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Switching from a continuous to a discontinuous phase transition under quenched disorder
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Discontinuous phase transitions are particularly interesting from a social point of view because of their
relationship to social hysteresis and critical mass. In this paper, we show that the replacement of a time-varying
(annealed, situation-based) disorder by a static (quenched, personality-based) one can lead to a change from
a continuous to a discontinuous phase transition. This is a result beyond the state of the art, because so far
numerous studies on various complex systems (physical, biological, and social) have indicated that the quenched
disorder can round or destroy the existence of a discontinuous phase transition. To show the possibility of
the opposite behavior, we study a multistate q-voter model, with two types of disorder related to random
competing interactions (conformity and anticonformity). We confirm, both analytically and through Monte Carlo
simulations, that indeed discontinuous phase transitions can be induced by a static disorder.
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I. INTRODUCTION

The study of complex systems, for which the 2021 Nobel
Prize was awarded, is arguably the most interdisciplinary field
of science, influencing many seemingly unrelated disciplines.
For example, it may seem that physics and the social sciences
have little in common, yet a huge number of papers have been
published in recent decades using statistical physics methods
to model various social systems [1–4].

Someone might ask why physicists are concerned with
social systems. Probably the first answer that comes to mind
is that the methods and concepts of statistical physics can
also be useful in the social sciences. But is feedback pos-
sible? Can problems and concepts from the social sciences
trigger the development of physics itself? The very birth of
statistical physics shows that this is what can happen [5].
However today, as sometimes claimed, physicists are com-
pleting the circle by applying physical methods (oftentimes
those of statistical physics) to quantify social phenomena [4].
This is undeniably true, but does this mean that nowadays
research at the intersection of physics and social science no
longer contributes anything new to physics? There are several
examples, which suggest the opposite [6,7].

In this paper, we also show that the result obtained within
the model originally proposed to describe social opinion dy-
namics can go beyond the state of the art in physics. This
result will address the effects of two types of approaches,
so-called quenched and annealed, on phase transitions. Before
we get to the point, let us clarify the terms quenched and an-
nealed in the context of disorder in complex systems, because,
in our experience, they are not widely known to the general
audience. Within the quenched approach various randomness
(heterogeneity) associated with interactions, topology, etc.,
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are fixed in time. In the context of opinion dynamics, a good
example of such an approach are inflexible agents [8] or
zealots [9]. On the other hand, within the annealed approach
all these randomnesses are changed at each time step [10]. A
good example of this type of approach is a contrarian behavior
introduced by Galam [11]. In the context of social systems,
inspired by the long-standing person-situation debate [12],
we related quenched to the personality-oriented, while an-
nealed to the situation-oriented, approach [13,14]. Therefore,
the analysis of differences resulting from the given approach
(quenched versus annealed) is interesting in the context of
social systems. But is this topic of interest in the context of
physics itself? Looking at the literature it definitely does.

The role of the quenched disorder in shaping the type of
the phase transitions (PTs) have been intensively studied from
experimental and theoretical points of view, and applied to
understand the behavior of various complex systems [15]. In
particular, it has been found that in low dimensions quenched
randomness results in rounding, smearing, or completely de-
stroying discontinuous PTs [16–21]. The early prediction of
this effect was given heuristically by Imry and Ma [16], and
later proven by Aizenman and Wehr [17]. More recently, it
was found to be true also in genuinely nonequilibrium sys-
tems [22,23]. Another possibility is that discontinuous (mixed
order) PT remains discontinuous and the heterogeneity adds
a Griffiths phase subcritically [21]. Moreover, for higher-
dimensional systems (three-dimensional or in the mean-field
limit), it has been shown that a discontinuous phase tran-
sition can simply remain discontinuous in the presence of
quenched disorder [14,24,25]. However, the complementary
effect, i.e., change from continuous to discontinuous PT under
the quenched disorder, has yet to be observed, even in the
mean-field limit.

In this paper, we will show, both analytically and by Monte
Carlo simulations, that such an effect is possible, at least on
a complete graph (CG), which corresponds to the mean-field
approach (MFA). We will show this within the framework
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FIG. 1. Visualization of the elementary update for the multistate q-voter model with anticonformity. Within the annealed approach, a voter
can anticonform or conform to the group of influence with complementary probabilities p and 1 − p. Within the quenched approach, a fraction
p of all voters are permanently anticonformists, whereas others are always conformists.

of a model for which so far only the typical destruction (or
softening) of discontinuous PT under quenched disorder has
been observed, namely the q-voter model [26]. For example,
it was shown that the quenched disorder rounds discontinuous
PT in the multistate q-voter model with independence [25]
or completely kills these transitions in the two-state version
of this model [14]. Additionally, it was shown that in the
two-state q-voter model with random competing interactions
(conformity and anticonformity), both quenched and annealed
disorders give exactly the same continuous PTs [14]. The
multistate version of such a model will be the subject of this
paper.

II. METHODS

The model, which we refer to as the multistate q-voter
model with anticonformity, is defined as follows. There is
a system of N voters, placed in the nodes of an arbitrary
graph (here, we focus on CG). Each voter i = 1, . . . , N can
be in one of s possible states σi = α ∈ {0, 1, 2, 3, . . . , s − 1}.
As in the original q-voter model, a voter can be influenced
by q neighboring agents only if they are unanimous [26].
As usually, we use a random sequential updating and a unit
of time (t → t + 1) is defined as N elementary updates of
duration �t , i.e., N�t = 1, which corresponds to one Monte
Carlo step (MCS). An elementary update (schematically pre-
sented in Fig. 1) consists of (1) choosing randomly voter i, (2)
choosing randomly a group of q neighbors of i, (3) checking
if all q neighbors are in the same state to form a group of
influence, and (4) updating the state of voter i. The last step
of an update depends on the considered approach, annealed or
quenched.

Within the annealed approach, all agents are identical:
With probability p an active voter acts as an anticonformist,
and with complementary probability 1 − p as a conformist.
Within the quenched approach, the system consists of two
types of agents: Each voter is set to be permanently anticon-
formist with probability p or conformist with complementary
probability 1 − p. If the active voter is an anticonformist and
all q neighbors are in the same state as the state of an active
voter, it changes its state to any other, randomly chosen from
the remaining equally probable s − 1 states. On the other
hand, if the active voter is a conformist and all q neighbors
are in the same state, the active voter copies their state.

To describe the system on the macroscopic scale, we in-
troduce a random variable cα describing the concentration of

agents having opinion α,

cα = Nα

N
, and

s−1∑
α=0

cα = 1, (1)

where Nα is the number of voters in a given state. Because we
use the random sequential updating, cα can change only by
±1/N with the respective transition probabilities:

γ +(cα ) = Pr

{
cα (t + �t ) = cα (t ) + 1

N

}
,

γ −(cα ) = Pr

{
cα (t + �t ) = cα (t ) − 1

N

}
. (2)

The specific form of γ +, γ − can be easily calculated within
MFA for the annealed as well as the quenched approach.
Detailed calculations for the transition probabilities Eq. (2),
as well as other detailed calculations, to which we will refer
later in this paper, can be found in the Supplemental Material
(SM) [27]. Although cα is a random variable, we can write the
evolution equation of the corresponding expected value:

〈cα (t + �t )〉 = 〈cα (t )〉 + 1

N
γ +(cα ) − 1

N
γ −(cα ). (3)

Since �t = 1/N , we obtain

〈cα (t + �t )〉 − 〈cα (t )〉
�t

= γ +(cα ) − γ −(cα ). (4)

Under the realistic assumption that for N → ∞ random
variable cα localizes to the expectation value, thus

dcα

dt
= γ +(cα ) − γ −(cα ) = F (cα ), (5)

where F (cα ) can be interpreted as the effective force acting
on the system [28]. Because in this paper we focus on PTs,
we are not interested in the temporal evolution of the system,
but only in the stationary states:

dcα

dt
= 0. (6)

Due to the equivalence of all opinions, one can claim that
the only possible symmetry-breaking schemes are those with
at most two distinct stationary values [25,29,30]. If initially
several (one, two, or more) opinions are equinumerous and
dominate over all the others, the system reaches an absorb-
ing state in which these opinions still dominate and are
equinumerous. At the same time, all remaining opinions be-
come equinumerous. Based on this observation, confirmed
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FIG. 2. Stationary concentration of agents in a given state as a function of the probability of anticonformity p within the annealed (upper
panels) and quenched (bottom panels) approach for different values of the influence group size q = {2, 3, 4, 5} (changing from left to right as
indicated by arrows). The number of states s = 2 (left column), s = 3 (middle column), and s = 4 (right column). Lines represent analytical
results: Solid and dashed lines correspond to stable and unstable steady states, respectively. Symbols represent the outcome of MC simulations
for q = {2, 5} and the system size N = 5 × 105 performed from initial condition c0 = 1. The results are averaged over ten runs and collected
after t = 5 × 104 MCS.

by Monte Carlo simulations, and the normalization condition
Eq. (1) we are able to write down all solutions in terms of a
single arbitrarily chosen state, denoted by c,

c0 = · · · = cs−(ξ+1) = c,

cs−ξ = · · · = cs−1 = 1 − (s − ξ )c

ξ
, (7)

where ξ = 1, 2, 3, . . . , s − 1. By ξ = 0 we denote the so-
lution, where all states are equinumerous c0 = c1 = · · · =
cs−1 = 1/s. Knowing the above, we can determine the sta-
tionary states of the annealed and the quenched version of the
model.

Under the annealed approach on the complete graph,
Eq. (5) takes the form (see SM [27])

dcα

dt
= −pcq+1

α + p
∑
i �=α

[
cq+1

i

s − 1

]
+ (1 − p)

∑
i �=α

[
cic

q
α − cαcq

i

]
. (8)

Combining Eq. (7) with Eqs. (6) and (8), we obtain

p =
cq − (s − ξ )cq+1 − ξc

( 1−(s−ξ )c
ξ

)q

cq − (s − ξ )cq+1 − ξc
( 1−(s−ξ )c

ξ

)q − ξ

s−1

[( 1−(s−ξ )c
ξ

)q+1 − cq+1
] . (9)

Based on the value of ξ we are able to recover s station-
ary solutions. Some of them are stable and some unstable.
We can determine the stability by looking at the sign of
the derivative of the effective force dF (cα )

dc (see SM [27]
for details). It turns out that only two types of stable
stationary states of the system are possible: (Disordered)

concentrations of all opinions are identical cα = 1/s for all
α and (ordered) in which the symmetry between opinions
is broken and one opinion dominates over the others. As
seen in Fig. 2, in the annealed case this order-disorder PT
is continuous for all values of the model’s parameters q
and s.
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FIG. 3. Phase diagrams obtained within MFA for the multistate q-voter model under the annealed (left panels) and the quenched (right
panels) approaches. The ordered phases are marked by solid color (green). The coexistence regions are marked by a crosshatched pattern (red).
The disordered phases are shown as open regions (white). Lower and upper spinodals are marked by dotted and solid lines. respectively.

Under the quenched approach the system consists of two
types of agents, who respond differently to group influence.
Therefore, we must consider these two groups separately and
write one evolution equation for the concentration c(A,α) of
anticonformists in state α, and the second one for concen-
tration c(C,α) of conformists in this state [14,31]. This will
ultimately allow us to obtain the total concentration of voters
in state α,

cα = pc(A,α) + (1 − p)c(C,α), (10)

and the evolution of the system is given by two equations

dc(A,α)

dt
= −c(A,α)c

q
α +

∑
i �=α

[
c(A,i)c

q
i

s − 1

]
,

dc(C,α)

dt
=

∑
i �=α

[
c(C,i)c

q
α − c(C,α)c

q
i

]
. (11)

By performing analogous reasoning to the annealed ap-
proach, we compute the stationary states,

p =
( 1−(s−ξ )c

ξ

)q
cq[cs2 − (1 + 2cξ )(s − ξ )] + ξc2q[c(s − ξ ) − 1] + cξ (s − ξ )

( 1−(s−ξ )c
ξ

)2q

ξ
( 1−(s−ξ )c

ξ

)2q − ξc2q
, (12)

and determine their stability (see the SM [27] for details). We
again obtain a phase transition between the disordered state,
in which concentrations of all opinions are identical cα = 1/s
and the ordered state, in which one opinion dominates. How-
ever, in contrast to the annealed case, this time for s > 2 this
transition is discontinuous, as shown in the bottom panels of
Fig. 2. For s = 2, the results for the annealed and quenched
approach are identical, as already shown in Ref. [14].

III. DISCUSSION

For the binary q-voter model with anticonformity, that is,
s = 2, the quenched approach gives the same result as the an-
nealed one, and the phase transitions are continuous regardless
of q, as shown in the left panels of Fig. 2. This result has
already been obtained in the previous paper [14] and appears
here only as a special case of the general multistate model.
The new results refer to s > 2, for which the quenched model
unexpectedly induces discontinuous phase transitions. While
in the annealed version the phase transitions are still contin-
uous, the quenched model displays discontinuous transitions
already for q > 1 (see Figs. 2 and 3). For all values of the
model parameters, the Monte Carlo results overlap analytical
ones, as shown in Fig. 2, which was expected due to the
structure of the complete graph.

As seen in Fig. 3 for the fixed value of s > 2, the size
of the hysteresis, that is, the area in which ordered phase
coexists with disordered one, and thus the final state depends
on the initial one, depends nonmonotonically on the size of
the influence group q. Initially, it increases with q and reaches
the maximum value at

q = s

s − 2
, (13)

which can be calculated analytically, as shown in SM [27].
At this point, we would like to draw attention to a fact that
was already mentioned in the original paper on the q-voter
model [1]. Although in the definition of the model both q
and s are integer numbers, all analytical calculations make
sense for any positive real values of q, s. Therefore, in Fig. 3
the phase boundaries appear as continuous lines as a function
of q.

IV. CONCLUSIONS

The initial inspiration for this research came from social
science and was specifically related to the question of factors
that influence the emergence of discontinuous phase transi-
tions in social systems. This question with respect to models
of social dynamics has been asked before in several pa-
pers [25,32–35]. One might wonder why discontinuous phase
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transitions are relevant to social systems at all. In fact, they
are important because it turns out that hysteresis and critical
mass, which are indicators of discontinuous phase transitions,
are empirically observed in real social systems [36–38]. The
importance of discontinuous phase transitions was one of the
reasons why, for example, the q-voter model with indepen-
dence was studied more intensively than the q-voter model
with anticonformity [39–44].

Within the annealed approach, the q-voter model with an-
ticonformity displays only continuous PT, independently of
the number of states s and the size of the influence source q.
On the contrary, the q-voter model with independence shows
discontinuous PTs under the annealed approach above the
tricritical point q∗(s), where q∗(2) = 5 [14,28] and q∗(s >

2) = 1 [25]. Moreover, it was shown that for the q-voter
model with independence replacing the annealed disorder
by the quenched one kills discontinuous phase transitions
for s = 2 [14] or rounds them for s > 2 [25]. These pre-
vious results were in agreement with the state of the art
[16,17,19,20,22,23]. On the contrary, in this paper, we have
shown that the opposite phenomenon can also be observed.

We are aware that obtaining the same results indepen-
dently within the two methods (analytical and Monte Carlo
simulations) does not mean that we understand the observed
phenomenon. Unfortunately, heuristic understanding is still
lacking. Nevertheless, we have decided to present these re-
sults, hoping for the help of the readers. Admittedly, nowhere
in the literature have we found a proof that the phenomenon
we observe is impossible for a complete graph. On the other
hand, we have not found any paper in which anyone has ob-
served such a phenomenon. From this perspective, the model

studied here should be treated as an example that shows that
a quenched disorder can support discontinuous phase transi-
tions in some cases.

We realize that a complete graph is very different from
finite-dimensional systems, because in the latter case the
nodes are not equivalent. Moreover, here, we consider only a
bimodal disorder (conformist or anticonformist). This means
that there are only two classes of sites in the complete graph,
and the sites within either class are completely equivalent to
each other. It would be desirable to consider the same model
on top of other graphs to check what is responsible for the
observed phenomena, the structure of the system, or maybe
just a bimodal disorder. The consideration of the model on
other structures would also allow us to analyze the behav-
ior of the correlation length. This will help us to determine
whether we are actually dealing with a binary division into
continuous/discontinuous phase transitions or whether hybrid
transitions, as reported for the asymmetric q-voter model on
multiplex networks [42], also appear. Although many ques-
tions remain open, we believe that our finding goes far beyond
social physics and will be interesting to a broad audience.

ACKNOWLEDGMENTS

This work was partially supported by funds from the
National Science Center (NCN,Poland) through Grant No.
2019/35/B/HS6/02530.

B.N. was responsible for all analytical calculations and
Monte Carlo simulations. K.S.-W. was responsible for su-
pervising the research and funding acquisition. Both authors
wrote, reviewed, and edited the manuscript.

[1] C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of
social dynamics, Rev. Mod. Phys. 81, 591 (2009).

[2] J. Kwapień and S. Drozdz, Physical approach to complex sys-
tems, Phys. Rep. 515, 115 (2012).

[3] M. Perc, J. Jordan, D. Rand, Z. Wang, S. Boccaletti, and A.
Szolnoki, Statistical physics of human cooperation, Phys. Rep.
687, 1 (2017).

[4] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romić, Z.
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