.691. (33)

The average area 〈A〉−∞, see Fig. 8(a) takes an almost constant
value, with small fluctuations for small system sizes:

lim
N→∞

〈A〉s /N ≈ 0.835. (34)

Notice that the area scales linearly with system size and is
similar to the equilibrium states found for c < 1/2. This is
further seen from the average occupations 〈ni〉−∞, see

Fig. 8(b), showing the antiferromagnetic pattern of the flat
equilibrium phase.

The opposite limit of s → ∞ gives the most inactive state.
In this limit, only the diagonal escape rate part of Eq. (27)
[or Eq. (28)] remains and each configuration x ∈ D is an
eigenstate. The configurations with the smallest escape rates
dominate. Depending on c and N , this is either the maximal
area (i.e., fully tilted) configuration, 1111 · · · 0000, which has
escape rate R = 2(1 − c), or the minimal area configuration
1010 · · · 1010, which has escape rate R = c(N − 2). The latter
dominates if N > 2c−1, and the former dominates if N < 2c−1

(with degeneracy at N = 2c−1).

VI. CONCLUSIONS

Here we have provided a detailed study of the statics
and dynamics of the stochastic Fredkin model. Despite being
one-dimensional and having local transition rules, this model
displays phase transitions between three distinct equilibrium
phases. This is a consequence of the constraints in the dynam-
ics which restrict the state space to that of RW excursions,
with these static transitions controlled by the asymmetry in the
particle hopping rates. Two of these phases are ordered, one
being flat and another one tilted (in terms of the height field
representation), with an intermediate disordered and fluctuat-
ing phase. This phase behavior is in some ways reminiscent
of interacting two-dimensional dimer coverings [76,77,88].

The constraints in the local transitions of the Fredkin
model lead to a rich dynamics, both in equilibrium and in
the relaxation after a quench. This richness can be seen as a
consequence of a nontrivial phase structure of the ensemble of
stochastic trajectories. Using numerical MPSs with DMRG,
we compute the LDs of the dynamical activity and show
the existence of active-inactive space-time phase transitions,
something that is also observed in other KCMs. The overall
picture is one where the static phases extend into dynamical
ones, with the flat phase also being a dynamical active phase,
and the tilted phase a dynamical inactive one, with first-order
transitions between them.

There are many possible continuations of the work here.
One is to go beyond one dimension. As an initial step, in
Appendix B we propose a two-dimensional generaliza-
tion of the Fredkin model: By focusing on the fact that
Fredkin configurations are RW excursions, we proposed a
two-dimensional model in terms of packed dimers on the hon-
eycomb lattice with constraints in the dynamics which enforce
configurations to be excursion surfaces. It will be interesting
to study this and similar stochastic models in future work.
Another interesting area of exploration would be to study the
Hamiltonian Eq. (28) under unitary dynamics, in analogy with
recent work that studied other quantum KCMs. As occurs with
the quantum East model [19], we expect the constraints in
Fredkin models to provide mechanisms for localization and
nonthermal eigenstates. We hope to report on this in the near
future.
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FIG. 9. Two-dimensional generalization of the Fredkin model. (a) Dimer covering of the honeycomb lattice. (b) Equivalent rhombus tiling
of the plane. (c) Definition of the height field: Given a tiling, moving along the edges of the rhombi the height increases of decreases by one
unit as shown. For example, the path in (b) shows that the start and end points have a height difference of +2. (d) The elementary local moves
that preserve the perfect tiling character (i.e., no tiling defects or no monomers in the dimer representation) are rotations of a triplet of tiles
forming an elementary hexagon. These are the dimer/tiler equivalent of the particle-hole exchange in the SEP. These moves change the height
field of the central site by three units. (e)–(g) Constrained moves: Requiring the presence of the extra tile guarantees that the height of the
central site (indicated by the filled circle) never goes below the lowest height of the arrangement (indicated by the open circle). These are the
two-dimensional equivalents of the allowed moves in the Fredkin chain, see Fig. 1(a).
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APPENDIX A: THE DENSITY PROFILE FOR c > 1/2

Simple statistical mechanical considerations can be used
to compute the density profile for c > 1/2 in the thermody-
namic limit. Recall that the probability of a configuration x
is weighted by a factor that depends on the area A(x) under
the path

P(x) ∝
(

c

1 − c

) 1
2 A(x)

= exp(−βA(x)),

where β ≡ 1
2 log[(1 − c)/c]. The entropy associated with a

configuration is just the sum of the binary entropies:

S(x) = −
∑

i

[ni log ni + (1 − ni ) log(1 − ni )].

After writing the area as

A(x) =
N∑

i= j

h j (x) =
N∑

i= j

(N + 1 − j) Zj (A1)

(Zi = 2ni − 1), we arrive at the free energy,

N∑
j=1

[(ξ − j)Zj] − β−1S,

where ξ is a Lagrange multiplier introduced to fix the overall
particle number

∑
j n j . Extremizing the free energy gives

Zj = tanh(β[ξ − j]).

Thus Zj has a DW profile with a location ξ that is determined
by the particle number (ξ = N/2 for half filling), and a width

λ ≡ (2β )−1 =
[

ln

(
c

1 − c

)]−1

.

APPENDIX B: POSSIBLE TWO-DIMENSIONAL
GENERALIZATION

The height representation of the Fredkin model suggests
several possible generalizations to two dimensions by analogy
with dimer coverings. One possibility is the following.

Consider a fully packed dimer covering of the honeycomb
lattice, see Fig. 9(a), where each link connecting any two
neighboring sites of the lattice is occupied by a dimer. Such
coverings have a height representation in terms of a height
field hi, j , which becomes apparent in the equivalent rhombus
tiling of the plane, see Fig. 9(b): From some origin (0,0) where
h0,0 = 0, the height of a site is computed by moving along
the edges of the rhombi with �h at each step according to
Fig. 9(c). For example, in the covering of Fig. 9(b), the two
initial and final sites connected by the path with the arrows
differ in height by �h = 2. For fully packed dimer configura-
tions (also called perfect tilings), it is easy to verify that any
path that connects two sites gives the same height difference
and the height field is uniquely defined. Honeycomb dimer
coverings (rhombus tilings) therefore define surfaces in two
dimensions. In a configuration with an equal amount of the
three kind of tiles, the height field is pinned at zero at the
boundaries (for example, in three sites at angles of 2π/3
within a hexagonal region). This is a two-dimensional version
of the one-dimensional height field from a lattice of particles
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and holes at half filling which is bound to return to the origin.
In the one-dimensional case, the elementary local move

that preserves the filling fraction is to exchange a particle with
an adjacent hole. The analogous move for a rhombus tiling
is shown in Fig. 9(d) and corresponds to rotating a triplet
of tiles forming an elementary hexagon. This move changes
the height of the central site by �h = ±3. To prevent the
height field from becoming negative, which is the defining
property of the dynamics of the Fredkin model, transitions
like those of Fig. 9(d) have to be constrained, cf. Fig. 1(a).
Figures 9(e)–9(g) show the corresponding allowed transitions
in the two-dimensional case: the exchange of tiles is only

possible if either of the extra green/blue/red tiles as in ar-
rangement Figs. 9(e)–9(g), respectively, is present, and not
allowed otherwise. This constraint implies that in the transi-
tion the height of the site at the center of the hexagon cannot
go below that of the site indicated by a circle. With this
dynamical rule, it is guaranteed that the height field of the
dimer/rhombus arrangement never becomes negative at any
point, a two-dimensional version of the RW excursions that
define the configurations of the Fredkin model. Furthermore,
giving different rates to the forward and backward moves in
Figs. 9(e)–9(g) should lead to flat and tilted phases weighted
by the volume under the surface.
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