
PHYSICAL REVIEW E 106, 014117 (2022)

Temporal Theil scaling in diffusive trajectory time series

F. S. Abril * and C. J. Quimbay †

Universidad Nacional de Colombia, Departamento de Física, 111321 Bogotá D.C., Colombia.

(Received 12 November 2021; revised 7 April 2022; accepted 23 June 2022; published 15 July 2022)

Temporal fluctuation scaling (TFS) is a power-law relation between the variance (�) and the mean (ϒ) which
is present in cumulative time series. Taking into account that Theil index (T ) can be assumed as a measure
of dispersion and considering diffusive trajectory time series, we find a power-law relation between T and ϒ

of the form T ∼ (1 − cϒ)β , which we call temporal Theil scaling (TTS). Specifically, by analyzing data of
volatility and absolute log-return for 24 nonstationary time series of financial markets, meteorology, and COVID-
19 spread, we find that TTS is present in diffusive trajectory time series, while TFS is not present. Furthermore,
we show that the power-law relation of TTS has a form that is similar to the relation between order parameter
and temperature, which is found in the Ginzburg-Landau theory when the nontrivial critical points of an energy
functional Fη,δ containing arbitrary powers η and δ of the order parameter are calculated.
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I. INTRODUCTION

Fluctuation scaling (FS) is a property that can be presented
in a set of empirical data of complex systems in such a way
that the variance (�) of the data is related with the mean (ϒ)
of the data through a power-law relation of the form � ∼ ϒα ,
where the dispersion (fluctuation) of the data has been de-
scribed in terms of � [1–3]. Since its discovery in 1938 by
F. Smith [4], FS has had two approaches, spatial (ensemble
fluctuation scaling) and temporal (temporal fluctuation scal-
ing). In particular, temporal fluctuation scaling (TFS) has been
observed in cumulative time series as an emergent property of
complex systems from different branches of science [5–7]. For
instance, in financial time series, it has been observed that by
defining ϒ and � with an optimal window size, the trend of
the data can be characterized by a logarithmic behavior, where
the value of α is not universal and does not depend on the mar-
ket type [1,8–12]. Here it is worth noting that in the context
of financial markets, TFS allows to characterize the type of
market from its exponent α and its temporal evolution [1,8].
Also, TFS has been found in the spread of the COVID-19 pan-
demic around the world for the time series of cumulative daily
confirmed cases and daily deaths [13]. However, it has not
been investigated if TFS can be also observed in another kind
of time series, specifically in diffusive trajectory time series
[14]. Moreover, it has also not been investigated for the case of
diffusive trajectory time series whether another quantity that
can be used to measure dispersion of data is related with ϒ

through a power-law relation. However, the Theil index (T )
is a measure of inequality introduced by the Dutch economist
Henri Theil in terms of the entropy index [15]. Given that T
measures the inequality in empirical income distributions of
a population [16], this inequality index exhibits the important
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property of decomposition because it can be calculated from
the inequalities of the subgroups in which the population is
partitioned [17]. Additionally, T can be also used to char-
acterize racial segregation [18]. Besides, T can be seen as a
measure of redundancy in the data or diversity [19–21]. Thus,
for the case in which T is normalized to the logarithm of the
number of data, this index has a value 0 for maximum equality,
while its value is 1 for maximum inequality. Likewise, the
most popular measure of inequality of an income distribution
in a population corresponds to the Gini index (G), which was
introduced by the Italian sociologist Corrado Gini in 1912
[22]. Furthermore, analogous to the normalized T , the case
G = 0 represents the maximum equality, while G = 1 repre-
sents the maximum inequality. In particular, for a parametric
family of probability distributions, it has been shown that G
can be seen as a measure of dispersion because it can be
written in terms of � [23]. Also, it has been shown that T
can be calculated in terms of � for the most important and
popular parametric income distributions [24]. Indeed, it has
been shown that the relation between T and � depends on the
type of probability distribution to which a data set fits [24].
Thus, in general, T is related to � as suggested in Ref. [25],
and in this form, T can be seen as a measure of dispersion.
It is worth mentioning that T has been used in the context
of econophysics to study the correlation of time series with
different metrics and emphasizing that the latter transforms
the time series into entropy time series (depending on the the
time window size) [26]. Other econophysical applications of
T lie in the study of the distribution of income in countries
[27], the understanding of equilibrium states of free market
models [28], and the use of an entropic approach to under-
stand the regional changes in the distribution of foreign aid
[29]. Due to the existence of a power-law relation between
� and ϒ in cumulative time series (TFS) and also by the
relation between T and � for different probability distribu-
tions, the existence of a relation between T and ϒ should be
expected. With this idea in mind, we find from the analysis
of the empirical data that TFS does not exist in the diffusive
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trajectory time series for volatility and absolute log-return of
the following 24 nonstationary time series of financial mar-
kets, meteorology and COVID-19 spread: in financial markets
for stock indexes as Nikkei 225, S&P 500, DAX, MOEX,
IBEX 35, NASDAQ, BOVESPA, COLCAP, CAC 40, AEX,
and RTS; for currencies as Colombian peso-dollar (COP-
USD), bitcoin-dollar (BTC-USD), euro-dollar (EUR-USD),
pound sterling-dollar (GBP-USD), and dollar-yen (USD-
JPY); for commodities as silver, gold, crude oil, and treasure
yield of United States [30]; in meteorological systems for
temperature and precipitation in Bogota, Colombia, and in the
spread of a pandemic for daily cases and deaths of COVID-19
in the United States of America. Contrary to the last result,
we find that a power-law relation between T and ϒ of the
form T ∼ (1 − cϒ)β is present in diffusive trajectory time
series for volatility and absolute log-return of the mentioned
24 nonstationary time series. Thus, we call to this new type of
temporal scaling involving T as temporal Theil scaling (TTS).
Finally, we show that the power-law relation of TTS has a
similar form to that obtained between the order parameter
(ψ) and the temperature (θ ), in the form ‖ψ‖ ∼ (1 − dθ )γ ,
as it is found in the context of the Ginzburg-Landau theory
when the nontrivial critical points of an energy functional Fη,δ

containing arbitrary powers η and δ of the order parameter ψ

are calculated. The structure of this work is the following: in
Sec. II we develop the definitions of the diffusive trajectory
time series which are necessary to be able to find the TTS,
and additionally the global average error [GAE(%)] and χ2

test are also defined to have an estimate of the quality of the
adjustments shown. In Sec. III, from the analysis of the data of
volatility and absolute log-return of the 24 time series studied
in this work, first we find that TFS does not exist in diffusive
trajectory time series for volatility and absolute log-return,
next we show from the analysis of the data that T and � are
not related by a functional relation, and finally we find the
existence of an empirical power-law relation between T and
ϒ , that we call TTS. In Sec. IV, using the Ginzburg-Landau
theory, we show that ψ and θ satisfy a power-law relation at
the critical temperature (θc) which has the same form that the
empirical power-law relation of the TTS. Finally, in Sec. V we
present the conclusions and future directions of this work.

II. DIFFUSIVE TRAJECTORY TIME SERIES

A time series corresponds to the realization of a
discrete stochastic process Yt with t ∈ N. The weak-
sense stationarity or wide-sense stationarity of a dis-
crete stochastic process Yt is defined as a random pro-
cess which the mean E[Yt ] and autocovariance function
E[(Yt1 − E[Yt1 ])(Yt2 − E[Yt2 ])] ≡ KYY (t1, t2), does not vary
concerning time [31], that is

E[Yt ] = E[Yt+τ ], for all τ ∈ N, (1)

KYY (t1, t2) = KYY (t1 − t2, 0), for all t1, t2 ∈ N, (2)

E
[|Yt |2

]
< ∞, for all t ∈ N. (3)

A time series is nonstationary if the above definition is not
satisfied. Henceforth, it is assumed that the time series are

nonstationary and for simplicity, from now on we will refer
to time series as nonstationary time series. It is worth noting
that Eq. (3) indicates that the variance of the time series is a
finite number. For the study of the data of the 24 nonstationary
time series that we consider in this work, two time series are
defined with the data value Si given by the volatility (LV) and
absolute log-return (LA), which correspond [9,32,33]

LVi = 1

max1�k�N |LRk|

√∣∣∣∣LRi − E[LR]

σ (LR)

∣∣∣∣, (4)

LAi = |LRi|, (5)

respectively, where LRi is the log-return given by

LRi = ln (Si+1) − ln (Si ). (6)

The subindex refers to the time, N is the total number of data
of the time series, E[·] is the expectation value, and σ (·) is
the standard deviation. It is worth mentioning that in practical
terms, Eq. (6) defines the time series of log-returns, which
is distributed as a truncated Levy distribution [32,33], but our
interest is focused on the time series of absolute log-return and
volatility, which have the property of being positive definite.
In addition, due to the structure of the temporal scaling that
is proposed below with T that involves the maximum [see
Eq. (10)], it is useful to define the time series of volatility with
the maximum. Then, each of these two time series (volatility
and absolute log-return), is associated with a new time series
through the diffusion algorithm exposed in Ref. [14], and
defined by

x(s)
TS(t ) =

t∑
j=1

TS j+s, (7)

with s = 0, 1, ..., N − t and TS = LV, LA. Equation (7) is
known as the diffusive trajectory time series [14] and defines
at each time step a subseries of N − t + 1 data, such that for
t = 1 it corresponds to the original time series, for t = 2 it
corresponds to the subseries obtained by adding two succes-
sive terms in the original series, and so on until t = N , where
the subseries of a single piece of data is obtained whose value
is the sum of all the terms of the original time series. Thus,
a time step is defined in this context as the realization of the
diffusive trajectory x(s)

TS(t ) of N − t + 1 data obtained from a
successive sum of terms of the original time series TS. Finally,
in this last time series x(s)

TS(t ), the mean ϒ(t ) and the variance
�(t ) are taken in each time step t , that is, the N − t + 1 data of
the time subseries x(s)

TS(t ) are taken in the time step t , and from
these the mean and the variance are calculated on the sample
of N − t + 1 data. Taking into account that TFS is satisfied for
the case of cumulative time series, we show that a power-law
relation between ϒ(t ) and �(t ) of the form

�(t ) = K|ϒ(t )|α, (8)

where K represents the TFS constant and α represents
the TFS exponent, does not exist for the case of diffusive
trajectory time series. Precisely, we show in the next section,
that TFS is not present in none of the cases, for the 24 time
series considered in this work. It is worth mentioning that
Eq. (8) is exactly the power-law relation of the TFS, which
is present for cumulative time series [1–3,9]. Now, since we
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TABLE I. Start date and end date for the time series of the Nikkei 225, S&P 500, DAX, MOEX, IBEX 35, NASDAQ, BOVESPA, COLCAP,
CAC 40, AEX, and RTS stock indexes, the Colombian peso-dollar (COP-USD), bitcoin-dollar (BTC-USD), euro-dollar (EUR-USD), pound
sterling-dollar (GBP-USD), dollar-yen (USD-JPY) currencies, the silver, gold, crude oil commodities, the treasure yield of the United States,
the temperature and precipitation in Bogota, Colombia, and the daily cases and deaths of COVID-19 in the United States.

Time Series Start date End date

Nikkei 225 5/01/1965 10/03/2022
S&P 500 4/01/2006 10/03/2022
DAX 30/12/1987 10/03/2022
MOEX 5/03/2013 10/03/2022
IBEX 35 12/07/1993 10/03/2022
NASDAQ 5/02/1971 10/03/2022
BOVESPA 27/04/1993 10/03/2022
COLCAP 17/01/2008 10/03/2022
CAC 40 1/03/1990 10/03/2022
AEX 12/10/1992 10/03/2022
RTS 4/09/1995 10/03/2022
USD-COP 9/11/1989 10/03/2022
BTC-USD 17/09/2014 10/03/2022
EUR-USD 1/12/2003 10/03/2022
GBP-USD 1/12/2003 10/03/2022
USD-JPY 30/10/1996 10/03/2022
Silver 30/08/2000 15/04/2021
Gold 30/08/2000 15/04/2021
Crude Oil 23/08/2000 15/04/2021
Treasure Yield U.S. 2/01/1962 10/03/2022
Bogota Temperature 1/03/2010 12/04/2021
Bogota precipitation 4/03/2010 25/09/2020
Covid Cases USA 21/01/2020 26/10/2021
Covid Deaths USA 29/02/2020 26/10/2021

want to study precisely the relation between ϒ and T for the
diffusive trajectory time series, the Theil index is defined as
[24]

T (t ) = −
∑

k

x(k)
TS (t )

x̄(t )M
ln

[
x(k)

TS (t )

x̄(t )M

]
, (9)

where x(k)
TS (t ) is the kth value of the diffusive trajectory at

time t , x̄(t ) is the mean of the diffusive trajectory at time t ,
and M = N − t + 1 is the total number of data in the diffusive
trajectory at time t . From the analysis of data, we show in the
next section that the data of volatility and absolute log-return
of the 24 time series studied in this work satisfy the following
empirical power-law relation

T (t )

T (1)
= K1

∣∣∣∣1 − ϒ(t )

ϒM

∣∣∣∣
β

, (10)

where ϒM = max {ϒ( j)|1 � j � N}, T (1) is the maxi-
mum value of the Theil index throughout the different time
steps taken which corresponds to the first time step (t = 1), K1

is the TTS constant and β is the TTS exponent. Thus, we call
this power-law relation involving T as temporal Theil scaling
(TTS). Furthermore, to measure the quality of the fits shown
in Sec. III, the global average error GAET (%) and χ2 test [34]
are used, and these are defined as

GAET (%) = 1

N

N∑
j=1

,
|M( j) − T ( j)|

|T ( j)| × 100%, (11)

χ2
T =

N∑
j=1

,
|M( j) − T ( j)|2

T ( j)
, (12)

respectively, where M( j) is the normalized Theil index of
empirical data for the jth diffusive trajectory, and T ( j) is
the adjustment of the normalized Theil index obtained from
Eq. (10). Specifically, given a time step t , we have the time
subseries x(s)

TS(t ) of N − t + 1 data, which allows us to cal-
culate M(t ) from Eq. (9), while T (t ) is estimated from the
adjustment made using the Eq. (10).

III. EMPIRICAL RELATIONS IN DIFFUSIVE
TRAJECTORY TIME SERIES

Before starting this section, some important detail in the
calculation of the diffusive trajectory time series is high-
lighted: 100 time steps are taken due to the high computation
time required to calculate T at each time step for multiple
time series. In addition, for completeness reasons, the Table I
is added that indicates the time periods taken for each of the
time series. In this table we can observe the presence of time
series associated to financial markets, meteorological systems
and an epidemiological system.

A. Relation between variance and mean

This subsection shows that TFS does not exist for the
diffusive trajectory time series of volatility and absolute
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FIG. 1. Variance � as a function of the mean ϒ for the diffusive trajectory time series of volatility of the: (a) Nikkei 225, (b) S&P 500,
(c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i) CAC 40, (j) AEX, and (k) RTS stock indexes taking 100
time steps.

log-return for the following time series: Nikkei 225, S&P 500,
DAX, MOEX, IBEX 35, NASDAQ, BOVESPA, COLCAP,
CAC 40, AEX, and RTS stock indexes, the Colombian peso-
dollar (COP-USD), bitcoin-dollar (BTC-USD), euro-dollar
(EUR-USD), pound sterling-dollar (GBP-USD), dollar-yen
(USD-JPY) currencies, the silver, gold, crude oil commodi-
ties, the treasure yield of the United States, the temperature
and precipitation in Bogota, Colombia, and the daily cases
and deaths of COVID-19 in the USA. Figures 1 and 5 show
� as function of ϒ of the diffusive trajectory time series
of volatility and absolute log-return, respectively, for stock
indexes. Figures 2 and 6 show � as function of ϒ of the
diffusive trajectory time series of volatility and absolute log-
return, respectively, for currencies. Figures 3 and 7 show � as
function of ϒ of the diffusive trajectory time series of volatil-
ity and absolute log-return, respectively, for commodities and
the treasure yield of the United States. Finally, Figs. 4 and
8 show � as function of ϒ of the diffusive trajectory time
series of volatility and absolute log-return, respectively, for

the temperature and precipitation in Bogota, Colombia, and
the daily cases and deaths of COVID-19 in the United States.
Figures 1 and 5 show that � as function of ϒ is strictly
decreasing for the stock indexes NASDAQ, BOVESPA, and
AEX, while in the rest of the cases it is observed that there
is no general monotonic behavior. Figures 2 and 6 show
that � as function of ϒ is strictly nonincreasing for the
Colombian peso-dollar (COP-USD) currency, while the euro-
dollar (EUR-USD), pound sterling-dollar (GBP-USD), and
dollar-yen (USD-JPY) show a strictly decreasing behavior
characterized in the end by a plateau where the value of the
variance stabilizes despite the value of the mean, and finally,
the currency bitcoin-dollar (BTC-USD) shows nonmonotonic
behavior. Figures 3 and 7 show that � as function of ϒ

is strictly decreasing for the treasure yield of the United
States, while in commodities a nonmonotonic behavior is
shown for gold and crude oil and a turning point for silver,
which changes the behavior in this last time series. Finally, in
Figs. 4 and 8 it is observed that � as function of ϒ is strictly

FIG. 2. Variance � as a function of the mean ϒ for the diffusive trajectory time series of volatility of the: (a) Colombian peso-dollar
(COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound sterling-dollar (GBP-USD), and (e) dollar-yen (USD-JPY)
currencies taking 100 time steps.
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FIG. 3. Variance � as a function of the mean ϒ for the diffusive trajectory time series of volatility of the: (a) silver, (b) gold, (c) crude oil
commodities, and (d) the treasure yield of United States taking 100 time steps.

FIG. 4. Variance � as a function of the mean ϒ for the diffusive trajectory time series of volatility of the: (a) temperature and precipitation
in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United States taking 100 time steps.

FIG. 5. Variance � as a function of the mean ϒ for the diffusive trajectory time series of absolute log-return of the: (a) Nikkei 225, (b) S&P
500, (c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i) CAC 40, (j) AEX, and (k) RTS stock indexes taking
100 time steps.
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FIG. 6. Variance � as a function of the mean ϒ for the diffusive trajectory time series of absolute log-return of the: (a) Colombian
peso-dollar (COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound sterling-dollar (GBP-USD), and (e) dollar-yen
(USD-JPY) currencies taking 100 time steps.

decreasing for the daily deaths of COVID-19 in the United
States, while for the temperature and precipitation in Bogota,
Colombia, a nonmonotonic behavior is observed, and for the
daily cases of COVID-19 in the United States, an inflection
change is observed accompanied by a local minimum before
the trend grows again. Therefore, it is clear that for the diffu-
sive trajectory time series of volatility and absolute log-return
of Nikkei 225, S&P 500, DAX, MOEX, IBEX 35, COLCAP,
CAC 40, RTS, BTC-USD, EUR-USD, GBP-USD, USD-JPY,
silver, gold, crude oil, the temperature in Bogota, precipitation
in Bogota, and daily cases of COVID-19 in the United States,
there are not strictly decreasing monotonic behaviors without
inflection changes between � and ϒ . At this point, it is worth
mentioning that it is quite clear that the TFS is a property that
does not exist for diffusive trajectory time series, since it was
not possible to adjust � as a function of ϒ as a power-law
relation of the form of Eq. (8) for any of the 24 time series
considered in this work.

B. Relation between Theil index and variance

Now, in this subsection we show that there is not an empir-
ical relation between the normalized Theil index T (t )/T (1)
and �. For this purpose, it is pertinent to mention that in all
cases T (1) turns out to be the maximum value of the Theil
index throughout the different time steps taken. Thus, the
same 24 time series are considered. Figures 9 and 13 show
T (t )/T (1) as a function of � of the diffusive trajectory time
series of volatility and absolute log-return, respectively, for
stock indexes. Figures 10 and 14 show T (t )/T (1) as a func-
tion of � of the diffusive trajectory time series of volatility and
absolute log-return, respectively, for currencies. Figures 11

and 15 show T (t )/T (1) as a function of � of the diffusive
trajectory time series of volatility and absolute log-return,
respectively, for commodities and the treasure yield of the
United States. Finally, Figs. 12 and 16 show T (t )/T (1) as a
function of � of the diffusive trajectory time series of volatil-
ity and absolute log-return, respectively, for the temperature
and precipitation in Bogota, Colombia, and the daily cases
and deaths of COVID-19 in the United States. Figures 9
and 13 show that the normalized Theil index as a function
of the variance behaves strictly increasing for the S&P 500,
NASDAQ, BOVESPA, and AEX stock indexes, while for the
rest of the cases, it is observed that there is no a general
monotonic behavior. Figures 10 and 14 show that the nor-
malized Theil index as a function of the variance behaves
strictly increasing for the Colombian peso-dollar (COP-USD),
euro-dollar (EUR-USD), pound sterling-dollar (GBP-USD),
and dollar-yen (USD-JPY), while the bitcoin-dollar currency
(BTC-USD) shows nonmonotonic behavior. Figures 11 and
15 show that the normalized Theil index as a function of the
variance behaves strictly increasing for the US Treasury yield
and silver, while gold and crude oil exhibit nonmonotonic
behavior. Finally, Figs. 12 and 16 show that the normalized
Theil index as a function of the variance behaves strictly
increasing for daily COVID-19 deaths in the United States,
while for the temperature and precipitation in Bogotá, Colom-
bia, a nonmonotonous behavior are observed, and for the
daily cases of COVID-19 in the United States, an inflection
change is observed accompanied by a trend that reduces the
variance before it grows again. Therefore, it is clear that for
the diffusive trajectory time series of volatility and absolute
log-return of Nikkei 225, DAX, MOEX, IBEX 35, COLCAP,
CAC 40, RTS, USD-JPY, gold, crude oil, temperature in

FIG. 7. Variance � as a function of the mean ϒ for the diffusive trajectory time series of absolute log-return of the: (a) silver, (b) gold,
(c) crude oil commodities, and (d) the treasure yield of United States taking 100 time steps.
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FIG. 8. Variance � as a function of the mean ϒ for the diffusive trajectory time series of absolute log-return of the: (a) temperature and
precipitation in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United States taking 100 time steps.

FIG. 9. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of volatility of the:
(a) Nikkei 225, (b) S&P 500, (c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i) CAC 40, (j) AEX, and (k)
RTS stock indexes taking 100 time steps.

FIG. 10. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of volatility of the:
(a) Colombian peso-dollar (COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound sterling-dollar (GBP-USD),
and (e) dollar-yen (USD-JPY) currencies taking 100 time steps.
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FIG. 11. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of volatility of the:
(a) silver, (b) gold, (c) crude oil commodities, and (d) the treasure yield of United States taking 100 time steps.

FIG. 12. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of volatility of the:
(a) temperature and precipitation in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United States taking 100 time steps.

FIG. 13. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of absolute log-return
of the: (a) Nikkei 225, (b) S&P 500, (c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i) CAC 40, (j) AEX, and
(k) RTS stock indexes taking 100 time steps.
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FIG. 14. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of absolute log-return of
the: (a) Colombian peso-dollar (COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound sterling-dollar (GBP-USD),
and (e) dollar-yen (USD-JPY) currencies taking 100 time steps.

Bogota, precipitation in Bogota, and daily cases of COVID-19
in the United States, there are not monotonic trends between
T (t )/T (1) and �. In fact, it is observed that, in general,
the diffusive trajectory time series of volatility and absolute
log-return have similar trends that differ in the range of values
that each time series takes. We emphasize that the analysis of
the data show that does not exist a functional relation between
T (t )/T (1) and � for the diffusive trajectory time series of the
24 time series studied in this work.

C. Relation between Theil index and mean

Finally, starting from the analysis of empirical data, we
report the existence of a new temporal scaling in complex
systems that we refer to as TTS. TTS is an empirical relation
found between normalized T and the normalized ϒ for the
diffusive trajectory time series of volatility and absolute log-
return for all the 24 time series studied in this work, as it is
shown in the Figs. 17–24. Figures 17 and 21 show T (t )/T (1)
as a function of normalized ϒ of the diffusive trajectory
time series of volatility and absolute log-return, respectively,
for stock indexes. The Figs. 18 and 22 show T (t )/T (1) as
a function of normalized ϒ of the diffusive trajectory time
series of volatility and absolute log-return, respectively, for
currencies. Figures 19 and 23 show T (t )/T (1) as a function of
normalized ϒ of the diffusive trajectory time series of volatil-
ity and absolute log-return, respectively, for commodities and
the treasure yield of the United States. Finally, Figs. 20 and 24
show T (t )/T (1) as a function of normalized ϒ of the diffusive
trajectory time series of volatility and absolute log-return,
respectively, for the temperature and precipitation in Bogota,
Colombia, and the daily cases and deaths of COVID-19 in the

United States. Figures 17–24 show that the normalized Theil
index as a function of the mean behaves strictly decreasing for
all diffusive trajectory time series of volatility and absolute
log-return. The adjustments of the time series to a power-law
relation of the form of Eq. (10) through a solid continuous
line, corroborating the TTS in the diffusive trajectory time
series (points) as an invariant law of scale. We think that this
type of scaling could provide an approach to the origin of a
temporal scaling that can be more easily related to the Hurst
exponent, because this scaling is originated in time series that
vary its window size, as it happens in the diffusive trajectory
time series.

Tables II and III show for volatility and absolute log-return,
respectively, the coefficients of the least-squares adjustment to
the power-law relation given by Eq. (10), the global average
error GAET (%) given by Eq. (11) and the value of χ2 test
given by Eq. (12) for each of the time series considered. The
results shown in Tables II and III indicate that the constants
K1 of the TTS have different values and vary considerably,
while the values of the exponents β of the TTS are found
in a small range between 0.26 and 0.54. The above indicates
that the constant K1 and the exponent β of the TTS allow to
characterize each time series. Additionally, the results show
that if two time series have similar values of the exponent β,
the correspondent values of the constant K1 are different. This
last fact can be illustrated, for instance, if we observe that the
β of Treasure yield of the United States for volatility is 0.3064
and the β for daily deaths of COVID-19 in the United States is
0.3081, while for the first K1 is 4.4410 and for the second K1

is 1.7672. Also, for volatility and absolute log-return of daily
cases and daily deaths of COVID-19 in the United States,
we observe that the K1 are smaller than 1.8, and these values

FIG. 15. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of absolute log-return
of the: (a) silver, (b) gold, (c) crude oil commodities, and (d) the treasure yield of United States taking 100 time steps.
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FIG. 16. Normalized Theil index T (t )/T (1) as a function of the variance � for the diffusive trajectory time series of absolute log-return
of the: (a) temperature and precipitation in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United States taking 100 time
steps.

FIG. 17. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
volatility of the: (a) Nikkei 225, (b) S&P 500, (c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i) CAC 40, (j)
AEX, and (k) RTS stock indexes taking 100 time steps. Red line: fit with Eq. (10). Green line: Empirical data.

FIG. 18. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
volatility of the: (a) Colombian peso-dollar (COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound sterling-dollar
(GBP-USD), and (e) dollar-yen (USD-JPY) currencies taking 100 time steps. Red line: fit with Eq. (10). Green line: Empirical data.
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FIG. 19. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
volatility of the: (a) silver, (b) gold, (c) crude oil commodities, and (d) the treasure yield of United States taking 100 time steps. Red line: fit
with Eq. (10). Green line: Empirical data.

are smallest for all the systems considered. Additionally, we
observe that K1 and β are higher in daily deaths than in daily
cases of COVID-19, which seems to indicate that β may be
related with the temporal correlation, given that daily deaths
are easier to project than daily cases of COVID-19. Finally,
we observed that GAE(%) is less than 4.6% in all the cases,
which together with the value of χ2, it demonstrates the good
quality of the TTS fit. Actually, the smallest value of GAE(%)
is obtained for the time series of daily cases of COVID-19 in
the United States for the case of volatility, while for the case of
absolute log-return the smallest value of GAE(%) is obtained
for DAX stock index.

IV. GINZBURG-LANDAU THEORY AND TTS

In the context of condensed matter physics, it is a known
fact that the Ginzburg-Landau theory allows to describe
second-order phase transitions from the group of symme-
tries obeyed by the Hamiltonian of the system [35]. This
description starts from the free-energy density in which the
Hamiltonian of the system is expressed through a parameter
of order ψ and which, in the context of superconductivity
theory, can be related to the Cooper pair density [36]. Then,
by calculating the nontrivial critical points of the free-energy
functional, different power-laws can be obtained for differ-
ent thermodynamic variables around the value of the critical
temperature θc in terms of phenomenological parameters and
the so-called critical exponents of the system. In particular,
‖ψ‖ ∼ (1 − θ/θc)γ is obtained for θ < θc, where θ is the

temperature of the system, which implies a universal expo-
nent γ = 1/2 [36]. However, different physical systems show
that this exponent does not have a single value but depends
on the system, namely, in superconductivity γ = 1/2 [36],
in ferroelectric systems γ ∈ [0.33, 0.34] [37], in binary al-
loys γ = 0.305 ± 0.005 [38], in binary fluid mixtures γ ∈
[0.30, 0.34] [39], in gas-liquid systems γ ∈ [0.32, 0.35] [39],
and in magnetic systems γ ∈ [0.30, 0.36] [40]. However, we
have found, for the case of diffusive trajectory time series
of volatility, that the values of TTS exponent β are in the
range β ∈ [0.26, 0.34], while for the diffusive trajectory time
series of absolute log-return, the values of β are in the range
β ∈ [0.25, 0.54]. Thus, the TTS exponents have, surprisingly,
values in a range which is very close to the observed range
for γ for different physical systems [36,40]. Even so, it is
not superfluous to mention that there are approximations of
the Ginzburg-Landau theory for the corrections of the critical
exponents according to the dimensionality d , as it is shown
in Table 3 of Ref. [41]. Also, to describe phase transitions
of order p > 2, it is useful to take even powers of the norm
of the order parameter ψ greater than 4 at the free energy
F , that is, F ∼ ‖ψ‖2p, with p > 2 as suggested in Ref. [42].
Therefore, with the above motivation, added to the fact that the
theory of Ginzburg-Landau allows to explain the difference
between systems in terms of phenomenological parameters,
the following free-energy functional Fη,δ is introduced:

Fη,δ = aη,δ

2
‖ψ‖η + bη,δ‖ψ‖δ − cη,δ‖ψ‖, (13)

FIG. 20. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
volatility of the: (a) temperature and precipitation in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United States taking
100 time steps. Red line: fit with Eq. (10). Green line: Empirical data.
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FIG. 21. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
absolute log-return of the: (a) Nikkei 225, (b) S&P 500, (c) DAX, (d) MOEX, (e) IBEX 35, (f) NASDAQ, (g) BOVESPA, (h) COLCAP, (i)
CAC 40, (j) AEX, and (k) RTS stock indexes taking 100 time steps. Red line: fit with Eq. (10). Blue line: Empirical data.

where δ > η > 0, aη,δ , bη,δ , and cη,δ are parameters. Also, η

and δ, which are related with the critical exponent β, aη,δ ,
bη,δ , and cη,δ , are phenomenological parameters that depend
on τ = θc−θ

θc
, a transition parameter defined through the tem-

perature θ and the critical temperature θc, and ψ is the order
parameter such that if θ > θc, then ψ becomes zero. From
Eq. (13) and for the case cη,δ = 0, it is easy to verify the
existence of a nontrivial critical point

‖ψ‖δ−η = − ηaη,δ

2δbη,δ

. (14)

In particular, if we assume that aη,δ and bη,δ vary smoothly
enough with respect to τ , that is, aη,δ = −a(0)

η,δτ and bη,δ =
b(0)

η,δ , then the expression Eq. (14) can be reduced to

‖ψ‖ =
(

ηa(0)
η,δ

2δb(0)
η,δ

) 1
δ−η ∥∥∥∥1 − θ

θc

∥∥∥∥
1

δ−η

, (15)

which is identical to ‖ψ‖ ∼ (1 − θ/θc)γ when γ −1 = δ − η.
Thus, this new way of writing the power-law for the expo-
nent γ and the order parameter ‖ψ‖ in terms of some new
exponents η and δ, allow to explain a larger range of values
for γ . For example, if η = 2 and δ = 4, then the classical
result of γ = 1/2 is returned. In addition, if (η, δ) = (4, 6)
or (η, δ) = (6, 8) as in Ref. [42], so γ = 1/2. However, one
could also have possibilities like η = 3 and δ = 6 such that
γ = 0.33, which is closer to the value of γ for some physical
systems [36–40]. We note that terms of the form ‖ψ‖3 do
not violate invariance under spatial rotations. However, the
theoretical result given by Eq. (15) for condensed matter
systems has the same functional form as the empirical re-

sult given by Eq. (10), when ‖ψ‖ = T (t )
T (1) , Kδ−η

1 = ηa(0)
η,δ

2δb(0)
η,δ

, and

γ = β for complex systems. Therefore, it is possible to ex-
plain the difference between the exponent β and the constant
K1 of the TTS, by observing that the latter is the variable

FIG. 22. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
absolute log-return of the: (a) Colombian peso-dollar (COP-USD), (b) bitcoin-dollar (BTC-USD), (c) euro-dollar (EUR-USD), (d) pound
sterling-dollar (GBP-USD), and (e) dollar-yen (USD-JPY) currencies taking 100 time steps. Red line: fit with Eq. (10). Blue line: Empirical
data.
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FIG. 23. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
absolute log-return of the: (a) silver, (b) gold, (c) crude oil commodities, and (d) the treasure yield of United States taking 100 time steps. Red
line: fit with Eq. (10). Blue line: Empirical data.

FIG. 24. Normalized Theil index T (t )/T (1) as a function of the normalized mean ϒ(t )/ϒM for the diffusive trajectory time series of
absolute log-return of the: (a) temperature and precipitation in Bogota, Colombia, and (b) the daily cases and deaths of covid in the United
States taking 100 time steps. Red line: fit with Eq. (10). Blue line: Empirical data.

TABLE II. K1 and β adjustment parameters of the TTS [see Eq. (10)] for the diffusive trajectory time series of volatility of the Nikkei
225, S&P 500, DAX, MOEX, IBEX 35, NASDAQ, BOVESPA, COLCAP, CAC 40, AEX, and RTS stock indexes, the Colombian peso-dollar
(COP-USD), bitcoin-dollar (BTC-USD), euro-dollar (EUR-USD), pound sterling-dollar (GBP-USD), dollar-yen (USD-JPY) currencies, the
silver, gold, crude oil commodities, the treasure yield of United States, the temperature and precipitation in Bogota, Colombia, and the daily
cases and deaths of COVID-19 in the United States taking 100 time steps.

Time Series K1 β GAE(%) χ 2

Nikkei 225 4,0981±0.0996 0.2835±0.0044 3,0287 0.1967
S&P 500 2,9111±0.0482 0.2847±0.0038 2,4218 0.1781
DAX 4,1777±0.0875 0.3263±0.0043 2,3262 0.1717
MOEX 2,6706±0.0568 0.3362±0.0062 3,8149 0.2475
IBEX 35 3,6693±0.0790 0.2961±0.0043 2,8372 0.1907
NASDAQ 4,1137±0.0891 0.2901±0.0040 2,5263 0.1807
BOVESPA 3,2030±0.0653 0.2694±0.0041 2,9554 0.1996
COLCAP 2,7757±0.0549 0.2955±0.0049 3,3215 0.2114
CAC 40 3,7844±0.0775 0.3012±0.0041 2,5474 0.1799
AEX 3,7360±0.0757 0.2973±0.0041 2,5306 0.1761
RTS 3,8714±0.0980 0.3281±0.0055 3,3145 0.2288
USD-COP 4,0795±0.0992 0.3055±0.0047 3,0563 0.1945
BTC-USD 2,8411±0.0501 0.3146±0.0046 2,7518 0.1941
EUR-USD 3,0711±0.0724 0.2838±0.0052 3,7530 0.2410
GBP-USD 2,9894±0.0674 0.2743±0.0049 3,6527 0.2281
USD-JPY 3,5605±0.0798 0.2875±0.0045 3,0817 0.2031
Silver 3,1480±0.0714 0.2724±0.0047 3,4864 0.2279
Gold 3,3255±0.0797 0.2893±0.0051 3,5291 0.2392
Crude Oil 2,8565±0.0483 0.2683±0.0037 2,4248 0.1933
Treasure Yield U.S. 4,4410±0.1226 0.3064±0.0051 3,3643 0.2109
Bogota Temperature 3,0882±0.0604 0.2995±0.0045 2,9192 0.1938
Bogota precipitation 2,0561±0.0259 0.2709±0.0038 2,6672 0.1866
Covid Cases USA 1,5159±0.0108 0.2653±0.0032 1,7125 0.1614
Covid Deaths USA 1,7672±0.0217 0.3081±0.0051 3,2799 0.2132
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TABLE III. K1 and β adjustment parameters of the TTS [see Eq. (10)] for the diffusive trajectory time series of absolute log-return of the
Nikkei 225, S&P 500, DAX, MOEX, IBEX 35, NASDAQ, BOVESPA, COLCAP, CAC 40, AEX, and RTS stock indexes, the Colombian peso-
dollar (COP-USD), bitcoin-dollar (BTC-USD), euro-dollar (EUR-USD), pound sterling-dollar (GBP-USD), dollar-yen (USD-JPY) currencies,
the silver, gold, crude oil commodities, the treasure yield of United States, the temperature and precipitation in Bogota, Colombia, and the
daily cases and deaths of COVID-19 in the United States taking 100 time steps.

Time Series K1 β GAE(%) χ 2

Nikkei 225 4,3937±0.1193 0.2964±0.0049 3,2884 0.2048
S&P 500 3,2044±0.0553 0.3064±0.0040 2,2623 0.1739
DAX 5,3874±0.1201 0.3984±0.0048 1,8793 0.1591
MOEX 3,6795±0.1137 0.5353±0.0112 4,4052 0.2732
IBEX 35 4,2887±0.0959 0.3296±0.0045 2,5600 0.1750
NASDAQ 4,2715±0.0888 0.3035±0.0039 2,2074 0.1716
BOVESPA 2,9590±0.0538 0.2545±0.0037 2,6853 0.1902
COLCAP 3,0303±0.0733 0.3413±0.0065 3,6925 0.2341
CAC 40 4,5257±0.0951 0.3444±0.0043 2,1569 0.1643
AEX 4,5630±0.1012 0.3374±0.0044 2,3420 0.1678
RTS 6,4680±0.2407 0.4876±0.0089 3,7416 0.2464
USD-COP 5,2412±0.1630 0.3531±0.0060 3,3283 0.2004
BTC-USD 3,1673±0.0610 0.3480±0.0051 2,7436 0.1950
EUR-USD 3,1365±0.0903 0.2872±0.0063 4,5848 0.3000
GBP-USD 3,0152±0.0774 0.2736±0.0055 4,1862 0.2573
USD-JPY 3,9384±0.0927 0.2980±0.0046 2,9871 0.1936
Silver 3,0878±0.0858 0.2594±0.0056 4,4626 0.2953
Gold 3,5263±0.1023 0.2937±0.0060 4,1470 0.2941
Crude Oil 2,6979±0.0464 0.2594±0.0038 2,4971 0.2081
Treasure Yield U.S. 4,7363±0.1385 0.3398±0.0058 3,3689 0.2041
Bogota Temperature 2,9674±0.0587 0.2972±0.0047 3,1071 0.1995
Bogota precipitation 2,1271±0.0291 0.2847±0.0042 2,8777 0.1914
Covid Cases USA 1,3988±0.0090 0.2676±0.0033 1,9184 0.1606
Covid Deaths USA 1,7903±0.0235 0.3339±0.0058 3,4858 0.2257

that depends on phenomenological parameters as a(0)
η,δ and b(0)

η,δ .
Indeed, the values for β reported in Tables II and III suggest
that the value of the difference of the critical exponents δ − η

is similar in most time series, and that the most noticeable
difference of the constant of the TTS, K1, comes from the
phenomenological parameters a(0)

η,δ and b(0)
η,δ , which must be

different for each diffusive trajectory time series. Finally, it
is clear that τ = 1 − θ/θc plays the role analogous to the
quantity 1 − ϒ(t )/ϒM in the TTS [see Eq. (10)], which is
in agreement with the fact that temperature represents a sta-
tistical average in complex systems, and θc is the maximum
temperature when θ < θc.

V. CONCLUSIONS

We have shown in Sec. III A the TFS analysis for the 24
diffusive trajectory time series considered in this work, which
implies a window size on the data that varies over time in
such a way that two facts are obtained to highlight: (i) a
possible relation with the Hurst exponent is more evident as
it is a time series with a moving window, and (ii) TFS is a
property that has been proposed in cumulative time series,
where the power-law relation relation between � and ϒ is
satisfied [1,9], while in the diffusive trajectory time series this
type of power-law does not exist. In fact, it is observed that in
18 of the 24 time series used, there is no strictly decreasing
monotonic behavior without inflection changes, but that there
are some peaks or plateaus (see Figs. 1–8). In Sec. III B, we

have exposed the relation between T (t )/T (1) and �, which
was in agreement with the fact reported in literature [24,25]
in the sense that T is related with � for different probability
density functions. However, it is also clear that in all the cases
there is not functional behavior between T and �. In fact,
it is observed that in 17 of the 24 time series used, there
is no strictly increasing behavior but there are some peaks
(see Figs. 9–16). Also, the time series of diffusive trajectory
for volatility and absolute log-return have similar trends that
differ in the range of values that each time series takes. In
Sec. III C, we have shown the new form of temporal scaling
found for nonstationary time series, that we have called as
TTS. Even so, this behavior should be an universal behavior in
complex systems that establishes a point of view closer to the
concepts of econophysics. Therefore, the irregular behavior of
T (t )/T (1) as a function of � is compensated by the regular
behavior of T (t )/T (1) as a function of ϒ . In this sense, it
is observed that the exponent β and the constant K1 of the
TTS allow to characterize different time series. Thus, for the
nonstationary time series of diffusive trajectory studied in this
work, we have found β ∈ [0.26, 0.34] and K1 ∈ [1.51, 4.45]
for volatility, and β ∈ [0.25, 0.54] and K1 ∈ [1.40, 6.47] for
absolute log-return. At this point, we have shown that the
GAE(%) is less than 4.6% in all the cases and so we have
corroborated the goodness of fit for TTS. Furthermore, it is
worth mentioning that Eq. (15) characterizes the TTS as an
emergent macroscopic property of a microscopic dynamics,
where the temperature θ is analogous to the mean ϒ(t ), the
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critical temperature θc is analogous to the maximum mean
ϒM , and the order parameter ‖ψ‖ is analogous to the nor-
malized Theil index T (t )/T (1) for θ < θc. Also, the Eq. (15)
allows to establish the constant K1 as a variable that depends
on phenomenological parameters of the different time series,
as it is evidenced in Tables II and III, while the exponent
β is associated with the difference of the critical exponents
δ − η, which is associated with the range of values observed.
Thus, we can assume that the exponent β obtained from the
empirical relation of the TTS could be interpreted as a critical
exponent γ in complex systems, such that β covers broader
values than those reported in the condensed matter literature
[36–40], suggesting that physical phenomena such as γ ∈
[0.25, 0.30) and γ ∈ (0.5, 0.54] might exist. More generally,
since the derivation of Eq. (15) from the nontrivial critical
points of the energy functional Fη,δ of Eq. (13), which is valid
from condensed matter physics, this expression is a result that
allows us to understand an arbitrary exponent γ and suggests
the use of fractional calculus in the Ginzburg-Landau theory,
since η and δ can take noninteger values. Finally, we expect to
be able to study TTS using a complete analytical model that be
independent of the type of complex system considered. This
last idea would be consistent with the multifractal behavior
of financial time series such that we have a Hurst exponent
[H (q)] that scales with the qth moment of the time series
[43,44]. Furthermore, since the TFS is observed in cumulative
time series with a fixed optimal window size [1,8,9], it is not
possible to relate the TFS to the Hurst exponent that is defined
with a moving time window [45]. Thus, if one considers that

T is calculated on time series of diffusive trajectory (which
depend on the size of the time window), then it is possible to
think that a more natural connection with the Hurst exponent
could be defined through T . In that sense, it should be noted
that the Hurst exponent (H) is a long-range memory measure
in a time series such that if: (i) H = 0.5, then the current
value of the time series does not depend on the previous
values; (ii) 0 < H < 0.5, then the value of the time series in
the future tends to reverse the trend of the present; and (iii)
0.5 < H < 1, then the value of the time series in the future
tends to reinforce the trend of the present [45–49]. In addition,
we hope to study the behavior of exponent β in the future by
Feynman path integral formalism to be able to establish more
facts about TTS in complex systems. In fact, this idea, which
goes beyond the scope of this paper, consists of studying the
behavior over the time of the exponent β of the TTS and the
possible dependence between β and the time variation of the
Hurst exponent H (t ) using diffusive trajectory time series [50]
and an integral definition of T [25], which relates the prob-
ability density function of the underlying stochastic process
obtained from the Feynman path integral formalism [9].
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