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Role of extended coupling in bidirectional transport system
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Motivated by vehicular traffic phenomena, we study a bidirectional two-lane open totally asymmetric simple
exclusion process with extended symmetric coupling conditions in the presence of Langmuir kinetics. The phase
diagrams and density profiles are calculated utilizing mean-field theory for different lane-changing rates and are
found to be in a good match with Monte Carlo simulation results. It has been observed that the qualitative topol-
ogy of phase diagrams depends on the lane-switching rate significantly, resulting in nonmonotonic variations in
the number of steady-state phases. The proposed model provides various mixed phases leading to bulk induced
phase transitions. The interplay between bidirectional movement, extended coupling conditions, and Langmuir
kinetics produces unusual phenomena, including a back-and-forth phase transition and partial phase division of
the shock region for comparatively smaller values of the lane-changing rate. Moreover, we analyze the shock
dynamics and calculate critical values for the lane-changing rate at which the phases appear or disappear.
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I. INTRODUCTION

Many natural and artificial transport systems develop into
a nonequilibrium state and reveal various complex features
under an interrupted supply of internal or external energy.
In recent years this category of systems has been exten-
sively explored due to its rich presence in biology, physics,
and chemistry, including vehicular traffic, ant trails, protein
synthesis, intracellular transports carried out by molecular
motors, and gel electrophoresis [1–10]. The totally Asymmet-
ric Simple Exclusion Process (TASEP), a particular case of
driven diffusive systems, has been contemplated as a simple
stochastic model for investigating different kinds of transport
systems. In 1968 MacDonald and Gibbs proposed TASEP to
analyze the complex phenomena of the kinetics of biopoly-
merization [11]. This model contains a one-dimensional
lattice where particles move in a unique direction. In TASEP, a
particle can enter (leave) the lattice through the first (last) site
and hops in bulk with predefined rates following the hard-core
exclusion principle. It has been widely used to illustrate the
stochastic dynamics of multiparticle systems arising in real
life. TASEP mimics not only the transport systems but also
explains some of the complicated nonequilibrium features
such as phase separation, shock formation, boundary-induced
phase transition, and symmetry breaking [12–21].

Since, in various transport processes, a particle can join or
leave the bulk of the path, based on this observation, recently
researchers have proposed TASEP with the incorporation of
Langmuir kinetics (LK) dynamics, where the surrounding
particles interact with bulk sites of the lattice [15]. TASEP
coupled with LK not only helps in analyzing the transport
processes more realistically but also produces various non-
trivial features in the phase diagram, including localization of
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shock for a single channel TASEP as addressed in previous
studies [15,22]. In this direction, various studies have been
conducted on single-channel TASEP coupled with LK, and
it has been reported that additional nonconserving dynamics
alter the steady-state properties significantly [14,15,22–24].

Further, in various transport processes particles travel
along more than one lane and switch between the lanes.
For example, motor proteins can move along parallel mi-
crotubules forming a multilane system. Also, a driver can
change the vehicle from one lane to another according to
the surrounding situation in vehicular traffic. These phenom-
ena have inspired researchers to analyze the nonequilibrium
stationary character of the multilane system with symmetric
and asymmetric coupling rules [25–33]. Further, to make
traffic models more realistic, the steady-state properties of
multilane TASEP models associated with and without LK
have been studied comprehensively [25,26,33–42]. Moreover,
ranging from intracellular to vehicular transport, there are
various cases where particles move along two paths in op-
posite directions resulting in a bidirectional transport system.
Researchers have conducted different studies on bidirectional
TASEP which produced various nontrivial features [20,21,43–
50]. Apart from these studies, very recently, Yamamoto et al.
have studied a two-lane coupled system with extended LK
and modified hopping rules under unidirectional as well as
bidirectional movement and showed that interactions between
lanes affect the system dynamics significantly [38]. One can
follow Refs. [2,42] for more studies on the coupled traffic
systems. It is important to note that in most of the past cou-
pled TASEP models, particle lane changing occurs when the
forwarding site is occupied on the same lane and the target
site on another lane is empty. However, various scenarios are
found where lane-changing conditions crucially rely on the
occupancy of neighboring sites. For example, in the absence
of traffic signal systems, in a two-lane bidirectional road, a
driver prefers to switch the lane if there is no vehicle just
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FIG. 1. The model figure of two-lane bidirectional open TASEP with the association of LK and extended coupling rules. The arrows with
and without crosses indicate the allowed and forbidden transitions. The parameters α, β, ωa, ωd , and ω represent the entry, exit, attachment,
detachment, and coupling rates.

behind on the traveling lane and there is a sufficient place
available on the opposite road to switch the lane without
fear of a collision. Inspired by this example, in this study
we introduce a coupling rule (extended coupling) different
from the usual one, motivated by the bidirectional vehicular
traffic phenomena. As per these coupling rules, the particle
lane switching depends on the occupancy of an immediate
previous neighboring site on the same lane, the target site,
and its following site on another lane. We explore the impact
of extended coupling conditions on system dynamics in the
presence of bidirectional movement and Langmuir kinetics.
To do so, we calculate various steady-state characteristics,
including density profiles, phase diagrams, phase transitions,
and shock dynamics for the lane-changing rate. We highlight
the phase diagram’s qualitative and quantitative topological
changes emerging due to variations in the lane-changing rate.
Note that since this is a first step towards analyzing the in-
fluence of extended coupling on system dynamics, we restrict
the study to symmetric coupling only, and the more general
case of an asymmetric case will be taken up in future studies.
Since biological motor proteins can change their lanes without
following extended coupling conditions, we discuss a few
significant results in Appendix A to mimic this situation and
understand the system dynamics in the absence of proposed
extended coupling.

We discuss the proposed model in this paper as follows:
Sec. II explains the model description, while mean-field equa-
tions are presented in Sec. III. Results are discussed in Sec. IV.
Finally, we give a summary and conclusions of the problem in
Sec. V.

II. MODEL DESCRIPTION

We consider an open system consisting of two parallel
one-dimensional lattices, each with L number of sites, denoted
by A and B. In lane A (B), particles move from left (right)
to the right (left) following the hard-core exclusion principle
due to which a site can accommodate at most one particle as
shown in Fig. 1. The occupancy state of the site is represented
by a binary variable ni, j , where i = 1, 2, . . . , L and j = A, B.
It takes the value 1 or 0 depending on whether the site is

occupied or vacant, respectively. At each time step, a site is
selected randomly, and random sequential update rules are
implemented. Note that the dynamical rules for both lanes are
similar except for the opposite movement directions. The sub-
processes which govern the system dynamics are as follows:

1. At the entrance site of the lanes: A particle can enter into
the vacant first (last) site of lane A (B) with rate α.

2. At the bulk sites of the lanes: If a chosen site (i, j) is
empty, a particle can attach to the site with the rate ωa. If
the selected site (i, j) is occupied, the particle first tries to
detach from the site with the rate ωd , and in the case when
it fails, it moves to the forward site in the same lane with
the unit rate provided the next site is empty. If hopping from
site (i, A) [(i, B)] is not possible, then the particle shifts to
the corresponding vacant site in another lane (i, B) [(i, A)]
with a rate ω provided the sites (i − 1, A) [(i + 1, B)] and
(i + 1, B) [(i − 1, A)] are empty.

3. At the exit site of the lanes: A particle can exit from lane
A (B) with rate β if the last (first) is occupied by a particle.

It is important to note that the above dynamical rules are
adopted based on the vehicular traffic phenomenon where
drivers prefer to switch the lane only if there is no one im-
mediately behind their vehicle and on the target lane no other
vehicle is about to reach the target site to avoid any collision.
We hope that the adopted processes will provide better insight
into the dynamics of vehicular motion along two parallel
roads. The above-mentioned dynamical rules are based on
vehicular traffic situations, while the same extended coupling
rules are not directly applicable in the case of intracellular
transport carried out by motor proteins. Note that, to focus on
vehicular traffic, we have not considered the simple coupling,
which is also yet to be studied in literature with other adopted
dynamical rules. However, to explore the system properties
in the absence of proposed extended coupling and to mimic
motor proteins’ movement, an extension of the presented
model is possible on similar lines by removing the extended
coupling conditions and keeping only simple coupling rules as
discussed in Appendix A. It has been found that the removal
of extended coupling conditions reduces the complications of
the proposed model and does not affect the system dynamics
significantly, which inspired us to ignore them in the further
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analysis and incorporate them separately to avoid the extra
lengthy calculations. Similarly, when the motion of particles is
the same in each lane, we retrieve a model studied in the liter-
ature with simple coupling [36]. For the sake of completeness
and to understand the impact of unidirectional movement on
system dynamics, we have presented the proposed model by
removing bidirectional movement and incorporating motion
in only one direction in both lanes in Appendix B. There-
fore, the above considerations make our model more general
and realistic compared to the existing models [25–37,39,40]
accounting for the coupling between parallel lanes to mimic
transport systems.

III. MEAN-FIELD APPROXIMATION

The resulting master equations for the occupancy of bulk
sites (1 < i < L) in both lanes ( j = A, B) are described as
follows:

d〈ni,A〉
dt

= 〈ni−1,A(1 − ni,A)〉 − 〈ni,A(1 − ni+1,A)〉
+ ωa〈(1 − ni,A)〉 − ωd〈ni,A〉
− ω〈ni,Ani+1,A(1 − ni,B)(1 − ni+1,B)(1 − ni−1,A)〉
+ ω〈ni,Bni−1,B(1 − ni,A)(1 − ni−1,A)(1 − ni+1,B)〉,

(1)
d〈ni,B〉

dt
= 〈ni+1,B(1 − ni,B)〉 − 〈ni,B(1 − ni−1,B)〉

+ ωa〈(1 − ni,B)〉 − ωd〈ni,B〉
+ ω〈ni,Ani+1,A(1 − ni,B)(1 − ni+1,B)(1 − ni−1,A)〉
− ω〈ni,Bni−1,B(1 − ni,A)(1 − ni−1,A)(1 − ni+1,B)〉,

(2)

where 〈·〉 denotes the statistical average and the right-hand
side of the equations represents gain, and loss terms are
appearing due to the hopping, LK, and lane-switching tran-
sitions.

Similarly, at boundaries (i = 1, L), the time evolution of
densities can be calculated as follows:

d〈n1,A〉
dt

= α〈(1 − n1,A)〉 − 〈n1,A(1 − n2,A)〉, (3)

d〈n1,B〉
dt

= 〈n2,B(1 − n1,B)〉 − β〈n1,B〉, (4)

d〈nL,B〉
dt

= α〈(1 − nL,B)〉 − 〈nL,B(1 − nL−1,B)〉, (5)

d〈nL,A〉
dt

= 〈nL−1,A(1 − nL,A)〉 − β〈nL,A〉. (6)

Using the mean-field approximation method, we can neglect
the correlation between the state variables, i.e., 〈ni, jni+1, j〉 =
〈ni, j〉〈ni+1, j〉.

To solve the above-mentioned system of equations, we
attain the continuum limit of the model by coarse graining
the discrete lattice with lattice constant ε = 1

L along with
rescaling the space and time variable as x = i

L and t ′ = t
L ,

respectively. To analyze the competition between bulk and
boundary sites dynamics, we rescale the attachment, detach-
ment, and lane-changing rates as �a = ωaL, �d = ωd L, and
� = ωL. Replacing the discrete variables 〈ni, j〉 by a continu-

ous variable ρi, j , and carrying the terms up to the second order
in Taylor’s series expansion we get

ρi±1, j = ρi, j ± 1

L

∂ρi, j

∂x
+ 1

2L

∂2ρi, j

∂x2
± O

(
1

L3

)
. (7)

Since both lanes do not have any kind of spatial inhomogene-
ity, we drop the subscript i, which leads to the average bulk
sites densities in both lanes as follows:

dρA

dt ′ = ε2

2
ρ ′′

A[L + r] − ε2

2
ρ ′′

B[s] + ερ ′
A[t] + ερ ′

B[v]

− �ε2(ρ ′
A)2[ρA(1 − ρB)2] + �ε2(ρ ′

B)2[ρB(1 − ρA)2]

+ �ε2ρ ′
Aρ ′

B[ρA(1 − ρB) − ρB(1 − ρA)]

− �(1 − ρA)(1 − ρB)
[
ρ2

A(1 − ρB) − ρ2
B(1 − ρA)

]
+ �a(1 − ρA) − �dρA, (8)

dρB

dt ′ = − ε2

2
ρ ′′

A[r] + ε2

2
ρ ′′

B[L + s] − ερ ′
A[w] − ερ ′

B[u]

+ �ε2(ρ ′
A)2[ρA(1 − ρB)2] − �ε2(ρ ′

B)2[ρB(1 − ρA)2]

− �ε2ρ ′
Aρ ′

B[ρA(1 − ρB) − ρB(1 − ρA)]

+ �(1 − ρA)(1 − ρB)[ρ2
A(1 − ρB) − ρ2

B(1 − ρA)]

+ �a(1 − ρB) − �dρB, (9)

where

r = �[ρA(2ρA − 1)(1 − ρB)2 − ρ2
B(1 − ρA)(1 − ρB)],

s = �[ρB(2ρB − 1)(1 − ρA)2 − ρ2
A(1 − ρA)(1 − ρB)],

t = �[2ρA − 1 − ρA(1 − ρB) + ρ2
B(1 − ρA)(1 − ρB)],

u = �[2ρB − 1 − ρB(1 − ρA) + ρ2
A(1 − ρA)(1 − ρB)],

v = �[ρ2
A(1 − ρA)(1 − ρB) − ρB(1 − ρA)],

w = �[ρ2
B(1 − ρA)(1 − ρB) − ρA(1 − ρB)].

Similarly, the density evolution of boundary sites of the lanes
are characterized as follows:

dρ1,A

dt ′ = 1

ε
α(1 − ρ1,A) − 1

ε
ρ1,A(1 − ρ2,A), (10)

dρ1,B

dt ′ = 1

ε
ρ2,B(1 − ρ1,B) − 1

ε
βρ1,B, (11)

dρL,A

dt ′ = 1

ε
ρL−1,A(1 − ρL,A) − 1

ε
βρL,A, (12)

dρL,B

dt ′ = 1

ε
α(1 − ρL,B) − 1

ε
ρL,B(1 − ρL−1,B). (13)

To obtain the steady-state solution of the coupled nonlin-
ear system (8)–(13), We utilize the singular perturbation
technique, which in the past has successfully explained the
complete phase diagrams of single as well as multichannel
TASEP with LK [35,36,40,51].

IV. RESULTS AND DISCUSSION

A. Phase diagram

We analyze the steady-state behavior of the proposed sys-
tem in the presence of LK under the influence of extended
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FIG. 2. Phase diagram for (a) � = 0.1, (b) � = 1, (c) � = 10, (d) � = 100, (e) � = 1000 with �a = �d = 0.1 and L = 1000. (f) Zoomed
view of specific region of (c) and (d) to enhance the clarity.

coupling conditions. Note that in the current study, we focus
on the special case of �a = �d and investigate the role of
extended coupling on the steady-state system properties.

For a comprehensive analysis, we calculate phase diagrams
for specific values of the lane-changing rate � ∈ [0, 1000]
showing significant topological changes in the controlling
parameter space of (α, γ ) where γ = 1 − β. In this direction,
phase diagrams with respect to the different lane-changing
rates are displayed in Fig. 2. In our proposed model, we
obtain 12 types of steady-state phases for the various val-
ues of coupling rate as shown in the phase diagrams (see
Fig. 2). These 12 phases are (LD, LD), (MC, MC), (HD,
HD), (S, S), (I, D), (LD/MC, MC/LD), (MC/HD, HD/MC),
(LD/MC/LD, LD/MC/LD)(LD/MC/HD, HD/MC/LD),

(LD/MC/S, S/MC/LD), (S/MC/HD, HD/MC/S), and
(HD/MC/HD, HD/MC/HD) and are named LD (low den-
sity) (ρ < 0.5), MC (maximal current)(ρ = 0.5), HD (high
density)(ρ > 0.5), S (shock), and I (D) where the phase I
(D) represents the strictly increasing (decreasing) curve from
low (high) density to high (low) density portions. Physically,
phase I represents that in the initial part of the path there are
fewer particles, while concerning space, this number smoothly
increases, leading to a crowded region near the path end. The
density profile of the form X/Y/Z is called mixed phases,
where X, Y, and Z belong to one among the phases of LD,
MC, HD, and S. Note that due to the bidirectional symmetric
dynamics of the system, the density profile of one lane is the
mirror view of another one, so therefore in the phase diagrams,
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FIG. 3. The density profiles captured for the LK rates �a = �d = 0.1 and L = 1000. For the coupling rate of (1) � = 10: (a) LD phase for
α = 0.2, γ = 0.2; (b) LD/MC/LD phase for α = 0.4, γ = 0.5; (c) LD/MC/HD phase for α = 0.25, γ = 0.75; (d) HD/MC/HD phase for
α = 0.8, γ = 0.6; (e) MC phase for α = 0.5, γ = 0.5; (f) S/MC/HD phase for α = 0.32, γ = 0.7; (g) HD phase for α = 0.95, γ = 0.85; (h)
S phase for α = 0.1, γ = 0.86; and (i) LD/MC/S phase for α = 0.3, γ = 0.68. And for that of (2) � = 0.1: (j) MC/HD phase for α = 0.5,
γ = 0.56; (k) LD/MC phase for α = 0.45, γ = 0.5; and (l) I phase for α = 0.45, γ = 0.57. The solid (dashed) line indicates the mean-field
result, and the crossed (circled) curve represents the simulation result of lane A (B).

instead of denoting names of phases for both lanes, without
loss of generality, we mention only lane A density profile
names throughout the paper and have demonstrated these
phases in the form of density profiles in Fig. 3. Phases LD,
LD/MC/LD, LD/MC/HD, HD/MC/HD, MC, S/MC/HD,
HD, S, LD/MC/S, MC/HD, LD/MC, and I are demonstrated
in order in the panels of Fig. 3.

Initially, for a comparatively smaller value of � = 0.01
(c1), we observe eight distinct steady-state phases: LD
[Fig. 3(a)], MC [Fig. 3(e)], HD [Fig. 3(g)], S [Fig. 3(h)],
I [Fig. 3(l)], LD/MC [Fig. 3(k)], MC/HD [Fig. 3(j)], and
LD/MC/HD [Fig. 3(c)] as shown in Fig. 2(a). Note that phase
I is a unique phase, which was not reported in past studies
of single-channel TASEP with LK, which is a special case
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FIG. 4. Observed phase transitions with varied � for L = 1000.
Ci’s indicate the critical points beyond which the specific phases
either appear or disappear. The colored region indicates the place
in which the maximum number of phases occurs commonly.

of our proposed model with � = 0 [15,22]. With an increase
in �, apart from shifting in phase boundaries, no consider-
able changes are noticed in the phase diagram till c2 = 0.2,
at which phases LD/MC, MC/HD, and I disappear while
two new phases LD/MC/LD [Fig. 3(b)] and HD/MC/HD
[Fig. 3(d)] start emerging as clearly shown in Fig. 2(b). For
� > 0.2, no significant changes are observed up to c3 = 0.4 at
which a new phase S/MC/HD [Fig. 3(f)] starts appearing. If
we again enhance � from 0.4 to critical c4 = 0.5, a new phase
LD/MC/S [Fig. 3(i)] appears. On further enhancement in �,
the system experiences a unique topological structure in the
phase diagram for � = 1, which results in an unaccustomed
back-and-forth phase transition for some specific and fixed
values of α by varying only γ while keeping all other parame-
ters fixed. In particular, one can travel from S to LD/MC/HD
to the S phase again (S → LD/MC/HD → S), unveiling a
back-and-forth phase transition as displayed by a dotted line
in the phase diagram in Fig. 2(b) [see also Fig. 5(b) below]
and defined as follows. If in any phase diagram we start from
any phase P1 which first transits into phase P2 and then transits
into phase P1 itself (P1 → P2 → P1) with respect to a single
parameter by keeping all others parameter fixed, then this
type of transition is called a back-and-forth phase transition
as in a recent study on TASEP [52] following which we also
adopt the same name for such a type of phase transitions as
observed in our study. Note that in a few studies in reference to
statistical physics, the back-and-forth phase transition is also
called a reentrance transition; therefore, we wish to clarify
that the back-and-forth transition is similar to the reentrance
transition. For � > 1, the number of phases remains the same;
however, there are significant topological changes in the phase
diagram at � = 10, leading to a new phenomenon, partial
phase fragmentation. More specifically, at this stage, the S
phase is divided into two parts by a very narrow region of
the LD/MC/HD phase, as visible in Fig. 2(c). In other words,
we detect the mixed-phase LD/MC/HD inside the region of
the shock phase, which partially divides the shock region into
two regions and acts as one of the common phase boundary
regions for both mixed phases LD/MC/S and S/MC/HD. It is
significant to mention that in past studies of coupled two-lane
TASEP with LK as well as without LK in the presence of

asymmetric or symmetric coupling conditions, the systems
have not captured a back-and-forth transition or partial or
complete phase fragmentation to our knowledge. We will
discuss these features in more detail below. Also, beyond
� = 10, apart from shifting in the phase regions, no signifi-
cant quantitative changes are found in the phase diagram, as
shown in the phase diagram for � = 100 in Fig. 2(d). For
� > 100, apart from LD/MC/LD and HD/MC/HD, all other
phases start shrinking, leading to the vanishing of the S phase
at c5 = 190 followed by the disappearance of the LD/MC/S
phase at c6 = 195. If we further increase the value of �, we
see the exiting of LD/MC/HD, LD, S/MC/HD at critical
c7 = 223, c8 = 270, and c9 = 296, respectively. After � >

296, there are no quantitative or crucial qualitative changes
in the phase diagrams, as also shown in the phase diagram
for � = 1000, which displays only four phases, LD/MC/LD,
HD/MC/HD, HD, and MC, as are clearly visible in Fig. 2(e).
Note that in Figs. 2(c) and 2(d), there are a few phases with
very narrow regions, making it difficult to read the phase dia-
grams; therefore, for the sake of clarity, we provide a zoomed
view of specific regions of these two-phase diagrams in
Fig. 2(f).

To sum up, the above-discussed observations are displayed
in Fig. 4 with respect to the lane-changing rate �. It is
clear from the figure that there exist a total of 12 steady-
state phases in the system, including seven mixed phases,
out of which most of the phases are not reported in cou-
pled two-lane TASEP models without an extended coupling
rule [16,25,33,36,41]. The complexity of the phase diagram
differs nonmonotonically with growth in �, as initially there
are only eight phases in (c1, c2), which is reduced to seven in
(c2, c3), diminishing the complexity in the system. But with
the increase in � ∈ (c3, c4), the number of phases again starts
increasing from seven to eight and later results in nine phases,
which remains a maximum number of steady-state phases
for (c4, c5). After c5 when the magnitude of the coupling
rate from � = 190 is expanding, exactly one phase disap-
pears whenever the value of � crosses the critical points. It
is observed that, while � crosses the critical values c5, c6,
c7, c8, and c9 explicitly one phase vanishes correspondingly
S, LD/MC/S, LD/MC/HD, LD, and S/MC/HD. Therefore
beyond c5, the number of phases continuously decreases with
an increase in � due to which we notice only four phases
for � = 1000, resulting in a comparatively simpler phase dia-
gram. Therefore, the system experiences the complexity only
for 0 < � < 190 beyond which the increase in lane-changing
rate does not produce any significant outcomes apart from the
disappearance of phases, which leads to shifts in the phase
boundaries.

The above inspection reveals that extended coupling im-
pacts the system dynamics significantly, as even for minimal
values of �, we observe eight distinct steady-state phases,
including a few mixed phases with various unique properties.

B. Density profiles and phase transitions

The theoretical results calculated using the continuum
mean-field theory are validated by performing Monte Carlo
simulations (MCSs) for the lattice size L = 1000. The simu-
lations are executed for 1010 time steps and, the first 5% of the
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FIG. 5. Phase transitions in lane A from (a) LD → S → I → LD/MC/HD → MC/HD for γ = 0.55 and � = 0.1. (b) LD → S →
LD/MC/HD → S → HD for α = 0.41 and � = 1. (c) LD → LD/MC/S → LD/MC/HD → S/MC/HD → S → HD for α = 0.32, � = 10.
(d) LD → S → LD/MC/HD → S/MC/HD → S → HD with respect to α = 0.2, � = 10, and different values of γ . (e) LD/MC/LD → MC
→ HD/MC/HD → HD for α = 0.4 with various values of γ and � = 100. (f) LD/MC/S → LD/MC/HD → S/MC/HD → S → HD for
γ = 0.99, � = 100 with various rates of α and L = 1000. The insets indicate the corresponding Monte Carlo simulation results.

time steps are neglected to attain the steady state. The average
density in both lanes is calculated by taking the time average
over an interval of 10L. The phase boundaries are computed
within an estimated inaccuracy of less than 1%.

In Fig. 3 we have provided all 12 existing stationary
phases of our system using mean-field theory and their val-
idation through MCSs. From the figure, it is seen that our
theoretical outcomes have good agreement with the simula-
tion results. It is important to note that phases LD/MC/S,
S/MC/HD, HD/MC/HD, and LD/MC/LD were not re-
ported in past studies on single-lane TASEP-LK or two-lane

coupled TASEP-LK models, which are the special cases of our
system [15,22,35,36], which exhibits the significant impact
of the extended coupling conditions adopted in our model.
It is important to note that in Fig. 3(a), which illustrates the
LD phase, we observe a bump indicating a particle accumu-
lation at the center of the lanes, which can be explained as
follows. Here entry rate α and exit rate β are 0.2 and 0.8,
respectively. From the initial to middle part of the lattice,
the density starts increasing due to the slow injection rate.
However, once a particle accumulates due to the high exit rate,
density starts decreasing concerning space, leading to a bump
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around the center of the lattice. Further, due to various mixed
phases and the crucial role of adopted coupling scenarios,
the proposed model displays various interesting steady-state
features that can be visualized in terms of phase transitions.
In this direction, Fig. 5 shows various nontrivial phase tran-
sitions between different phases. The transition from LD to
MC/HD with respect to α through phases S, I, LD/MC/HD
for � = 0.1 with fixed γ = 0.55 is presented in Fig. 5(a).
For � = 1, the shape of the phase diagram becomes pecu-
liar, which leads to a unique type of back-and-forth phase
transition for some particular and fixed values of the entry
rate α by varying only the removal rate β while keeping the
remaining parameters fixed. In particular, one can move from
S to LD/MC/HD and again to S phase exhibiting a back-and-
forth phase transition (S → LD/MC/HD → S) as displayed
by a dotted line in the phase diagram shown in Fig. 2(b). For
sake of completeness, we show the complete phase transitions
LD → S → LD/MC/HD → S → HD for α = 0.41. Here
S → LD/MC/HD → S is a back-and-forth phase transition.
Further, with increased � = 10, the phase diagrams become
comparatively more complex and strange, which not only
shows back-and-forth phase transitions but also partially di-
vides the shock region by other phases which clearly can be
observed through the two different phase transitions LD →
LD/MC/S → LD/MC/HD → S/MC/HD → S → HD for
α = 0.32 and LD → S → LD/MC/HD → S/MC/HD → S
→ HD for α = 0.2 as as shown in Figs. 5(c) and 5(d) [see
the dotted lines in Fig. 2(c)]. Note that since these transitions
take place in bulk only, therefore, they can be referred to
as bulk-induced phase transitions. Moreover, it is significant
to mention that such types of bulk-induced back-and-forth
transitions have not been reported in past studies on single
or multilane lane standard TASEP models to our knowledge.
Similarly for � = 100, there are various bulk induced phase
transitions LD/MC/LD → MC → HD/MC/HD → HD for
α = 0.4 and LD/MC/S → LD/MC/HD → S/MC/HD → S
→ HD for γ = 0.99 for the remaining fixed parameters as
displayed in Figs. 5(e) and 5(f).

C. Finite-size effect and shock dynamics

Here we inspect the indistinguishable characteristics of
shock in the proposed two-lane system. The influence of the
system size on the shock profile has also been scrutinized. It
is clear from Fig. 6(a) that the vertical sharpness of the profile
increases when the lattice size increases, proving that there is
no finite-size effect. In the same way, we have verified and
observed that the other mixed phases, including those shown
in Figs. 3(c), 3(d), 3(f), and 3(i), do not change concerning
lattice length, indicating the absence of a finite-size effect as
shown in Figs. 6(b)–6(e). Due to the absence of a finite-size
effect, the system size does not affect any of the discussed
properties of the system. The distinctive aspect of our system
is the appearance of back-and-forth transitions of the shock
phase, which motivates us to investigate the shock dynam-
ics in terms of its position. In Fig. 7(a) we have shown the
shock position of lane A with respect to γ for fixed values of
α = 0.41 and � = 1. Initially, for γ = 0.4, the system is in
the LD phase with a shock position near 1 as a boundary layer
which starts shifting from right to left with an increase in γ .

On increasing the value of γ from 0.48, the LD phase transits
into the shock phase, where the shock profile starts shifting
from the right to the left direction resulting in a reduction in
the shock position until γ reaches point 0.58. With further
increasing γ , the shock phase converts into the mixed-phase
LD/MC/HD, which leads to the shock position as zero. For a
small range of γ , the system remains in LD/MC/HD, which
again transits into the shock phase at γ = 0.6. Further increas-
ing the value of γ , the position of the shock profile starts
decreasing until it reaches the value γ = 0.7, at which this
phase converts into a high-density phase. Beyond all values of
γ from 0.7, the HD phase remains so that the shock position
is zero. Therefore, we can visualize how the shock phase dis-
plays a back-and-forth transition using the shock position by
varying only γ . Similarly, we exhibit one more shock position
profile in Fig. 7(b) for α = 0.2 and � = 100 to prove that the
valuable feature of the back-and-forth transition persists even
for � = 10. From Fig. 7 it is clear that the shock position
changes nonmonotonically due to the back-and-forth effect.
Physically, the existence of the back-and-forth transition sig-
nifies that there is a small optimal range for collaboratively
higher values of γ for a fixed α in which the system re-
mains in nonshock phases; otherwise the system experiences
a shock which represents a traffic jam and is not desired for
smooth transportation (Fig. 7). Mathematically, the bidirec-
tional movement (boundary conditions), Langmuir kinetics,
and coupling terms in mean-field equations lead to back-and-
forth phase transitions. The absence of any of these processes
results in this feature’s disappearance.

V. CONCLUSION

In this work, motivated by the traffic flow problems, we
have analyzed a two-lane bidirectional TASEP model with
extended symmetric coupling conditions in which vehicles
represented by particles switch the paths depicted as lanes
depending on the occupation of neighboring sites in the same
as well as in the opposite lane with Langmuir kinetics. Ex-
tensively performed Monte Carlo simulations confirm the
theoretical results calculated using mean-field theory. To scru-
tinize the impact of adopted coupling conditions on system
properties, various crucial steady-state characteristics such
as phase diagrams, density profiles, and phase transitions
are computed on the grounds of mean-field approximations.
The influence of the coupling rate on the phase diagram is
also investigated extensively. The study reports 12 stationary
phases, out of which eight phases exhibit mixed behavior, and
phases including I, LD/MC/S, S/MC/HD, HD/MC/HD,
and LD/MC/LD have not been reported in past studies on
single or coupled TASEP models. Since S and HD lead to a
different type of traffic jam resulting in undesirable wastage
of time and fuel, therefore, except LD/MC/LD, other mixed
phases are not suitable for smooth transportation. The inves-
tigation revealed that the extended coupling conditions affect
the system dynamics significantly since the same is produc-
ing various nontrivial features even for comparatively smaller
values of lane-changing rates in the system, which later per-
sist for its higher value. As we enhance the lane-changing
rate, crucial topological changes are noticed in the phase di-
agram qualitatively and quantitatively due to the appearance
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FIG. 6. Finite-size effect on (a) shock phase for α = 0.15, γ = 0.85, and � = 1; (b) LD/MC/HD phase for α = 0.25, γ = 0.75, and � =
10; (c) HD/MC/HD phase for α = 0.8, γ = 0.6, and � = 10; (d) S/MC/HD phase for α = 0.32, γ = 0.7, and � = 10; and (e) LD/MC/S
phase for α = 0.3, γ = 0.68, and � = 10. The LK rates are fixed as �a = �d = 0.1 with L = 1000 in all panels.

and disappearance of various standard and mixed phases.
Moreover, the nine critical values of the lane-changing rate,
beyond which various simple and mixed phases appear and
disappear, are identified.

It is seen that the complexity in terms of the number
of phases of the phase diagram varies nonmonotonically
with the increase in coupling rates. The intermediate val-
ues of coupling rates produce complex phase diagrams with
fewer phases, indicating that even with a comparatively small
change in the entry or exit rates, the path can experience a
different phase. Physically, at this state, a small change in the

controlling parameters can increase or reduce the traffic on
the road or biological paths. The study reveals that higher
values of the lane-switching rate lead to the disappearance
of the shock phase. Noted that the disappearance of shock
has relevance in two aspects as follows. First, it represents
the traffic jam on the road or biological path by physical or
biological motors, which is a crucial aspect of transportation
as it acts like a bottleneck and influences motor mobility.
Second, its disappearance at higher values of the coupling rate
reveals that fast road switching can reduce traffic jams. It is
also crucial to mention that our findings are different from
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FIG. 7. The corresponding system parameters of shock position of lane A are (a) α = 0.41, � = 1, (b) α = 0.2, � = 10 with �a = �d =
0.1, and lattice size L = 1000. We have highlighted the shock region using green (a) and pink (b) in which the value of the shock position is
nonzero.

previous studies in terms of observed phases apart from the
reported properties. The most strikng feature of the proposed
model is the presence of a back-and-forth phase transition
which is noticed through an increase in γ = 1 − β for some
constant values of the entry rate α with comparatively smaller
values of coupling rates. In this case, we visualized transitions
from the LD phase to the S phase and then back to the S phase
via some mixed phases due to the interplay between adopted
boundary conditions, coupling rules, and Langmuir Kinetics.
Based on back-and-forth phase transitions, the proposed study
reveals that there can be an optimal value of the entry rate for
which the system remains in a nonshock state despite variation
in the exit rate, which is important for smooth transportation.
Additionally, it is seen that the S phase is partially fragmented
by the LD/MC/HD phase in the phase diagram for a compar-
atively small value of the lane-changing rate. Further, the role
of the system size has been analyzed, and it has been proved
that there is no finite-size effect on the steady-state features of
the proposed system.

The proposed study provides insight into understanding
the complex dynamics of some realistic physical stochastic
nonequilibrium transport systems under the influence of com-
paratively more realistic coupling conditions and highlights its
nontrivial impact on system dynamics. In this study, we adopt
the symmetric coupling conditions, and the more general case
of asymmetric coupling situations will be taken up in future
models.

APPENDIX A

The model studied in the main text motivated by vehicular
traffic does not include the case of simple coupling, which is
comparatively more suitable for mimicking the intracellular
transport carried out by motor proteins. Here we consider the
model with simple coupling conditions after removing ex-
tended switching rules presented in the main text to visualize
the combined effect of standard coupling and bidirectional
particle movement on the phase diagram of the proposed
model as follows. Under the simple coupling conditions, the
resulting governing equations read as follows.

At bulk sites:

dρA

dt ′ = ε

2
ρ ′′

A + (2ρA − 1)ρ ′
A + �a(1 − ρA) − �dρA

− �[ρ2
A(1 − ρB) − ρ2

B(1 − ρA)], (A1)

dρB

dt ′ =ε

2
ρ ′′

B + (1 − 2ρB)ρ ′
B + �a(1 − ρB) − �dρB

+ �[ρ2
A(1 − ρB) − ρ2

B(1 − ρA)]. (A2)

The particle density in both lanes at boundaries can be calcu-
lated as follows.

At boundary sites:

dρ1,A

dt ′ = 1

ε
α(1 − ρ1,A) − 1

ε
ρ1,A(1 − ρ2,A), (A3)

dρ1,B

dt ′ = 1

ε
ρ2,B(1 − ρ1,B) − 1

ε
βρ1,B, (A4)

dρL,A

dt ′ = 1

ε
ρL−1,A(1 − ρL,A) − 1

ε
βρL,A, (A5)

dρL,B

dt ′ = 1

ε
α(1 − ρL,B) − 1

ε
ρL,B(1 − ρL−1,B). (A6)

Based on the same mathematical techniques as mentioned
in Sec. III, we solve the above systems of equations and obtain
the phase diagrams for various values of � as shown in Fig. 8.
Comparing with Fig. 2, we can make the following observa-
tions. It is clear from Fig. 2(a) and Fig. 8(a), for � = 0.1, apart
from slight shifting in the phase diagram, there is no quali-
tative or quantitative change in the phase diagram. When we
further increase the � from 0.1 to 1, we obtain an extra I phase
in the absence of extended coupling in a extremely narrow
region, while for � = 10, apart from shifting in phase bound-
aries, there is no quantitative change in the phase diagram
and the same phases are observed with or without extended
coupling [see Figs. 2(b) and 2(c) and Figs. 8(b) and 8(c)].
Further, with � = 100, the extended coupling leads to various
phases including S, L/MC/S, LD/MC/HD, HD, S/MC/HD,
in the phase diagram [see Fig. 2(d)], which are not observed in
the phase diagram with simple coupling as shown in Fig. 8(d).
For � = 1000, the extended coupling results in HD phase
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FIG. 8. Phase diagram with simple standard coupling for (a) � = 0.1, (b) � = 1, (c) � = 10, (d) � = 100, (e) � = 1000 with �a =
�d = 0.1 and L = 1000.

in a narrow region in contrast to the simple coupling, which
signifies that extended coupling supports particle crowding at
roads. Apart from the HD phase, there is no quantitative or
significant qualitative change in both phase diagrams. Based
on above discussion, we can summarize that the removal
of extended coupling rules does not affect system dynamics
significantly, and no qualitative changes are observed in the
phase diagram with simple coupling. Overall, we obtained the
same steady-state phases which were noticed earlier, ignoring
the simple coupling. Incorporating simple coupling only leads
to shifting in phase boundaries and does not produce any new

phase. This motivated us to ignore it in the main text. It also
suggests that one can utilize the proposed model and results
to understand the dynamics of motor protein transport, since
vehicular traffic motivated extended coupling and simple cou-
pling provides almost the same physics.

APPENDIX B

The model studied in main text considers the particles’
movement in the opposite direction in lanes, in particular,
particles move from left (right) to right (left) in lane A (B).
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FIG. 9. Phase diagram with unidirectional (left to right) move-
ment in both lanes in the proposed model with � = 0.1 and L =
1000.

Here we consider the model with unidirectional (right to left)
movement in both lanes to scrutinize the combined impact
of unidirectional movement and extended lane-changing rules
on the system properties of the proposed model as follows.
Under the simple coupling conditions, the resulting governing
equations read as follows.

At bulk sites:

dρA

dt ′ = ε

2
ρ ′′

A + (2ρA − 1)ρ ′
A + �a(1 − ρA) − �dρA

− �(1 − ρA)(1 − ρB)
[
ρ2

A(1 − ρB) − ρ2
B(1 − ρA)

]
− �ερ ′

A(1 − ρB)
[
ρA(1 − ρB) + (1 − ρA)ρ2

B

]
+ �ερ ′

B(1 − ρA)
[
ρB(1 − ρA) + (1 − ρB)ρ2

A

]
+ �ε2ρ ′

Aρ ′
B(ρA − ρB) − �ε2(ρ ′

A)2ρA(1 − ρB)2

+ �ε2(ρ ′
B)2ρB(1 − ρA)2 − �

ε2

2
ρ ′′

A(1 − ρB)

× [
ρA(1 − 2ρA)(1 − ρB) + (1 − ρA)ρ2

B

]

+ �
ε2

2
ρ ′′

B(1 − ρA)
[
ρB(1 − 2ρB)(1 − ρA)

+ (1 − ρB)ρ2
A

]
, (B1)

dρB

dt ′ = ε

2
ρ ′′

B + (2ρB − 1)ρ ′
B + �a(1 − ρB) − �dρB

+ �(1 − ρA)(1 − ρB)
[
ρ2

A(1 − ρB) − ρ2
B(1 − ρA)

]
+ �ερ ′

A(1 − ρB)
[
ρA(1 − ρB) + (1 − ρA)ρ2

B

]
− �ερ ′

B(1 − ρA)
[
ρB(1 − ρA) + (1 − ρB)ρ2

A

]
− �ε2ρ ′

Aρ ′
B(ρA − ρB) + �ε2(ρ ′

A)2ρA(1 − ρB)2

− �ε2(ρ ′
B)2ρB(1 − ρA)2 + �

ε2

2
ρ ′′

A(1 − ρB)

× [
ρA(1 − 2ρA)(1 − ρB) + (1 − ρA)ρ2

B

]
− �

ε2

2
ρ ′′

B(1 − ρA)
[
ρB(1 − 2ρB)(1 − ρA)

+ (1 − ρB)ρ2
A

]
. (B2)

The resulting particle density at boundaries can be computed
as follows.

At boundary sites:

dρ1,A

dt ′ = 1

ε
α(1 − ρ1,A) − 1

ε
ρ1,A(1 − ρ2,A), (B3)

dρ1,B

dt ′ = 1

ε
α(1 − ρ1,B) − 1

ε
ρ1,B(1 − ρ2,B), (B4)

dρL,A

dt ′ = 1

ε
ρL−1,A(1 − ρL,A) − 1

ε
βρL,A, (B5)

dρL,B

dt ′ = 1

ε
ρL−1,B(1 − ρL,B) − 1

ε
βρL,B. (B6)

Utilizing the same mathematical technique as mentioned in
the main text, we solve the above system of equations to calcu-
late the phase diagram, which is displayed in Fig. 9 for � =
0.1, which remains the same for any value of � ∈ (0, 1000]
due to symmetric coupling. It is clear from the figure that
unidirectional movement in both lanes does not provide any
new phase or physics, which motivated us to ignore it in the
main text and adopt the bidirectional movement, which is
more suitable for various transport systems leading to various
steady-state features as discussed in main text. Summariz-
ing, unidirectional movement will lead to the disappearance
of many mixed phases and features including bulk-induced
phase transitions, back-and-forth transitions, and partial phase
division from the system properties. Based on the above ob-
servations, we can also conclude that the obtained results arise
in the proposed system due to the interplay between bidirec-
tional movement, coupling, and Langmuir kinetics. Further,
it is important to note that a two-lane unidirectional coupled
system without an extended coupling system has been studied
in [36], which does not report phase I, indicating that extended
coupling has a significant role on system dynamics and leads
to this unique phase in the phase diagram as shown in Fig. 9.
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