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Critical dynamics of the superfluid phase transition: Multiloop calculation of the microscopic model
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Results and method of a three-loop renormalization-group calculation in the model of a Bose gas with a
local density-density interaction in the formalism of time-dependent Green functions at finite temperature are
presented. The results provide support to the recent conjecture [J. Honkonen, M. V. Komarova, Y. G. Molotkov,
and M. Y. Nalimov, Nucl. Phys. B 939, 105 (2019); Y. A. Zhavoronkov, M. V. Komarova, Y. G. Molotkov, M. Y.
Nalimov, and J. Honkonen, Theor. Math. Phys. 200, 1237 (2019)] that the dynamics of the superfluid phase
transition is described by a model which belongs to the same universality class as the stochastic model A.
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I. INTRODUCTION

Quantum dynamics of boson gas near the Bose-Einstein
condensation transition has attracted considerable interest re-
cently. While the static critical behavior of the system is
generally believed to belong to the universality class of the
XY model [or O(2) model] with the corresponding critical
exponents, there is no consensus about its dynamic critical
behavior and, in particular, the value of the dynamic crit-
ical exponent z. Due to soft modes (Goldstone modes) in
O(n)-symmetric models (related to the second sound in 4He)
the scaling theory has fixed the value of the dynamic criti-
cal exponent to z = d/2 [1,2]. In quantum-statistical models
early calculations with the use of temperature Green functions
produced a positive correction in the ε expansion to the un-
renormalized value z = 2 [3], whereas in the 1/n expansion
the correction was negative and led to values close to the
prediction of the scaling theory [4]. These results—as well
as a few other microscopic results—were questioned from
the point of view of consistency of the exponentiation of
logarithmic infrared singularities [2]. Moreover, it is not at
all clear that temperature Green functions defined on a finite
imaginary time interval are the correct tool for analysis of
the long-time asymptotic behavior—after all the correct zero-
temperature (i.e., infinite imaginary time) limit leads to the
usual zero-temperature Green functions on the whole time
axis [5].

The alternative approach based on phenomenological
stochastic models of critical dynamics [6] has been prevail-
ing ever since. Therefore, most of the analyses of boson gas
systems near the phase transition to superfluid state have been
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carried out within the stochastic framework. In this case, an
estimate of the infrared (i.e., large-scale) behavior of systems
is based on the symmetries of the order parameter and the
hydrodynamic conservation laws. Physically, it corresponds
to the properties of the fields that may be essential in the
described asymptotics (e.g., generators of symmetries, the
number of components, and space dimension).

The phenomenological models E and F have long been
the main candidates for describing the critical dynamics of
a Bose gas. According to [6] they contain a set of fields as
variables suitable for description of essential hydrodynamic
flows. Model F seems more representative, but the data on
the experimental and theoretical determination of the critical
index α for the specific heat show [7] that the corresponding
systems probably degenerate to the simpler model E in the
critical region. However, it remained unclear which of the
two nontrivial fixed points of the renormalization-group (RG)
equation for model E determines the real critical behavior of
the boson gas.

A key question not answered by either the E or the F
model is the superfluid properties of the Bose gas, e.g., the
critical viscosity index, which are closely related to the correct
account for dissipation in the corresponding hydrodynamic
equations. Recently, it has been proposed to study the stability
of the E and F models against the influence of the hydrody-
namic velocity field [8–11], and the perturbations by density
waves [12]. The RG equation turned out to be sensitive to
the activation of hydrodynamic modes, which significantly
affect the critical behavior and the exponents. Account of
the compressibility of the medium has led to an unexpected
conclusion: models E and F are unstable to the density waves,
and their IR behavior boils down to that of complex model A,
which has a single nontrivial IR stable fixed point of the RG
equation.

It should be noted here that the analysis of the signifi-
cance of hydrodynamic modes and density waves is not trivial
and cannot be correctly performed at the stage of construct-
ing a model on the basis of the symmetry. The influence
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of the corresponding modes is initially associated with for-
mally IR-irrelevant contributions to the action which should
be discarded in a straightforward calculation of canonical
dimensions. The consistent argument is based on the analysis
of propagators and their behavior in the IR region to determine
the set of fields and parameters relevant to the critical behavior
as well as the combination of physical fields in the order
parameter [12]

In a sense, phenomenological constructions acquire com-
pleteness if they are corroborated by a microscopic analysis.
Indeed, even within a universality class of critical behavior
the number of coupling constants and the stability exponents
ω may be different. For instance, in models E and F—
without activated hydrodynamic modes—an analysis of the
time-dependent Green functions at finite temperature (GFFT)
of a microscopic model has shown the presence of contri-
butions characteristic of the F model, and also demonstrated
the mechanism by which high-frequency modes trigger white
noise in the infrared region [13].

Recently, the problem of critical dynamics of a sys-
tem of nonrelativistic scalar bosons with a local repulsive
density-density interaction has been studied with the use of a
combination of a field-theoretic RG analysis of the generating
functional of GFFT on one hand and a scaling analysis of the
effect of density fluctuations in the standard model F on the
other [12,14–16]. The use of the grand canonical ensemble in
construction of the generating functional of GFFT allows one
to avoid problems due to pinch singularities [17]. The remain-
ing singularities characteristics of GFFT were regularized
by introduction of auxiliary attenuation of free propagators.
The nontrivial behavior of the propagators is an important
feature of the problem. On one hand, the regularization of
the propagators made it possible to construct a self-consistent
diagrammatic expansion. On the other hand, analysis of the
Dyson equation of the original model showed that divergences
of individual diagrams generate contributions that correspond
to hydrodynamic dissipation in the phenomenological model.
Discarding the IR-irrelevant part of the action of the regular-
ized model led to an effective multiplicatively renormalizable
large-scale model with three coupling constants [14].

Coarse graining leading to the renormalizable model is
a process akin to that used in the theory of open quantum
systems: to describe the dynamics of a subsystem of a “total”
equilibrium Hamiltonian system analyzed in the grand canon-
ical ensemble. In the theory of quantum systems the projection
operator technique with assumptions of weakness of corre-
lations between the subsystem and the bath (the rest of the
Hamiltonian system) is used to infer the evolution equation of
the reduced density operator describing the subsystem [18]. It
should also be noted that dissipative Keldysh actions similar
to that in [14] had been obtained earlier as the functional
solution of the master equation of an open boson system in
the Lindblad form with a suitable dissipator [19] as well as

from the solution of the stochastic dissipative Gross-
Pitaevskii equation with a suitably chosen noise [20].

Surprisingly, at the only IR stable fixed point below the
critical dimension 4 of the perturbatively renormalized effec-
tive model [14] the anomalous scaling dimensions—including
that of the dynamic exponent z – turned out to be equal to
those of the standard model A [6,21]. Contrary to the standard

FIG. 1. Schwinger-Keldysh contour in the complex t plane.

model A, however, in the model [14] there are three correction
exponents to scaling, which were calculated at the leading
nontrivial order in [12,15].

The leading order correction O(ε2) of the ε = 4 − d ex-
pansion, however, is not conclusive about the stability of the
fixed points in the physical dimension d = 3. Therefore, in
this paper we report calculation of the correction exponents of
the effective model to O(ε3). We recall the origin and notation
of the model in Sec. II. Section III is devoted to illustration
of advantages of the method first proposed in [22] for calcu-
lation of dynamic exponents of model A at order O(ε3). Here
we also quote results of evaluation of renormalization con-
stants. We have calculated 24 two-loop vertex diagrams and
17 three-loop self-energy diagrams; the results are quoted in
the Appendix. The contribution O(ε3) to one of the correction
exponents turned out to change the sign of the exponent at
ε = 1 (d = 3). In such a situation the ε expansion cannot be
trusted without a resummation. In Sec. IV stability of the fixed
points is analyzed with the use of the corresponding Borel
transform of the values of correction exponents. Summary and
conclusions are found in Sec. V.

II. MODEL

In our previous papers [14,15], we proposed a model for
calculation of the dynamic critical exponent z for the λ tran-
sition. The model was based on the action (in the unit system
with h̄ = 1)

S(ψ,ψ+) =
∫

dx
∫

C
dt

[
ψ+

(
i∂t + �

2m0
+ μ

)
ψ

− g

2
(ψ+ψ )2

]
, (1)

for quantum boson particles with local repulsive interaction.
Here ψ (t, x) and ψ+(t, x) are complex conjugated fields, m0

denotes the particle mass, μ denotes the chemical potential, g
denotes the coupling constant, and � stands for the Laplace
operator. We used the formalism of time-dependent Green
functions at finite temperature. Thus, the evolution parameter
t belongs to the Schwinger-Keldysh contour C (Fig. 1) in the
complex t plane [23,24].

To construct the perturbation expansion the fields of (1)
were replicated on different parts on the contour by intro-
duction of the fields ψR, ψ+

R , ψA, ψ+
A , ψT , and ψ+

T , where the
subscripts R, A, and T refer to the corresponding parts of the
contour with retarded, advanced, and temperature propaga-
tors, respectively.

To regularize the characteristic singularities of this ap-
proach on the whole time axis, an attenuation coefficient
γ was introduced. We recall that in quantum statistics the
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imaginary part of the self-energy function gives rise to a small
attenuation coefficient of single-particle excitations [25]. By
definition, at the critical point the imaginary part of the self-
energy vanishes with vanishing wave number and frequency.
Therefore, at the critical point, which we are interested in,
the attenuation coefficient in the large-wave-number limit as-
sumes the form αk2 with the small positive parameter α. It
should be noted that γ ∝ k2 at the critical point is a property
of the model. The choice of the coefficient α is a matter of
convenience.

After this the reference points of the contour were sent
to infinity t0 → −∞ and t f → ∞ to enable the use of the
Fourier transform with respect to time. In this limit the con-
tribution of the fields ψT and ψ+

T of the temperature part of
the contour decoupled from the rest and therefore model (1)
with attenuation is described in terms of the real-time fields
ψR, ψ+

R , ψA, and ψ+
A .

In the grand canonical ensemble all real-time bare prop-
agators of model (1) on the Schwinger-Keldysh contour
contain both retarded and advanced parts. For purposes of
construction of perturbation theory and the subsequent renor-
malization it was found convenient to separate the advanced
and retarded propagators by introduction of new fields ξ , ξ+,
η, and η+ defined as

ξ = 1√
2

(ψR + ψA), η = 1√
2

(ψR − ψA),

ξ+ = 1√
2

(ψ+
R + ψ+

A ), η+ = 1√
2

(ψ+
R − ψ+

A ). (2)

These new fields are sometimes called the classical and quan-
tum fields [26].

Upon power counting with canonical dimensions corre-
sponding to the parabolic scaling of frequencies and wave
numbers and subsequent discarding of the two IR-irrelevant
terms of the interaction in (1) an IR effective model was
obtained with the following basic action:

S = 4ηαη+ + η+(∂t − iαu� − α�)ξ+ξ+(∂t −iαu�+α�)η

+ iαg1μ
4−D

2
η+ξ+ξξ + iαg2μ

4−D

2
ηξξ+ξ+ (3)

with the scale-setting parameter μ and dimensionless complex
charges g1 and g2. Integrals are implied in (3) and henceforth
notation is streamlined compared to (1).

For the purposes of application of the renormalization
group, we consider our model in space dimension D = 4 − ε.
The loop theorem of [14] ensures that there are no additional
counterterms of structures different from those in (3). This
leads to the following form of the renormalized action:

SR = Z0ηη+ + η+(Z1∂t − Z2�)ξ + ξ+(Z3∂t − Z4�)η

+ Z5μ
4−Dη+ξ+ξξ + Z6μ

4−Dηξξ+ξ+ (4)

with complex renormalization constants Z1, . . . , Z6, each of
which is defined as the sum of the coefficient of the field
monomial in the basic action (3) and counterterms to it. More-
over, action (3) obeys the symmetry (parameters α and u are

positive)

S(η, η+, ξ , ξ+, g1, g2) = S∗(−η+,−η, ξ+, ξ , g∗
2, g∗

1)

= S∗(η+, η,−ξ+,−ξ, g∗
2, g∗

1). (5)

These conditions impose the following restrictions on the
renormalization constants:

Z0 = Z∗
0 , Z1 = Z∗

3 , Z2 = −Z∗
4 , Z5 = −Z∗

6 (6)

where the change (g1, g2) → (g∗
2, g∗

1) on the right-hand side
of the equalities is implied. Furthermore, it is useful to notice
that action (3) obeys an additional global gauge symmetry:

ξ → ξsic, ξ+ → ξ+s−ic, η → ηsic, η+ → η+s−ic,

where c is some constant. Owing to the global symmetry, we
choose the field η to be a real-number function henceforth.
Defining renormalization constants of the fields η and ξ and
parameters α and u as ξ = Zξ ξR, η = ZηηR, u = ZuuR, and
α = ZααR we obtain the following system of equations:

Z0 = 4αZηZη+ , Z1 = Zη+Zξ ,

Z2 = ZαZη+Zξα + iαZη+ZuZξ Zαu,

Z5 = ig1α

2
ZαZg1 Zη+Z2

ξ Zξ+ . (7)

This system of equations can be uniquely resolved only in the
hyperspace g1 = g∗

2:

Zη+ = Z∗
η , Zξ+ = Z∗

ξ , Zη+Zξ = Z1,

Zα = 1

α
�(

Z2Z−1
1

)
, ZηZη+ = 1

4α
Z0Z−1

α ,

Zu = 1

αu
	(

Z2Z−1
1

)
Z−1

α ,

Zg1 = − i

2g1α
Z5Z0Z−2

1

(
Z−1

1

)∗
Z−1

α . (8)

Our main aim is to verify that the IR-stable fixed point,
which was found in [12], is truly stable in higher orders of
the perturbation expansion. To accomplish this task we need
more information about the β functions and their derivatives
calculated at the fixed point. To this end, it is convenient to
separate real and imaginary parts of the coupling constants g1

and g2: we rewrite the coupling constants as g1 = gr + igi and
g2 = gr − igi where gr and gi are real numbers. In addition
to the coupling constants gr and gi there is a nonperturbative
charge u. In the minimal subtraction scheme used here the
corresponding β functions will have the following form:

βgn = −εgn + εgn

∑
m=r,i

gm
∂[Zgn ]

∂gm
,

βu = εu
∑
m=r,i

gm
∂[Zu]

∂gm
(9)

where n = r, i, u is the nonperturbative charge and [Z] denotes
the residue of the simple pole in the Laurent expansion in ε of
the corresponding renormalization constant.
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III. CALCULATION

We will consider model (3) in space dimension 4 − ε with
dimensional regularization in the minimal subtraction scheme
MS (for details, see, e.g., [7]). The three-loop contribution will
be calculated using the bare propagators of (3) of the form
[12,14]

〈η(t, k)ξ+(t ′,−k)〉0 = −θ (t ′ − t )e−iαuk2 (t−t ′ )−αk2|t−t ′|,

〈η(t, k)η+(t ′,−k)〉0 = 0,

〈ξ (t, k)η+(t ′,−k)〉0 = θ (t − t ′)e−iαuk2 (t−t ′ )−αk2|t−t ′|,

〈ξ (t, k)ξ+(t ′,−k)〉0 = 2

k2
e−iαuk2 (t−t ′ )−αk2|t−t ′|. (10)

As explicitly stated in (9), in the MS scheme only residues of
simple poles in ε of the counterterms contribute to the coef-
ficient functions of the RG equations. Therefore, the relevant
part of renormalization constants (7) can be presented in the
form

Z0(g1, g2, u) = 4α − αg1g2M1(u)

2 × 162π4ε
+ (−i)g1g2

2αQ10(u)

163π6ε
+ (−i)g2

1g2αQ11(u)

163π6ε
,

Z1(g1, g2, u) = 1 + g2
1M3(u)

162π4ε
− g1g2M2(u)

2 × 162π4ε
+ (−i)g3

1Q4(u)

163π6ε
+ (−i)g2

1g2Q5(u)

163π6ε
+ (−i)g1g2

2Q6(u)

163π6ε
,

Z2(g1, g2, u) = (1 + iu)α + g2
1α(2 − iu)

162π4(3 − iu)ε
− g1g2α(1 − iu)

162π4(3 − iu)ε
+ (−i)g3

1αQ7(u)

163π6ε
+ (−i)g2

1g2αQ8(u)

163π6ε
+ (−i)g1g2

2αQ9(u)

163π6ε
,

Z5(g1, g2, u) = ig1α

2
− g2

1α

16(1 + iu)π2ε
− g2

1α

8π2ε
+ g1g2α

8π2ε
− ig3

1α

64π4ε
Q1(u) − ig2

1g2α

128π4ε
Q2(u) − ig1g2

2α

128π4ε
Q3(u), (11)

where functions Mi(u) of the nonperturbative coupling con-
stant u were calculated in [14]:

M1 = A + 3B − πu − 2u arctan C−
u2 + 1

,

M2 = (u − i)2(2i arctan(2C+) − π i − A − B)

(u2 + 1)2
,

M3 = (u + i)2(B − 2i arctan(u/3))

(u2 + 1)2
,

A = ln(u2 + 1), B = ln

(
u2 + 9

16

)
, C± = u2 ± 3

4u
.

In the present model—like in model A—the leading order
(measured in the expansion parameter ε) of fluctuation cor-
rections to βg1 and βg2 is given by one-loop vertex graphs,
whereas corrections to βu are inferred from two-loop self-
energy graphs. Here, we are calculating the next-to-leading
corrections, for which it is sufficient to calculate three-
loop self-energy graphs (listed in Tables I and II of the
Appendix) and two-loop vertex graphs (listed in Table III of
the Appendix).

The two- and three-loop coefficient functions Qi can be
calculated with the aid of the sector decomposition method
[27]. However, a more subtle approach will be used here.
Apparently, this approach was first applied in the three-loop
calculation of the dynamic critical exponents of the model A
in [22] and we briefly review the main concept here.

At the third order of the perturbation theory there are three
topological types of diagrams, depicted below:

It is easily seen that the first type of these diagrams is a product
of two diagrams of the first order. Therefore, these diagrams

are totally irrelevant to calculation of the β and γ functions,
because upon subtraction of contributions brought about by
divergent subgraphs no simple poles in ε are left and thus
these graphs do not contribute to the β and γ functions of
the RG equation [7].

A. Method of calculation

Let us describe the method of calculation in more detail.
The origin of the approach lies in the possibility to perform in
a closed form the Fourier transform of the function

θ (t − t2)

(t − t2)c
exp[−p2(t − t2)c1]

both with respect to p to arrive at a function of (x − x2) and
with respect to t to obtain a function of ω. Comparison of
these results leads to the following explicit expression for the
Fourier transform from variables (t, x) to (ω, p). For Re c1 >

0 the result for arbitrary A, a, and Re b1 > 0 is

A
θ (t − t2)

(t − t2)a
exp

[
− (x − x2)2

t − t2
b

]

Fourier−→ A
(π

b

)D/2 �
(

D
2 + 1 − a

)
( p2

4b − iω
) D

2 +1−a
,

A
θ (t2 − t )

(t2 − t )a
exp

(
− (x − x2)2

t2 − t
b1

)

Fourier−→ A

(
π

b

) D
2 �

(
D
2 + 1 − a1

)
( p2

4b + iω
) D

2 +1−a
, (12)

where D is the dimension of space. Propagator lines similar
to those in (12) will be called “standard form” lines. The loop
diagrams with lines in the form of the right-hand side of (12)
can be simply calculated. After the inverse Fourier transform
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of all lines into the (t, x) presentation expressions in the form
of the left-hand side of (12) must be multiplied. It is essential
that the result is of the standard form of the left-hand side
of (12) with the product of A-type factors and sum of a-type
and b-type arguments. It can be readily transformed to the
(ω, p) representation by the procedure (12), which leads to
the standard form as well.

B. Convolution of lines

With the use of (12) propagator lines are cast into the (ω, p)
representation in which the convolution of two arbitrary lines
of standard form is transformed to a simple product of the
form

A( p2

4b − iω
)a

A1( p2

4b1
− iω

)a1

or

A( p2

4b − iω
)a

A1( p2

4b1
+ iω

)a1
,

depending on arguments of the θ functions in propagators.
The Feynman identity

1

BaBa1
1

= �(a + a1)

�(a)�(a1)

∫ 1

0
dz

∫ 1

0
dz1

δ(z + z1 − 1)za−1za1−1
1

[Bz + B1z1]a+a1

produces

AA1�(a + a1)

�(a)�(a1)

∫ 1

0
dz1

(1 − z1)a−1za1−1
1[ p2

4b (1 − z1) + z1
p2

4b1
− iω

]a+a1

in the first case or

AA1�(a + a1)

�(a)�(a1)

∫ 1

0
dz

(z)a−1(1 − z)a1−1[ p2

4bz + (1 − z) p2

4b1
+ iω(1 − 2z)

]a+a1

in the second.
The first expression is of the standard form. To transform

to the standard form the second expression the integral over z
is split in a sum of two, the first one over 0 < z < 1/2 and the
second over 1/2 < z < 1. These parts contribute to different
step functions in the (t, x) representation. It is convenient to
scale the z variables to obtain integrals in new variables z1 in
the limits 0 < z1 < 1.

After the inverse Fourier transform the convolution integrals over (t1, x1) may be expressed as

∫
dx1dt1A1

θ (t − t1)

(t − t1)a1
exp

(
− (x − x1)2

t − t1
b1

)
A2

θ (t1 − t2)

(t1 − t2)a2
exp

(
− (x1 − x2)2

t1 − t2
b2

)

= A1A2

( π

b1b2

) D
2

∫ 1

0
dz1z

D
2 −a1

1 (1 − z1)
D
2 −a2

(
z1

b1
+ 1 − z1

b2

)− D
2 θ (t − t2)

(t − t2)a1+a2− D
2 −1

exp

(
− (x − x2)2

t − t2

(
z1

b1
+ 1 − z1

b2

)−1)
,

(13)∫
dx1dt1A1

θ (t − t1)

(t − t1)a1
exp

(
− (x − x1)2

t − t1
b1

)
A2

θ (t2 − t1)

(t2 − t1)a2
exp

(
− (x1 − x2)2

t2 − t1
b2

)

= A1A2

2
D
2 +1−a1−a2

( π

b1b2

) D
2

∫ 1

0
dz1z

a1+a2− D
2 −2

1

[
(1 − z1)

D
2 −a1 (1 + z1)

D
2 −a2

(
1 − z1

b1
+ 1 + z1

b2

)− D
2

θ (t2 − t )

(t2 − t )a1+a2− D
2 −1

× exp

(
−2z1

(x − x2)2

t2 − t

(
1 − z1

b1
+ 1 + z1

b2

)−1)
+ (1 + z1)

D
2 −a1 (1 − z1)

D
2 −a2

(
1 + z1

b1
+ 1 − z1

b2

)− D
2

× θ (t − t2)

(t − t2)a1+a2− D
2 −1

exp

(
−2z1

(x − x2)2

t − t2

(
1 + z1

b1
+ 1 − z1

b2

)−1)]
, (14)

∫
dx1dt1A1

θ (t1 − t )

(t1 − t )a1
exp

(
− (x − x1)2

t1 − t
b1

)
A2

θ (t1 − t2)

(t1 − t2)a2
exp

(
− (x1 − x2)2

t1 − t2
b2

)

= A1A2

2
D
2 +1−a1−a2

( π

b1b2

) D
2

∫ 1

0
dz1z

a1+a2− D
2 −2

1

[
(1 + z1)

D
2 −a1 (1 − z1)

D
2 −a2

(
1 + z1

b1
+ 1 − z1

b2

)− D
2

× θ (t2 − t )

(t2 − t )a1+a2− D
2 −1

exp

(
−2z1

(x − x2)2

t2 − t

(
1 + z1

b1
+ 1 − u1

b2

)−1
)

+ (1 − z1)
D
2 −a1 (1 + z1)

D
2 −a2

×
(

1 − z1

b1
+ 1 + z1

b2

)− D
2 θ (t − t2)

(t − t2)a1+a2− D
2 −1

exp

(
−2z1

(x − x2)2

t − t2

(
1 − z1

b1
+ 1 + z1

b2

)−1)]
, (15)
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∫
dx1dt1A1

θ (t1 − t )

(t1 − t )a1
exp

(
− (x − x1)2

t1 − t
b1

)
A2

θ (t2 − t1)

(t2 − t1)a2
exp

(
− (x1 − x2)2

t2 − t1
b2

)

= A1A2

( π

b1b2

) D
2

∫ 1

0
dz1z

D
2 −a1

1 (1 − z1)
D
2 −a2

(
z1

b1
+ 1 − z1

b2

)− D
2 θ (t2 − t )

(t2 − t )a1+a2− D
2 −1

exp

(
− (x − x2)2

t2 − t

(
z1

b1
+ 1 − z1

b2

)−1)
.

It is essential that the expressions obtained have the standard
form or are the sum of the standard form lines. Therefore,
these expressions can be used in the subsequent steps in the
method described here.

C. Example

Here, we demonstrate the method of calculation by evalu-
ating a diagram of the second type:

(16)

To start calculation all propagators (10) must be presented
in the standard form. Three of them have already the nec-
essary form. The remaining one should be transformed.
To deal with the modulus we should separate positive and
negative values of t with the aid of the Heaviside step
function:

〈ξ (t, k)ξ+(t ′,−k)〉0 = 2e−iαuk2(t−t ′ )−αk2|t−t ′|

k2

= 2e−iαuk2(t−t ′ )−αk2(t−t ′ )

k2
θ (t − t ′)

+ 2e−iαuk2(t−t ′ )+αk2(t−t ′ )

k2
θ (t ′ − t ).

(17)

The next step is to transform both terms. They have com-
mon structure, therefore we will describe transformation only
for one of them; the other can be obtained in a similar
way:

2e−iαuk2t−αk2t

k2
θ (t ) =

∫ ∞

1
ds2θ (t )e−k2stα(iu+1)tα(iu + 1)

=
∫ 1

0

ds

s2
2θ (t )e− k2tα(iu+1)

s tα(iu + 1)
Fourier−→

× 2θ (t )

(2π )D

∫ 1

0

ds

s2− D
2

e− x2s
4tα(iu+1) π

D
2 t1− D

2

×α1− D
2 (1 + iu)1− D

2 . (18)

Applying the Fourier transform to other propagators in (10)
we arrive at a set of standard form propagators in the (t, x)
representation. Diagram (16) contributes to the renormaliza-
tion constant Z5. To calculate this contribution we put the
momentum and frequency of the external line in the upper

right corner equal to zero. Then we have to calculate

(19)

First, we multiply in the (t, x) presentation the lines in the
right loop marked by q, k − q in (19). The result is in the
standard form, so that using (15) we calculate its convolution
with the upper 〈ξη+〉0 line marked by k. The result of the
convolution is a sum of lines in the standard form. Every one
of these lines is simply multiplied by the lower line 〈ξη+〉0

marked by p − k.
After the transform to the (ω, p) representation with the use

of (12) we obtain the result in the form of integrals over two
variables similar to that over s in (18) and over z in (15). The
� function due to Fourier transform contains the leading pole
in ε. The second pole in ε can be simply extracted from the
integral over z. The remaining integrals are readily calculated
analytically or numerically.

This technique allows us to extract a residue of correspond-
ing expressions almost directly for all the above-mentioned
types of diagrams. Moreover, in some cases this approach can
be used to obtain closed-form expressions for the diagrams.

D. Results of calculations

At the IR stable fixed point found in [12] the nonper-
turbative coupling constant u is equal to zero. To prove the
stability of this point in the next perturbation order only values
of functions Qi(u) and their derivatives with respect to u at
u = 0 are required. The result of calculation of the first three
functions is

Q1(0) = − log

(
4

3

)
− 3, Q2(0) = −7 + 18 coth−1(7),

Q3(0) = 3 − 14 coth−1(7),

∂Q1(u)

∂u

∣∣∣∣∣
u=0

= i(72 coth−1(7) − 25)

6
,

∂Q2(u)

∂u

∣∣∣∣∣
u=0

= 2i(2 + 9 coth−1(7))

3
,

∂Q3(u)

∂u

∣∣∣∣∣
u=0

= i(11 − 114 coth−1(7))

3
. (20)

Expressions for Q4, . . . , Q10 are more complicated and in-
clude the dilogarithm Li2(1/9) (also known as Spence’s
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function). We calculated them with the use of the method
described in Sec. III with the result

Q4(0) = − 40π2

9
+ 4B1

3
− 8

(
log

(
4

3

)
− 26 log2(2)

)

+ 4

3
log(3)(49 log(3) − 160 log(2)),

Q5(0) = B2

3
+ 8π2

3
− 4

3
log(2)(23 + 83 log(2))

+ 1

3
(54 + 296 log(2) − 79 log(3)) log(3),

Q6(0) = B3

3
− 35π2

18
+ 2

3
log(2)(163 log(2) − 58)

+ 1

3
log(3)(66 − 344 log(2) + 97 log(3)),

Q7(0) = − 32Li2
(

1
4

)
3

− 64Li2
(

1
3

)
3

− 2

3
+ 16π2

9

− 64 log2(2)

3
+ 64

3
log(3) coth−1(7),

Q8(0) = − 16π2

9
+ 64 log2(2) − 4

9
log(2)(83 + 144 log(3))

+ 1

6
(B4 + 7 + 4 log(3)(33 + 32 log(3))),

Q9(0) = 1

18
(−1 + 16π2 − 8 log(2)(73 + 48 coth−1(5)))

+ 1

18

(
−192Li2

(
1

4

)
− 96Li2

(
1

3

)
+ 356 log(3)

)
,

Q10(0) = − Q11(0) = 20π2

3
− 160Li2

(
3
4

)
3

+ 20

3
log

(
4

3

)

× (−6 + 26 log(2) − 21 log(3)), (21)

where

B1 = − 4Li2(1/16) + 6Li2(1/9) − 4Li2(1/6)

+ 34Li2(1/4) + 12Li2(3/8) + 8Li2(4/9) + 4Li2(2/3),

B2 = 4(4Li2(1/16) − Li2(1/9) + 4Li2(1/6)

− 33Li2(1/4) − 12Li2(3/8) − 8Li2(4/9)+ 9Li2(2/3)),

B3 = − 8Li2(1/16) + 12Li2(1/9) − 8Li2(1/6)

+ 29Li2(1/4) + 8(Li2(1/3) + 3Li2(3/8) + 2Li2(4/9)),

B4 = 32Li2
(

1
4

) + 160Li2
(

1
3

)
. (22)

The derivatives of Qi with respect to u at u = 0 were evalu-
ated in a similar way and their closed-form expressions also
include dilogarithms:

∂uQ4(u)
∣∣
u=0 = − 4

3 i(368 log(2) − 89 log(3)) log(3)

− 32
3 i(log(2)(49 log(2) − 12) + log(729))

+ 4
9 i(−3C1 + 19π2 − 18),

∂uQ5(u)
∣∣
u=0 = 1

9 i
(
C2 + π2 − 87

(
log2(3) + log(9)

))
− 4

9 i log(2)(−83 + 66 log(2) − 87 log(3)),

∂uQ6(u)
∣∣
u=0 = 2

9 i(319 log(3) + (576 log(2) − 299) log(4))

− 1
9 i(C3 + 46π2 + 21(136 log(2)

− 47 log(3)) log(3)),

∂uQ7(u)
∣∣
u=0 = − 1

9 i(C4 + 8π2 + 29)

− 4
9 i log(2)(−101+312 log(2)−288 log(3)),

∂uQ8(u)
∣∣
u=0 = − 2

9 i(C5 + 8 log(3)(17 + log(729))) + 2
27 i

× (3+24π2+16 log(2)(41 + 63 coth−1(5))),

∂uQ9(u)
∣∣
u=0 = 1

54 i(C6 + 72π2 + 195) + 2
27 i log(2)

× (−665 + 1944 log(2) − 1728 log(3)),
(23)

where

C1 = − 10Li2(1/9) + 32Li2(2/3) + 28Li2(3/4),

C2 = 84Li2(−2) − 18Li2(1/9) + 114Li2(1/4),

C3 = − 6(5Li2(1/9) − 44Li2(1/4)

+ 94Li2(2/3) + Li2(3/4) + 10),

C4 = 48Li2(1/4) − 96Li2(2/3)

+ 101 log(9) + 120 log(3) log(9),

C5 = 72Li2(−1/3) + 72Li2(2/3) + 36Li2(3/4),

C6 = 432Li2(1/4) − 864Li2(2/3)

+ (697 + 648 log(3)) log(9).

With the use of these expressions, the RG functions βgr ,
βgi , and βu can be directly evaluated. However, their closed-
form expressions are too lengthy to include here and we
therefore quote them in numerical form:

βgr (gr, gi, 0) = 0.004 335 38g2
i gr − 0.075 990 9gigr

− εgr + 0.000 271 762g3
r,

βgi (gr, gi, 0) = − 0.001 336 72gig
2
r − εgi + 0.002 726 9g3

i

− 0.063 325 7g2
i + 0.012 665 1g2

r,

βu(gr, gi, 0) = − 0.000 077 646gigr + 2.767 327 16

× 10−6g2
i gr + 1.800 921 45 × 10−7g3

r . (24)

The nonperturbative coupling constant u has been set equal to
zero in (24), because at the only nontrivial perturbative fixed
point it assumes the value u∗ = 0 [12].

IV. BOREL TRANSFORM

Let us briefly recall the results of the RG analysis at the
leading order of the ε expansion [12,16]: Contrary to the
case of stochastic models E and F, there are only three fixed
points for the set of the three equations βgr (gr, gi, u) = 0,
βgi (gr, gi, u) = 0, and βu(gr, gi, u) = 0. Apart from the trivial
fixed point gr∗ = gi∗ = 0 with arbitrary u∗ (IR unstable at
d < 4), there is the saddle point gi = −2π2ε, 1/u = 0 with
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arbitrary gr , and the only IR stable (at d < 4) fixed point
gr∗ = 0, gi∗ = −8π2ε/5, u∗ = 0, the stability of which is
further explored in the present analysis.

The connection between the critical behavior of the present
model and model A can be illustrated as follows. Let us define
new two-component variables φ (real) and φ′ (imaginary)
as φ′

1 = η+ − η, φ′
2 = i(η+ + η), φ1 = (ξ+ + ξ )/2, and φ2 =

i(ξ+ − ξ )/2. Then the action (3) at the only IR-stable fixed
point (with imaginary charge g = igi∗) becomes

S∗ = αφ′2 + φ′
[

− ∂tφ + α

(
�φ + gi∗

2
φ3

)]
. (25)

This expression coincides with the De Dominicis–Janssen
action [28,29] of the stochastic two-component model A [7]
up to notation. Moreover, the sign of gi∗ in (25) matches that
in model A [7].

It was shown in [12] that the coupling constants gr and u
are equal to zero at the IR stable fixed point. Therefore,
to obtain the fixed point in the next-to-leading-order equa-
tion βgi (0, gi, 0) = 0 should be solved. As a result, the fixed
point has the following form:

gi∗ = −8π2ε

5
+ 136π2ε2

125
. (26)

The character of the fixed point is determined by the eigen-
values of the ω matrix consisting of derivatives of the β

functions with respect to coupling constants calculated at the
fixed point. At an IR stable fixed point all eigenvalues of the
matrix

ω =

⎛
⎜⎜⎜⎝

∂βgr

∂gr

∂βgr

∂gi

∂βgr

∂u

∂βgi
∂gr

∂βgi
∂gi

∂βgi
∂u

∂βu

∂gr

∂βu

∂gi

∂βu

∂u

⎞
⎟⎟⎟⎠ (27)

are strictly positive. Evaluation of the eigenvalues of the ω

matrix leads to the following answers:

ε + 0.68ε2,

0.2ε + 0.245 739ε2,

0.023 014 6ε2 − 0.025 833 6ε3. (28)

The coefficient of ε2 of the leading-order contribution to the
third eigenvalue in (28) is a small number, therefore at the
physical value of the expansion parameter ε = 1 it is highly
sensitive to corrections of higher order. The present next-to-
leading-order calculation was undertaken in order to verify the
conclusion about stability of the fixed point at hand. It is easy
to see that in three dimensions (ε = 1) the third eigenvalue
in (28) has a negative sign. Moreover, for this eigenvalue
the next-to-leading order is larger then the leading one. In
such a situation it is difficult to use directly the perturbation
expansion. Usually in the quantum-field perturbation series
values a few first terms decrease. In that case the sum of the
leading terms can be considered as a correct estimate of the
number inferred from the asymptotic series.

In the present case a series resummation is necessary.
Usually the quantum field perturbation series resummation is
based on known high-order asymptotes (HOAs) of the series.
In the GFFT formalism used here the HOA has not been

investigated yet. For our purposes, however, it is not needed in
the full size. Here, we calculate the ω exponents at the fixed
point only. All calculations were performed for gr = u = 0.
Therefore, we need in fact to analyze some Green functions in
the dynamical model A. The HOAs of the perturbation series
in this model are known [30,31]. These results may be used
for the resummation of the present ω exponents.

According to [30,31] the fixed point coordinates and ω

exponents of gr = u = 0 behavior are of the form

q =
∑
N�0

qNεN (29)

with the HOA

qN = CqN!(−a)N Nbq (1 + O(1/N )). (30)

The right side of relation (30) is an asymptotic estimate of
the coefficient in the N th order of perturbation theory, the
parameters of which are

a = 3
10 , bω3 = 4, bω1 = bω2 = 5. (31)

Let us recall the main features of the Borel resummation
[32,33]. For q (29) with HOA (30) the Borel transform is
defined by the formulas

q(ε) =
∫ +∞

0
dt tbe−t B(εt ), B(x) =

∑
k�0

Bkxk,

Bk = qk

�(k + b + 1)
, (32)

where b is an arbitrary parameter.
The related conformal mapping has usually the form

[32,33]

v(x) =
√

1 + ax − 1√
1 + ax + 1

⇔ x(v) = 4v

a(v − 1)2
. (33)

The integration contour here belongs to a convergence circle,
the point x = −1/a is mapped to v = −1, and the infinity
point goes to v = 1. Small values of x in (33) correspond to
small v. Therefore, the series (32) can be rewritten in terms of
the v variable:

B(x) =
∑
n�0

xnBn −→ B(u) =
∑
n�0

vnVn,

where

V0 = B0, Vn =
n∑

m=1

Bm(4/a)mCn−m
n+m−1, n � 1. (34)

Correspondingly conformal-Borel transform of the Q function
has the form

q(ε) =
∑
k�0

Vk

∫ +∞

0
dt tbe−t (v(εt ))k . (35)

In [32] the parameter b was chosen in accordance with the
condition b � bz + 1.5. Such a choice allows one to “weaken”
the singularity of the Borel image (32) at the point x = −1/a.
Using conformal-Borel transform in our case with b = bz +
1.5 we obtain (ε = 1)

ω1 = 0.211 669 753 1,
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ω2 = 1.078 902 843,

ω3 = 0.003 120 033 385. (36)

Numerical results of resummation weakly depend on the
scheme used. According to [34], conformal-Borel transform
yields the most accurate figures. Taking into account two or-
ders of the perturbation expansion it is not plausible to ensure
high accuracy of the result obtained. However, here only the
signs of the ω exponents are essential. All three eigenvalues
are strictly positive now. It is worthwhile to note that the next
perturbation order must increase this result due to the sign
alternation of the series. This confirms that in the third order
of the perturbation theory the fixed point investigated is IR
stable.

V. CONCLUSION

With the use of three-loop calculation in the model of
a Bose gas with a local density-density interaction in the
formalism of the time-dependent Green functions at finite
temperature we have corroborated our previous conjecture
[12,14] that the dynamics of the superfluid phase transition
is described by a model which belongs to the same class of
universality as the stochastic model A. This is a main physical
result of the paper.

We have also demonstrated the usefulness of the slightly
developed method of calculation of dynamical diagrams in
the (t, x) representation proposed in [22]. Using this approach
we have obtained analytical results for two- and three-loop
graphs. The propagators in our model are similar to those in
the stochastic model F which is more general and difficult
than the widely investigated model E. The renormalization
group calculations in model E at the same order in loop as
in the present paper were performed in [35–37] with differ-
ent results. The definite result was obtained only recently in
[38]. The (t, x) approach can simplify essentially multiloop
calculations in an arbitrary dynamic model.

In addition to the dynamics near the λ point description
in the GFFT formalism a stochastic model was put forward in
[12,16] which produces similar results in the description of the
critical behavior. The stochastic model is a model of classical
fields, however, and it includes quantities like velocity and
viscosity as classical variables. Using stochastic equations of
this model it is possible to calculate the critical dimension
of the viscosity and show how viscosity tends to zero in the
superfluid phase transition. We hope to publish the results of
the investigation soon.
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APPENDIX: FEYNMAN DIAGRAMS

In this Appendix we present the results of calculation of
two- and three-loop diagrams. Unfortunately, we have not
obtained analytic results for diagrams for arbitrary u, and the

expressions from numerical calculations of graphs with u �= 0
are too large. Therefore, we present here expressions at u = 0
for graphs and their derivatives with respect to u. These results
can be useful for investigations of other models with similar
actions.

In Tables I–III υ1i = υ2i = υ3i = υ9i = υ11i, υ4i = υ5i =
υ6i and υ7i = υ8i = υ10i for i = t, p, with the notations

ϒ0 = 8Li2

(
3

4

)
− π2+log

(
4

3

)
(6 − 26 log(2)+21 log(3)),

υ1t = 3

(
−4

(
Li2

(
1

4

)
+Li2

(
1

3

))
−3 log(3)(2+ log(243))

+ 4 log(2)(3 + 28 coth−1(5))

)
+ π2,

υ1p = 1 + 2 log

(
4

3

)
(−5 + 24 log(2) − 12 log(3)),

υ4t = − 32Li2

(
1

4

)
+ 12Li2

(
2

3

)
− 10π2

3
+ 7 log2(3)

− 54 log(3) + 4 log(2)(23 − 7 log(2) + log(81)),

υ4p = − 96Li2

(
1

4

)
+ 96Li2

(
1

3

)
+ 5 + 384 log2(2)

+ 4 log(3)(89+24 log(3)) − 8 log(2)(73+48 log(3)),

TABLE I. Diagrams contributing to Z0. The diagrams are de-
picted in the second column. In the third column the symmetry
coefficients (s.c) are quoted. In the fourth column values of the pole
parts of the diagrams are quoted in the normalization of propagators
and vertices corresponding to the basic action.

No. s.cDiagram Z0

1 1 − Υ0
1536π6ε

ig2
1g2

2 1 Υ0
1536π6ε

ig1g
2
2

3 1
2

Υ0
1536π6ε

ig1g
2
2

4 1 − Υ0
1536π6ε

ig2
1g2

5 1
2

− Υ0
1536π6ε

ig2
1g2

6 1 Υ0
1536π6ε

ig2
2g1
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TABLE II. Diagrams contributing to Z1 and Z2. The diagrams
are depicted in the second column. In the third column the symmetry
coefficients (s.c) are quoted. In the fourth column values of the pole
parts of the diagrams are quoted in the normalization of propagators
and vertices corresponding to the basic action. In the fifth column
the pole parts of diagram derivatives with respect to u at u = 0 are
presented.

No. Diagram s.c Zi ∂uZi(u = 0)

1
1

Z1 : υ1t
9216π6ε

ig3
1

Z2 : − υ1p

18432π6ε
ig3

1

− χ1t
9216π6ε

g3
1

− χ1p

110592π6ε
g3
1

2 1
Z1 : − υ2t

36864π6ε
ig2

1g2

Z2 :
υ2p

18432π6ε
ig2

1g2

− χ2t
18432π6ε

g2
1g2

− χ2p

221184π6ε
g2
1g2

3
1

Z1 : υ3t
9216π6ε

ig1g
2
2

Z2 : − υ3p

18432π6ε
ig1g

2
2

χ3t
9216π6ε

g1g
2
2

χ3p

27648π6ε
g1g

2
2

4
1

Z1 : υ4t
6144π6ε

ig3
1

Z2 :
υ4p

36864π6ε
ig3

1

χ4t
9216π6ε

g3
1

χ4p

221184π6ε
g3
1

5
1
2

Z1 : − υ5t
18432π6ε

ig2
1g2

Z2 : − υ5p

36864π6ε
ig2

1g2

− χ5t
18432π6ε

g2
1g2

− χ5p

110592π6ε
g2
1g2

6 1
Z1 : − υ6t

18432π6ε
ig2

1g2

Z2 : − χ6p

36864π6ε
ig2

1g2

− χ6t
18432π6ε

g2
1g2

− χ6p

221184π6ε
g2
1g2

7
1

Z1 : − υ7t
6144π6ε

ig3
1

Z2 : − υ7p

36864π6ε
ig3

1

− χ7t
9216π6ε

g3
1

− χ7p

221184π6ε
g3
1

8
1

Z1 : υ8t
18432π6ε

ig2
1g2

Z2 :
υ8p

36864π6ε
ig2

1g2

χ8t
9216π6ε

g2
1g2

χ8p

221184π6ε
g2
1g2

9
1

Z1 : − υ9t
36864π6ε

ig2
1g2

Z2 :
υ9p

18432π6ε
ig2

1g2

− χ9t
9216π6ε

g2
1g2

− χ9p

221184π6ε
g2
1g2

10
1
2

Z1 : − υ10t
36864π6ε

ig2
2g1

Z2 : − υ10p

36864π6ε
ig2

2g1

χ10t
18432π6ε

g2
2g1

χ10p

110592π6ε
g2
2g1

11
1

Z1 : υ11t
9216π6ε

ig3
1

Z2 : − υ11p

18432π6ε
ig3

1

χ11t
9216π6ε

g3
1

χ11p

110592π6ε
g3
1

υ7t = 4

(
−2Li2

(
1

16

)
+ 3Li2

(
1

9

)
− 2Li2

(
1

6

)

+ 5Li2

(
1

4

)
+ 6Li2

(
3

8

)
+ 4Li2

(
4

9

)
+ 3Li2

(
2

3

))

− 14π2

3
+ 116 log2(2) − 4 log(2)(17 + 32 log(3))

+ log(3)(42 + 47 log(3)),

χ1t = −
(

24Li2

(
1

4

)
− 84Li2

(
2

3

)
− 6 + 7π2

−576 log2(2) + 20 log(2)(8 + 33 log(3))

− log(3)(80 + 207 log(3))

)
,

TABLE III. Diagrams contributing to Z5. The diagrams are de-
picted in the second column. In the third column the symmetry
coefficients (s.c) are quoted. In the fourth column values of the pole
parts of the diagrams are quoted in the normalization of propagators
and vertices corresponding to the basic action. In the fifth column
the pole parts of diagram derivatives with respect to u at u = 0 are
presented.

No. s.c Z5 ∂uZ5(u = 0)

1 1
2 − 3ig3

1 log( 4
3 )

64π4ε
− g3

1 log( 4
3 )

16π4ε

2 1
ig3

1(log( 64
27 )−1)

256π4ε

g3
1(−1+14 log(2)−7 log(3))

256π4ε

3 1
ig3

1(log( 64
27 )−1)

256π4ε

g3
1(log( 256

81 )−1)
128π4ε

4 1
ig3

1(log( 64
27 )−1)

256π4ε

g3
1(−3+14 log(2)−7 log(3))

256π4ε

5 1 − ig3
1 log( 4

3 )
64π4ε

g3
1(1−6 log( 4

3 ))
192π4ε

6 1 − ig3
1(1+log( 4

3 ))
256π4ε

− g3
1(1+log( 4096

729 ))
384π4ε

7 1
2 − ig3

1(1+log( 4
3 ))

256π4ε
− g3

1(1+log( 4
3 ))

256π4ε

8 1
ig3

1(log( 64
27 )−1)

256π4ε

g3
1(−1+14 log(2)−7 log(3))

256π4ε

9 1
2

ig3
1(log( 64

27 )−1)
256π4ε

g3
1(−3+14 log(2)−7 log(3))

256π4ε

10 1
ig1g2

2(log( 64
27 )−1)

256π4ε

g1g2
2(1−14 log(2)+7 log(3))

256π4ε

Diagram
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TABLE III. (Continued.)

No. Diagram s.c Z5 ∂uZ5(u = 0)

11 1
ig1g2

2(log( 64
27 )−1)

256π4ε
− g1g2

2(log( 256
81 )−1)

128π4ε

12 1
2 − ig1g2

2 log( 4
3 )

64π4ε

g1g2
2(log( 64

27 )−1)
96π4ε

13 1
ig2

1g2(1+log( 4
3 ))

256π4ε

g2
1g2(log( 64

27 )−1)
768π4ε

14 1
ig2

1g2(1+log( 4
3 ))

256π4ε

g2
1g2

384π4ε

15 1
2 − ig2

1g2(log( 64
27 )−1)

256π4ε

g2
1g2(log( 1024

243 )−1)
256π4ε

16 1
2

3ig2
1g2 log( 4

3 )
64π4ε

0

17 1
3ig2

1g2 log( 4
3 )

64π4ε
0

18 1 − ig2
1g2(log( 64

27 )−1)
256π4ε

g2
1g2(log( 16

9 )−1)
128π4ε

19 1 − ig2
1g2(log( 64

27 )−1)
256π4ε

g2
1g2(log( 1024

243 )−1)
256π4ε

20 1 − ig2
1g2(log( 64

27 )−1)
256π4ε

− g2
1g2(log( 16

9 )−1)
128π4ε

χ1p = −
(

216Li2

(
1

4

)
− 432Li2

(
2

3

)
+ 69 + 36π2

+4 log(2)(−221 + 972 log(2) − 864 log(3))

+221 log(9) + 324 log(3) log(9)

)
,

TABLE III. (Continued.)

No. Diagram s.c Z5 ∂uZ5(u = 0)

21 1
2

ig2
1g2(1+log( 4

3 ))
256π4ε

− g2
1g2(log( 64

27 )−1)
256π4ε

22 1 − ig2
1g2(log( 64

27 )−1)
256π4ε

− g2
1g2(log( 16

9 )−1)
128π4ε

23 1
2

ig2
1g2 log( 4

3 )
64π4ε

0

24 1
ig1g2

2(log( 64
27 )−1)

256π4ε
− g1g2

2(log( 256
81 )−1)

128π4ε

χ2t = −
(

12Li2(−2) + 6Li2

(
1

4

)
− 6 + π2 − 180 log2(2)

+(26 + 96 log(3)) log(4) − (13 + 24 log(3)) log(9)

)
,

υ7p = − 192Li2

(
1

4

)
+ 96Li2

(
1

3

)
+ 5 − 16π2

+ 4 log(3)(24 log(3) − 79)

+ 24 log(2)(21 − 8 log(3) + log(256)),

χ3t = −
(

13π2 − 2

(
−33Li2

(
1

4

)
+ 78Li2

(
2

3

)
+ 6

+270 log2(2) − 4 log(2)(25 + 87 log(3))

+(25 + 63 log(3)) log(9))

)
,

χ3p =
(

54Li2

(
1

4

)
− 108Li2

(
2

3

)
+ 15 + 9π2

+972 log2(2) + log(3)(113 + 162 log(3))

−2 log(2)(113 + 432 log(3))

)
,

χ4t = −
(

−30Li2

(
1

9

)
+ 30Li2

(
1

3

)

−63Li2

(
3

4

)
+ 3 + 5π2 − 366 log2(2) + 97 log(4)

+ log(3)(−113 − 18 log(3) + 120 log(4))

)
,

χ4p =
(

−864Li2

(
1

4

)
− 3 + 48π2 + 288 log2(3)

+1651 log(9) − 4 log(2)
(
1331 + 864 coth−1(5)

))
,
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χ5t = −
(

−18Li2

(
1

9

)
+ 6Li2

(
1

4

)
− 60Li2

(
2

3

)
− 12

+7π2 − 672 log2(2) + 4 log(2)(37 + 183 log(3))

− log(3)(82 + 213 log(3))

)
,

χ5p = −
(

−9

(
32Li2

(
−1

3

)
+ 64Li2

(
3

4

)
+ 1

)

+48π2 − 6912 log2(2) + 20 log(2)(173+288 log(3))

−2 log(3)(1025 + 504 log(3))

)
,

χ6t = −
(

−126Li2

(
1

4

)
− 36Li2

(
1

3

)
+ 6 + 7π2

+276 log2(2) + 36 log2(3) + 302 log(3)

−4 log(2)(119 + 69 log(3))

)
,

χ6p =
(

−1152Li2

(
−1

3

)
− 1440Li2

(
3

4

)
+ 189 + 96π2

−13248 log2(2) − 2 log(3)(2381 + 720 log(3))

+4 log(2)(1933 + 2592 log(3))

)
,

χ9p =
(

144Li2

(
1

4

)
− 288Li2

(
2

3

)
+ 57 + 24π2

+2592 log2(2) + 432 log2(3) + 322 log(3)

−4 log(2)(161 + 576 log(3))

)
,

χ10t =
(

6

(
5Li2

(
1

9

)
− 10Li2

(
2

3

)
+ Li2

(
3

4

)
+ 2

)

+6π2 + 36

(
log

(
16

9

)
− 11

)
log(2)

+7(34 − 3 log(3)) log(3)

)
,

χ10p = (75 − 852 log(2) + 490 log(3)),

χ11t = −
(

−6Li2

(
1

4

)
−36Li2

(
1

3

)
+ 6+3π2+108 log2(3)

+37 log(9) − 4 log(2)
(
37 + 234 coth−1(5)

))
,

χ7t =
(

−117Li2

(
1

4

)
+ 6Li2

(
2

3

)
+ 3 + 11π2

2

−90 log2(2) + (103 − 36 log(3)) log(3)

+6 log(2)(14 log(3) − 29)

)
,

χ7p = −
(

−3

(
−384Li2

(
1

4

)
+192Li2

(
2

3

)
+9+log(729)

)

+12 log(2)

(
455 + 16 log

(
64

27

))
− 3352 log(3)

)
,

χ2p =
(

144Li2

(
1

4

)
− 288Li2

(
2

3

)
+ 57 + 24π2

+2592 log2(2) + 432 log2(3) + 322 log(3)

−4 log(2)(161 + 576 log(3))

)
,

χ8t = −
(

87Li2

(
1

4

)
− 18Li2

(
2

3

)
+ 3

−5π2

2
−

(
161 + 12 log

(
8

3

))
log(3)

+6 log(2)(43 + log(512))

)
,

χ8p =
(

3

(
960Li2

(
−1

2

)
− 576Li2

(
−1

3

)

−384Li2

(
2

3

)
+ 89

)
+ 192π2

+12(521 − 168 log(2)) log(2)

+
(

288 log

(
8

3

)
− 2011

)
log(9)

)
,

χ9t = −
(

12Li2

(
1

4

)
− 24Li2

(
2

3

)
− 3

+2π2 − 72 log2(2) − log(3)(13 + 36 log(3))

+ log(2)(26 + 96 log(3))

)
,

χ11p = −
(

72Li2

(
1

4

)
− 144Li2

(
2

3

)
+ 3 + 12π2

+4 log(2)(−65 + 324 log(2) − 288 log(3))

+65 log(9) + 108 log(3) log(9)

)
.
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[11] M. Dančo, M. Hnatič, T. Lučivjanský, and L. Mižišin, Phys.
Rev. E 102, 022118 (2020).

[12] Y. A. Zhavoronkov, M. V. Komarova, Y. G. Molotkov, M. Y.
Nalimov, and J. Honkonen, Theor. Math. Phys. 200, 1237
(2019).

[13] M. Hnatich, M. V. Komarova, and M. Y. Nalimov, Theor. Math.
Phys. 175, 779 (2013).

[14] J. Honkonen, M. V. Komarova, Y. G. Molotkov, and M. Y.
Nalimov, Nucl. Phys. B 939, 105 (2019).

[15] J. Honkonen, M. V. Komarova, Y. G. Molotkov, and M. Y.
Nalimov, Theor. Math. Phys. 200, 1360 (2019).

[16] J. Honkonen, M. V. Komarova, Y. G. Molotkov, M. Y. Nalimov,
and Y. A. Zhavoronkov, EPJ Web Conf. 226, 01005 (2020).

[17] T. Altherr and D. Seibert, Phys. Lett. B 333, 149 (1994).
[18] H.-P. Breuer and F. Petruzzione, The Theory of Open Quantum

Systems (Oxford University, New York, 2002).
[19] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, Phys.

Rev. Lett. 110, 195301 (2013).
[20] U. C. Täuber and S. Diehl, Phys. Rev. X 4, 021010 (2014).
[21] R. Folk and G. Moser, J. Phys. A: Math. Gen. 39, R207

(2006).
[22] N. V. Antonov and A. N. Vasil’ev, Theor. Math. Phys. 60, 671

(1984).

[23] J. Schwinger, J. Math. Phys. 2, 407 (1961).
[24] L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
[25] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics. Part 2:

Theory of the Condensed State (Pergamon, New York, 1980).
[26] A. Kamenev, Field Theory of Non-Equilibrium Systems (Cam-

bridge University, New York, 2011).
[27] L. T. Adzhemyan, E. V. Ivanova, M. V. Kompaniets, and S. Y.

Vorobyeva, J. Phys. A: Math. Theor. 51, 155003 (2018).
[28] C. De Dominicis, J. Phys. Colloques 37, C1-247 (1976).
[29] H. K. Janssen, Z. Phys. B 23, 377 (1976).
[30] J. Honkonen, M. V. Komarova, and M. Y. Nalimov, Nucl. Phys.

B 707, 493 (2005).
[31] J. Honkonen, M. V. Komarova, and M. Y. Nalimov, Nucl. Phys.

B 714, 292 (2005).
[32] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976

(1980).
[33] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Oxford University, New York, 2002).
[34] M. Y. Nalimov, V. A. Sergeev, and L. Sladkoff, Theor. Math.

Phys. 159, 499 (2009).
[35] C. De Dominicis and L. Peliti, Phys. Rev. Lett. 38, 505 (1977).
[36] C. De Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).
[37] L. Peliti, in Dynamical Critical Phenomena and Related Topics,

edited by C. P. Enz, Lecture Notes in Physics (Springer, New
York, 1979), Vol. 104, p. 189.

[38] L. Ts. Adzhemyan, M. Danco, M. Hnatic, E. V. Ivanova, and
M. V. Kompaniets, EPJ Web Conf. 108, 02004 (2016).

014126-13

https://doi.org/10.1007/s11232-011-0120-0
https://doi.org/10.12693/APhysPolA.131.651
https://doi.org/10.1103/PhysRevE.102.022118
https://doi.org/10.1134/S0040577919080142
https://doi.org/10.1007/s11232-013-0064-7
https://doi.org/10.1016/j.nuclphysb.2018.12.015
https://doi.org/10.1134/S0040577919090095
https://doi.org/10.1051/epjconf/202022601005
https://doi.org/10.1016/0370-2693(94)91021-9
https://doi.org/10.1103/PhysRevLett.110.195301
https://doi.org/10.1103/PhysRevX.4.021010
https://doi.org/10.1088/0305-4470/39/24/R01
https://doi.org/10.1007/BF01018251
https://doi.org/10.1063/1.1703727
https://doi.org/10.1088/1751-8121/aab20f
https://doi.org/10.1051/jphyscol:1976138
https://doi.org/10.1007/BF01316547
https://doi.org/10.1016/j.nuclphysb.2004.11.016
https://doi.org/10.1016/j.nuclphysb.2005.02.029
https://doi.org/10.1103/PhysRevB.21.3976
https://doi.org/10.1007/s11232-009-0040-4
https://doi.org/10.1103/PhysRevLett.38.505
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1051/epjconf/201610802004

