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Non-Markovian thermal operations boosting the performance of quantum heat engines
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It is investigated whether non-Markovianity, i.e., the memory effects resulting from the coupling of the system
to its environment, can be beneficial for the performance of quantum heat engines. Specifically, two physical
models are considered. The first one is a well-known single-qubit Otto engine; the non-Markovian behavior
is there implemented by replacing standard thermalization strokes with so-called extremal thermal operations
which cannot be realized without the memory effects. The second one is a three-stroke engine in which the
cycle consists of two extremal thermal operations and a single qubit rotation. It is shown that the non-Markovian
Otto engine can generate more work-per-cycle for a given efficiency than its Markovian counterpart, whereas
performance of both setups is superior to the three-stroke engine. Furthermore, both the non-Markovian Otto
engine and the three-stroke engine can reduce the work fluctuations in comparison with the Markovian Otto
engine, with their relative advantage depending on the performance target. This demonstrates the beneficial
influence of non-Markovianity on both the average performance and the stability of operation of quantum heat
engines.
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I. INTRODUCTION

In recent years much research interest has been devoted
to nanoscopic quantum heat engines converting heat into
work (or conversely, using work to cool the environment)
[1–3]. On the fundamental level, such devices enable one to
investigate basic aspects of heat-to-work conversion at the
nanoscale. Studies in this area focused on topics such as
fundamental resource-theoretic limits to the work extraction
[4,5], engineering of optimal driving protocols [5–8], geo-
metric approaches to thermodynamics [9–11], and the role of
quantum coherence [12–29], relativist effects [30], or coop-
erative coupling to the baths [31]. Apart from characterizing
the mean behavior of such devices, fluctuations of thermody-
namic quantities, which are nonnegligible at the nanoscale,
recently received much attention [32–44]. In particular, top-
ics such as fluctuation theorems, characterizing the universal
properties of fluctuations [45,46], or thermodynamic trade-
offs between power, efficiency, and stability of operation on
nanoengines [27–29,47,48] have been investigated. Though
most studies so far have been theoretical in nature, quantum
heat engines have been experimentally realized (or at least em-
ulated) using setups such as trapped ions [49,50], NV centers
[26], or spin systems [51]. Furthermore, practical applications
of such engines for cooling of qubits employed in the quantum
computing have been proposed [52,53].
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This paper investigates whether the performance of
nanoscopic heat engines can be improved by using non-
Markovian effects. Non-Markovianity is a term used to
describe a situation when dynamics of the system is not
wholly determined by its actual state, but rather is influ-
enced by the memory about its past evolution, which is
encoded in the correlations between the system and its en-
vironment [54,55]. This is usually (though not strictly [56])
related to the strong system-environment coupling [54]. As
already demonstrated, non-Markovianity is not only interest-
ing from the fundamental point of view—being a feature of
many realistic systems—but may also affect the performance
of practical appliances, especially nanodevices. In particu-
lar, non-Markovian effects were found to be advantageous
in applications such as quantum communication channels
[57,58], quantum metrology [59,60], entanglement generation
[61,62], algorithmic cooling of qubits [52], or photochemical
switches [63].

In the context of quantum heat engines, the beneficial in-
fluence of non-Markovian effects on the performance of the
quantum Otto engine based on a single harmonic oscillator
has been previously claimed in Ref. [64]. The observed power
enhancement was related to generation of states with occu-
pation numbers exceeding the thermal value due to strong
coupling to the environment; it was also claimed that such
an engine can surpass the Carnot efficiency. However, sub-
sequent works demonstrated this apparent violation of the
second law of thermodynamics to be a result of neglect of the
work performed during the coupling and the uncoupling of the
system to the thermal bath [65–67]. When this work is taken
into account, the validity of the Carnot bound is secured. In-
deed, after proper inclusion of the coupling/uncoupling work,
the strong coupling has been demonstrated to be detrimental
rather than beneficial, though its influence can be mitigated
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by applying appropriate driving protocols [66,67]. Two other
works [68,69] demonstrated the power enhancement in the
non-Markovian regime for the Otto engine with a specific type
of system-bath interaction in which the system is coupled to
a Markovian bath through an auxiliary qubit. However, since
in both papers the Markovian relaxation rate was kept fixed,
while coupling to the auxiliary qubit has been tuned, the ob-
served power enhancement was actually a result of a relatively
trivial enhancement of the effective system-bath coupling.
Finally, some other publications demonstrated the speed-up of
thermalization due to the non-Markovian anti-Zeno effect, and
the related boosting of power, for a single-qubit Otto engine
coupled to structured baths [70–72]. To summarize, most of
the discussed works focused on specific microscopic models
of non-Markovian dynamics; therefore, the demonstration of
the advantage of non-Markovianity on a more fundamental
level would be still desirable.

The goal of this paper is to rigorously demonstrate the
beneficial influence of non-Markovian effects on the perfor-
mance of a quantum heat engine based on a single qubit,
without referring to any particular model of the system-bath
interaction. To do so, I will apply resource theory methods
which provide fundamental constraints on transformations
between quantum states due to interaction with the thermal en-
vironment (independent of details of microscopic dynamics)
[5,73–77]. This formalism has been previously used, for ex-
ample, to demonstrate the enhancement of photoisomerization
yield through non-Markovian effects beyond values achiev-
able in the Markovian regime [63]. Within this framework
the state transformations due to coupling to the heat bath
are described by means of so-called thermal operations, i.e.,
energy preserving unitary operations U acting on the system
and the bath; the condition of energy preservation is given
by the equation [U, HS + HB] = 0, where HS and HB are the
Hamiltonians of the system and the bath, respectively. The
state of the system is transformed as

ρS
T O−→ EρS = TrB

[
UρS ⊗ ρ th

B U †
]
, (1)

where E is the dynamical map representing the transforma-
tion, TrB is the partial trace over the states of the bath and
ρ th

B = e−βHB/Tr(e−βHB ) is the Gibbs state of the bath, with
β = 1/(kBT ) being the inverse temperature. It can be noted
that besides its generality the applied formalism has another
advantage: the energy preservation provides that the energy
change of the system due to a thermal operation can be
unambiguously identified with the heat exchanged with the
environment (in contrast to Refs. [64–67]), which signifi-
cantly simplifies the analysis.

The paper is organized as follows. Section II presents basic
elements of the resource-theoretic framework, focusing on
the distinction between Markovian and non-Markovian oper-
ations. Section III analyzes the average performance of two
heat engine models based on a single qubit, with heat strokes
described by means of thermal operations: a well known quan-
tum Otto engine [78] and a much less studied three-stroke
engine [79]. Section IV is concerned with the behavior of
work fluctuations. Section V discusses the experimental real-
izability of quantum heat engines employing non-Markovian
thermal operations. Finally, Sec. VI brings the conclusions.

II. THERMAL OPERATIONS

A. Criteria of Markovianity of thermal operations

Let us start our discussion with a rigorous definition
of the distinction between Markovian and non-Markovian
state transformations. The thermal operation is deemed to
be Markovian when it can be expressed as the time ordered
exponential [80]

E = T
{
e
∫ t

0 Lτ dτ
}

(2)

of a (possibly time-dependent) Lindblad generator Lt defined
as

LtρS (t ) = HρS (t ) + DtρS (t ), (3)

where H and Dt are generators of the unitary and the dissipa-
tive dynamics, respectively. They are given by the equations

HρS (t ) = −i[HS, ρS (t )], (4)

DtρS (t ) =
∑

i

ri(t )

[
LiρS (t )L†

i − 1

2
{L†

i Li, ρS (t )}
]
, (5)

where Li and ri(t ) � 0 are the Lindblad operators and the
transition rates, respectively. Here and from hereon h̄ = 1
is taken. The Lindblad generator is required to fulfill two
properties [80]:

(1) Stationary thermal state: the Gibbs state of the system,

ρ th
S = e−βHS

Tr(e−βHS )
, (6)

is the stationary state of the dynamics at all times, i.e.,

∀t : Ltρ
th
S = 0. (7)

(2) Covariance: H and Dt commute for an arbitrary density
matrix ρ, i.e.,

∀ρ : HDtρ = DtHρ. (8)

As shown by Lostaglio and Korzekwa [80], any Marko-
vian thermal operation on an n-level quantum system can be
realized by a sequence of full or partial thermalizations acting
on pairs of energy levels. Thus, in particular, a Markovian
thermal operation acting an a two-level system (qubit) cor-
responds to its full or partial thermalization.

It should be noticed that Eq. (2) is not an only way to define
Markovian operations present in the literature. As a matter of
fact, there exists a plethora of definitions of quantum Marko-
vianity, with certain hierarchy relations between them [81,82].
In particular, the condition given by Eq. (2) is stronger than
either the CP-divisibility [81] or the operational divisibility
defined within the process tensor framework [82], since the
dynamical map can be always divided into mutually inde-
pendent maps: Et = Et−sEs, with Et given by the right-hand
side of Eq. (2). Furthermore, Spaventa et al. [63] investigated,
within the same resource-theoretic framework, how efficiency
of photoisomerization processes is limited by a condition even
stronger than Markovianity, namely, the embeddability. This
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is defined by a requirement that the dynamical map can be
written as E = eLt with a time-independent Lindbladian L.
However, for qubits both conditions are equivalent, which is
demonstrated in the Appendix; this is no longer true for higher
dimensions of the Hilbert space, e.g., for three-level systems
investigated in Ref. [63].

It needs also to be mentioned that the stationarity of the
Gibbs state holds for both Markovian and non-Markovian
thermal operations: Eρ th

S = ρ th
S [74]. This is a consequence

of the requirement of energy preservation discussed in the
Introduction. However, for a generic (energy nonpreserving)
evolution induced by the coupling to the bath, the Gibbs
state may be no longer a stationary state due to correlations
between the system and the environment; in particular, for a
time-independent coupling the fixed point is given by a so
called mean force Gibbs state [83,84]. As a matter of fact,
operations with nonthermal fixed points have been applied in
some previous works on non-Markovian heat engines [64,65].

B. Thermal operations on a single qubit

The paper focuses on the case when the heat engine is
based on a single qubit, for which an exact analytic form
of an arbitrary thermal operation can be found. The qubit is
described by the Hamiltonian

HS = ω|e〉〈e|, (9)

where ω is the qubit energy gap and |e〉 denotes the excited
state of the qubit.

In general, a dynamical map describing the evolution of
an open quantum system may couple the dynamics of the
diagonal elements of the density matrix (populations) and the
off-diagonal ones (coherences). However, due to energy con-
servation, for thermal operations the evolution of populations
and coherences is decoupled in the eigenstate basis, and thus
may be considered in a separate way [85]. Let us first consider
the evolution of the population vector p = (pg, pe)T , where pg

and pe = 1 − pg are populations of the ground and the excited
state, respectively. It undergoes the transformation [77,86]

p
T O−→ �p, (10)

where

�(ω, β, λ) = (1 − λ)

(
1 0
0 1

)
+ λ

(
1 − e−βω 1

e−βω 0

)
(11)

is referred to as a Gibbs-stochastic matrix [77,86], with pa-
rameter λ ∈ [0, 1] describing the strength of interaction.

The qubit coherences ρge and ρeg = ρ∗
ge undergo the trans-

formation [77,85]

ρge
T O−→ γ ρge, (12)

where γ ∈ [0,
√

1 − λe−βω(1 − λ)] � 1. For the sake of sim-
plicity, in this paper the dynamics of coherences will be
neglected. This corresponds to the case when γ = 0, and
thus the qubit is fully dephased at the end of each thermal
operation.

It appears that the parameter λ determines whether the
thermal operation is Markovian or not. It is Markovian

FIG. 1. The population of the excited state pe after the applica-
tion of ETO (black solid line) or thermalization (red dashed line) for
a qubit initialized in the thermal state with the temperature T1 and the
applied thermal operation corresponding to the reservoir temperature
T2. The qubit gap fixed at ω = 0.5kBT1.

when [52]

λ � pth
g = 1

1 + e−βω
, (13)

where pth
g is the thermal population of the ground state for

the inverse bath temperature β. In particular, λ = pth
g and

λ < pth
g correspond to the full and the partial thermalization,

respectively.

C. Extremal thermal operation (ETO)

Let us now consider the non-Markovian regime of λ > pth
g ,

focusing on the limiting case of λ = 1. The thermal operation
� with λ = 1 is referred to as the extremal thermal operation
(ETO) [79]. The physical nature of such an operation can
be understood qualitatively by analyzing the example of a
qubit initialized in the thermal state with some temperature T1

and than transformed by ETO corresponding to the reservoir
temperature T2. Figure 1 presents the population of the excited
state pe after the application of ETO (black solid line) and
after thermalization to the temperature T2 (red dashed line).
As one can observe, for T2 < T1 ETO “cools the qubit more”
than thermalization, i.e., the population of the excited state
is reduced below the thermal population corresponding to
the temperature T2 (and, consequently, more heat is extracted
from the system than during thermalization). Conversely, for
T2 > T1 ETO generates the population of the excited state ex-
ceeding the thermal value. Most notably, for a high enough T2

the extremal thermal operation may even produce a population
inversion pe > 1/2 > pg; this is impossible to achieve using
Markovian thermal operations acting on a noninverted state.

III. AVERAGE WORK

In this section the average work generated during a single
cycle of the considered quantum heat engines is analyzed.
Specifically, Secs. III A and III B present the models of the
Otto engine and the three-stroke engine as well as analytic
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FIG. 2. A schematic representation of the Otto engine cycle.
Successive strokes denoted as A, B, C, and D and their starting points
as 1, 2, 3, and 4. QH and QC denote the heat flows whereas Wout and
Win—the work output and the work input, respectively.

formulas describing work, heat and efficiency, whereas in
Sec. III C the performance of both models is compared.

A. Otto engine

Let me first present a principle of operation of the quantum
Otto engine. It is based on a single qubit attached to two
thermal baths: the hot bath H with the temperature TH and the
cold one C with the temperature TC . The operation of the Otto
engine is based on a periodic coupling (decoupling) of the
qubit to (from) the thermal baths, accompanied by a periodic
modulation of the qubit gap ω between two values: ωH and
ωC . A schematic representation of the Otto engine cycle is
presented in Fig. 2, with strokes denoted with letters A, B, C,
and D and their starting points denoted with numbers 1, 2, 3,
and 4. The strokes can be described as follows:

(A) Heating: the qubit gap ω = ωH is taken and the sys-
tem is placed into contact with the hot bath; as a result, the
population of the excited state is increased from pe,1 to pe,2

and heat QH = ωH (pe,2 − pe,1) is delivered from the bath to
the system.

(B) Work output: the qubit gap is shifted from ωH to ωC

without change of qubit state (pe,3 = pe,2); as a result, work
Wout = (ωH − ωC )pe,3 is generated.

(C) Cooling: the system is placed into contact with the
cold bath; as a result, the population of the excited state is
decreased from pe,3 to pe,4 and heat QC = ωC (pe,4 − pe,3) is
delivered from the system to the bath.

(D) Work input: the qubit gap is shifted from ωC to ωH

without change of the qubit state (pe,1 = pe,4); as a result,
work Win = (ωH − ωC )pe,1 is delivered to the engine.

The strokes A and C, during which heat is exchanged with
the bath, are referred to as the heat strokes, while the strokes B
and D, during which work is performed, as the work strokes.

The net work generated during a cycle is equal to

W = Wout − Win = (ωH − ωC )(pe,3 − pe,1), (14)

and the efficiency of the Otto engine is given by a simple
formula

η = W

QH
= 1 − ωC

ωH
. (15)

Of course, though the equation above is mathematically well
defined for arbitrary ωC and ωH , the setup works as a heat en-
gine only when TC/TH � ωC/ωH � 1, such that 0 � η � ηC ,
where ηC = 1 − TC/TH is the Carnot efficiency; in particular,

for TC/TH � ωC/ωH both the work output W and the heat
extracted from the hot bath QH become negative (work is
delivered to heat the hot bath).

The populations of the exited states pe,1 and pe,3, which are
required to calculate the work-per-cycle, can be found in the
following way. First, the steady state of the system in point 1
is found by solving the equation

�C�H p1 = p1, (16)

where �C and �H are Gibbs-stochastic maps given by
Eq. (11) describing the interaction with the cold bath and the
hot bath, respectively:

�α = �(ωα, βα, λα ), (17)

with α ∈ {C, H}. The populations in point 3 are then calcu-
lated as

p3 = �H p1. (18)

Two versions of the Otto engine are then considered: ones
with Markovian and non-Markovian thermal operations. For
the Markovian Otto engine I take

λα = 1

1 + e−βαωα
, (19)

which corresponds to thermalization of the system. The sta-
tionary excited state populations take then the thermal values

pM
e,1 = 1

1 + eβCωC
, (20)

pM
e,3 = 1

1 + eβH ωH
. (21)

For the non-Markovian setup λα = 1 is taken, which generates
the extremal thermal operation. The excited state populations
read then as

pNM
e,1 = eβH ωH − 1

eβCωC+βH ωH − 1
, (22)

pNM
e,3 = eβCωC − 1

eβCωC+βH ωH − 1
. (23)

B. Three-stroke engine

Let us now turn our attention to a less known model of
a quantum heat engine, namely, the three-stroke engine pro-
posed by Łobejko et al. [79]. As before, it is based on a single
qubit attached to two thermal baths. A schematic representa-
tion of its operation is presented in Fig. 3, with strokes denoted
as A, B, and C and starting points of the strokes as 1, 2, and 3.
The strokes can be described as follows:

(A) Heating: the system is placed into contact with the hot
bath; as a result, the population of the excited state is increased
from pe,1 to pe,2 and heat QH = ω(pe,2 − pe,1) is delivered
from the bath to the system.

(B) Work extraction stroke: the qubit is coherently flipped
such that populations of the ground and the excited states are
interchanged: pe,3 = pg,2 = 1 − pe,2; as a result work

W = ω(pe,2 − pg,2) = ω(2pe,2 − 1) (24)

is generated.
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FIG. 3. A schematic representation of the three-stroke engine
cycle. Successive strokes denoted as A, B, and C and their starting
points as 1, 2, and 3. QH and QC denote the heat flows whereas
W —the work output.

(C) Cooling: the system is placed into contact with the
cold bath; as a result, the population of the excited state is
decreased from pe,3 to pe,1 and heat QC = ω(pe,1 − pe,3) is
delivered from the system to the bath.

The be precise, in original work of Łobejko et al. [79]
the work stroke consisted of the energy exchange with the
battery; here it is replaced by the qubit flip for the sake of
simplicity. As Eq. (24) implies, the engine generates work
only in the case when heating produces the population in-
version: pe,2 > 1/2 > pg,2. Therefore, since the Markovian
thermal operations cannot generate the population inversion,
the engine requires non-Markovian effects to operate.

Analogously to the Otto engine, the stationary populations
in point 1 can be found by solving the equation

�C

(
0 1
1 0

)
�H p1 = p1, (25)

where

�α = �(ω, βα, λα ) (26)

is the Gibbs-stochastic matrix given by Eq. (11). Probability
vectors in points 2 and 3 read as

p2 = �H p1, (27)

p3 =
(

0 1
1 0

)
�H p1. (28)

From hereon, the extremal thermal operations will be ap-
plied and thus λα = 1 will be taken. The stationary excited
state populations read then as

pe,1 = 1

1 + e(βH +βC )ω
, (29)

pe,2 = 1

eβH ω + e−βCω
, (30)

pe,3 = 1 − 1

eβH ω + e−βCω
. (31)

Using the expressions above, the average work-per-cycle
and the efficiency are given by equations [79]

W = ω

[
2

eβH ω + e−βCω
− 1

]
, (32)

η = W

QH
= 1 − eβH ω − 1

1 − e−βCω
. (33)

FIG. 4. The average work-per-cycle as a function of efficiency η

for the non-Markovian Otto engine (black solid line), the Markovian
Otto engine (red dashed line) and the three-stroke engine (blue dotted
line). The Carnot efficiency fixed at ηC = 1 − TC/TH = 0.5.

C. Comparison

I will now compare the average work-per-cycle as a func-
tion of efficiency η for a fixed Carnot efficiency ηC . Before
that, let me first note that the Otto engine and the three-stroke
engine are characterized by different numbers of free param-
eters. The three-stroke engine is characterized by three free
parameters: ω, TH and TC . As a result, by fixing η and ηC

one fully determines the ratio W/(kBTH ). In contrast, the Otto
engine is characterized by four free parameters: ωH , ωC , TH ,
and TC . Therefore, for a chosen efficiency η the ratio ωC/ωH

becomes fixed [see Eq. (15)], however, a single qubit gap ωH

can be tuned. Therefore, the presented work-per-cycle is here
a maximum value, which is optimized over the full range of
ωH . The results are presented in Fig. 4. As one can observe,
the non-Markovian Otto engine generates more work-per-
cycle than the Markovian one. This is because by heating
(cooling) the qubit through the extremal thermal operation
one can produce a higher (lower) population of the excited
state than using thermalization: pNM

e,3 > pNM
e,3 and pNM

e,1 < pM
e,1

[see Eqs. (20)–(23)]. Therefore, the work-per-cycle, which
is proportional to the difference pe,3 − pe,1 [see Eq. (14)],
is larger for the non-Markovian case. This demonstrates that
non-Markovianity can be beneficial for the performance of
quantum heat engines. Let me note that a similar advan-
tage of non-Markovian thermal operations for the purpose
of cooling the qubit has been previously demonstrated by
Alhambra et al. [52]

One can also observe that in a full parameter range both
the Markovian and the non-Markovian engine generate more
work than the three-stroke engine. This might be related to a
smaller number of free parameters of the three-stroke engine,
which hinders the performance optimization. Note that this
conclusion differs from the one provided by Łobejko et al.
[79], who stated that the three-stroke engine becomes optimal
for high efficiencies. However, in the mentioned paper the
work was expressed in the units of the “energy gap,” which
was defined in a different way for the models analyzed: as
ωH − ωC for the Otto engine while as ω for the three-stroke
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engine. In this article, in contrast, the same units of kBTH are
used for both models.

Let me here discuss the nature of the performance boost
due to non-Markovianity in the context of previous works on
the topic. As in Refs. [64,65], the increase of the work output
is here related to the nonthermal nature of the state generated
at the end of a heat stroke; in contrast to these publications,
however, this is not achieved at the cost of work associated
with the coupling and the decoupling of the system from the
bath. In contrast, a qualitatively different physical mechanism
of the power enhancement was considered in Refs. [68–72],
where non-Markovianity was used to speed-up the approach
to the thermal state rather then to modify the final state.

Finally, it needs to be noticed that the work-per-cycle may
not always be an optimal measure of the average performance.
Indeed, for a Markovian heat engine with a fixed maximum
value of the system-bath coupling the maximum power is
achieved in the limit of the cycle period going to 0, in which
the work-per-cycle also approaches 0 [7]. However, the work-
per-cycle might be still a valuable measure, for example, when
maximum frequency of driving is limited due to technical
constraints.

IV. WORK FLUCTUATIONS

So far, the paper focused on the average performance of
heat engines. Let us now turn to another topic which received
much attention in the recent years, namely, the work fluc-
tuations [27–29,32–48]. This field of investigation is related
to the issue of stability of operation of heat engines: a good
engine is expected to generate a well defined amount of work
during a given time period, and thus, to minimize fluctuations.
As a measure of work fluctuations this paper will use the
variance of the work generated during N successive cycles,〈

�w2
N

〉 = 〈
w2

N

〉 − 〈wN 〉2, (34)

where �wN = wN − 〈wN 〉. Here lowercase wN denotes the
stochastic (fluctuating) work generated during N cycles to
avoid confusion with capital W denoting the average work-
per-cycle. From the operational perspective, wN for the Otto
engine can be defined as a sum of stochastic work increments
associated with each work stroke:

wN =
N∑

i=1

[(Ei,2 − Ei,3) + (Ei,4 − Ei,1)], (35)

where Ei,k is the outcome of the energy measurement (i.e., a
projective measurement in the energy eigenbasis) in point k
of the ith cycle. This generalizes a standard two-point mea-
surement protocol [87–89] to the case of multiple strokes.
Importantly, since the density matrix is diagonal in the energy
eigenbasis at the end of each stroke, the state of the system is
not disturbed by the energy measurements. Analogously, the
stochastic work for the three-stroke engine can be expressed
as

wN =
N∑

i=1

(Ei,2 − Ei,3). (36)

In Sec. IV A the methods used to calculate the work fluctu-
ations will be presented while Sec. IV B presents the results.

A. Methods

The work fluctuations can be determined by means of the
full counting statistics formalism [90,91]. Within this frame-
work one defines the counting-field-dependent stochastic map
�χ describing the evolution of the system during a single
cycle. For the Otto engine such a map reads

�χ,Otto = B−�CB+�H , (37)

with

B± =
(

1 0
0 exp[±χ (ωH − ωC )]

)
. (38)

Here the counting field ±χ counts the events during which
the energy of the excited state is decreased (increased) which
corresponds to the positive (negative) work generation. The
analogous map for the three-stroke engine reads

�χ,3-stroke = �C

(
0 exp[χω]

exp[−χω] 0

)
�H . (39)

The average work generated during N cycles, as well as the
work variance, can be then calculated using the equations

〈wN 〉 =
[

d

dχ
GN (χ )

]
χ=0

, (40)

〈
�w2

N

〉 =
[

d2

dχ2
GN (χ )

]
χ=0

, (41)

where

GN (χ ) = ln[1T (�χ )N p1] (42)

is the cumulant generating function. Here 1 = (1, 1)T while
p1, as in Sec. III, is the stationary state of the system in
point 1. Since the average value of work generated in each
cycle is the same, the average work generated during N
cycles grows linearly with the number of cycles: 〈wN 〉 =
NW . However, as will be later discussed more thoroughly,
the higher work cumulants may not grow linearly due to
correlations of work generated in the successive cycles. In
particular, the work variance grows sublinearly (〈�w2

N 〉 <

N〈�w2
1〉) for negative intercycle correlations while supralin-

early (〈�w2
N 〉 > N〈�w2

1〉) in the opposite case [43].
To characterize the long-time properties of work fluctua-

tions it is useful to consider the limit of infinite number of
cycles (N → ∞). Fluctuations in such a limit are well defined
when described by means of scaled cumulants, i.e., work
cumulants divided by N . In particular, the scaled mean work
and the work variance can be calculated as [90,91]

lim
N→∞

〈wN 〉
N

=
[

d

dχ
g(χ )

]
χ=0

,

lim
N→∞

〈
�w2

N

〉
N

=
[

d2

dχ2
g(χ )

]
χ=0

, (43)

where

g(χ ) = ln λ0(χ ) (44)

is the scaled cumulant generating function, with λ0(χ ) being
the dominant eigenvalue of �χ .
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FIG. 5. The ratio of the work variance to the average work for a
single-cycle (a) and in the limit of infinite number of cycles (b) for the
non-Markovian Otto engine (black solid line), the Markovian Otto
engine (red dashed line) and the three-stroke engine (blue point). The
arrow near the curves points the direction of increasing ωH . Results
for η = 0.3 and ηC = 1 − TC/TH = 0.5.

B. Results

Let me now present the results. Figure 5 shows the ratio
of the work variance to the mean work as a function of work-
per-cycle for a fixed efficiency η and the Carnot efficiency
ηC = 1 − TC/TH . The fluctuations are analyzed in two op-
posite limits: the short-time and the long-time behavior is
described by means of fluctuations during a single cycle
[Fig. 5(a)] and in the limit of infinite number of cycles
[Fig. 5(b)], respectively. As one can note, the work fluctua-
tions are represented by curves for the Otto engines while by a
point for the three-stroke engine. This is related to a different
number of free parameters of the models considered, which
was discussed in Sec. III C: for the three-stroke engine fluctu-
ations and the average work become fixed for a specific choice
of η and ηC , whereas for the Otto engine different values can
be accessed by tuning ωH ; the direction of increasing ωH is
denoted by the arrow near the curves.

One can observe that for a single cycle [Fig. 5(a)] the non-
Markovian Otto engine generates less fluctuations for a given
work-per-cycle than the Markovian one. For ωH → 0 the ratio
〈�w2

1〉/W goes to 0, which is, however, also accompanied
by the mean value of work going to 0. Additionally, both
the non-Markovian and the Markovian Otto engine generate
less fluctuations than the three-stroke engine. Interestingly, a
qualitatively different behavior is observed in the limit of in-

FIG. 6. The Pearson correlation coefficient of work correlations
as a function of work-per-cycle for the non-Markovian Otto engine
(black solid line) and the three-stroke engine (blue point). The arrow
near the black curve points the direction of increasing ωH . Results
for η = 0.3 and ηC = 1 − TC/TH = 0.5.

finite number of cycles [Fig. 5(b)]. While the non-Markovian
Otto engine still generates less fluctuations than the Marko-
vian one, the difference is much less pronounced and the
ratio 〈�w2

∞〉/〈w∞〉 no longer goes to 0 for ωH → 0. Even
more importantly, the three-stroke engine now generates the
smallest amount of work fluctuations, which is opposite to the
single-cycle case. However—for the parameters considered—
the non-Markovian Otto engine can generate about 4 times
more work-per-cycle than the three-stroke engine for the
fluctuation-to-work ratio 〈�w2

∞〉/〈w∞〉 larger only by about
10%. Therefore, either the three-stroke engine or the non-
Markovian Otto engine may be optimal depending on whether
one is more interested in maximizing power or minimizing the
work fluctuations.

As shown before by Xu and Watanabe [43], a different
behavior of single-cycle and long-time fluctuations is a re-
sult of correlations of the work generated in the successive
cycles. Specifically, the long-time fluctuations are enhanced
(reduced) by positive (negative) correlations. This can be
demonstrated by analyzing the work covariance

Cov(w) = 〈�wI�wII〉, (45)

where wI and wII are the amounts of work generated in two
successive cycles. As one can easily show, the work covari-
ance is related to work variances through the relation〈

�w2
2

〉 = 2
〈
�w2

1

〉 + 2Cov(w). (46)

Figure 6 shows the Pearson correlation coefficient

PCC = Cov(w)〈
�w2

1

〉 =
〈
�w2

2

〉
2
〈
�w2

1

〉 − 1 (47)

for the non-Markovian Otto engine and the three-stroke en-
gine, with parameters as in Fig. 5. It takes values within the
range PCC ∈ [−1, 1], with a positive (negative) sign corre-
sponding to positive (negative) correlations. The intercycle
correlations are not present for the Markovian Otto engine
(employing thermalization strokes) because the system is
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resetted to the thermal state after each heat stroke, and thus
the initial state at the beginning of each cycle does not depend
on the previous evolution (of course, this is a consequence of
the full thermalization of the system during heat strokes rather
than the Markovian dynamics itself – correlations will still
appear in the Markovian partial thermalization regime of λ <

pth
g , where the state at the end of a heat stroke also depends on

the initial one). As one can observe, the non-Markovian Otto
regime is characterized by positive intercycle work correla-
tions which leads to enhancement of long-time fluctuations.
In particular, perfect positive correlations (PCC = 1) are ob-
served in the limit ωH → 0. Conversely, the work correlations
are negative for the three-stroke engine. Interestingly, the
Pearson correlation coefficient is then given by a simple
formula

PCC3-stroke = −e−(βC+βH )ω, (48)

which implies that the work generated in the successive cycles
becomes perfectly anti-correlated (PCC = −1) for ω → 0.

V. EXPERIMENTAL REALIZABILITY

Finally, let us discuss how heat engines with non-
Markovian thermal operations can be realized experimentally.
First, it was shown that the extremal thermal operation de-
scribed in Sec. II C can be realized by coupling the qubit to
the thermal state of a single bosonic mode

ρ th
bos = e−β�a†a

Tr(e−β�a†a)
, (49)

with the excitation energy � resonant with the qubit gap ω,
i.e., � = ω; here a† and a are the bosonic creation and annihi-
lation operators, respectively. Then, one needs to perform the
energy-preserving unitary operation [86]

U = |g, 0〉〈g, 0| +
∞∑

n=1

(|g, n〉〈e, n − 1| + |e, n − 1〉〈g, n|),

(50)

where g (e) denotes the ground (excited) state of the qubit
and n is the number of excitations of the bosonic mode. Such
an operation exchanges a single excitation between the qubit
and the bosonic mode. It can be exactly realized by means of
the intensity-dependent Jaynes-Cummings interaction Hamil-
tonian [92,93]

H̃JC = J[σ+(aa†)−1/2a + σ−(aa†)−1/2a†], (51)

where J is the coupling strength while σ+ = |e〉〈g| and σ− =
|g〉〈e| are raising and lowering operators, respectively; more
specifically, a thermal operation with an arbitrary λ can be
realized by varying the time of coupling between the qubit
and the bosonic mode, which enables a switching between
Markovian and non-Markovian regimes [86]. Bera et al. [94]
shown that the intensity-dependent Jaynes-Cummings interac-
tion can be realized by adding some engineered anharmonicity
to the bosonic mode. Alternatively, a good approximation of
the extremal thermal operation can be realized by using the
standard Jaynes-Cummings interaction Hamiltonian [52,86]

HJC = J (σ+a + σ−a†). (52)

FIG. 7. A schematic idea of experimental realization of the non-
Markovian heat engine. A qubit is coupled to Markovian thermal
baths with temperatures TH and TC via auxiliary bosonic modes. Here
J denotes (possibly tunable) Jaynes-Cummings coupling between the
qubit and bosonic modes, while � is the relaxation rate of the bosonic
mode.

To realize a continuous work generation, the bosonic modes
need to be either resetted to the thermal state after each heat
stroke or replaced with another one. The former option can
be implemented by coupling the bosonic levels to Markovian
thermal baths. Therefore, finally, the non-Markovian heat en-
gine can be realized by using a qubit coupled to Markovian
thermal baths through auxiliary bosonic modes (Fig. 7). In
general, the coupling to auxiliary bosons needs to be tunable
to enable a switching of the system-bath coupling; however,
for the Otto engine the effective coupling to the bosonic
modes is modulated just by tuning the qubit gap ω, since the
excitation exchange is suppressed in the nonresonant regime
(ω 
= �) [17,72,95]. An experimental realization of such a
setup may be based, for example, on superconducting circuits
with LC resonators playing the role of bosonic modes and
the attached resistors playing the role of Markovian baths
[96–98]; indeed, the Otto engine based on such an architecture
has been previously theoretically proposed [17] and exper-
imental steps towards its realization have been made [95].
Of course, realistic superconducting devices may differ from
the idealistic model considered here due to, e.g., presence
of the environment-induced decoherence, photon leakage
from the resonators or a direct resonator-to-resonator coupling
[95,96,98]. Another physical realization may be based on
atoms in optical cavities [94].

VI. CONCLUSIONS

The work investigated the performance of two types of
a quantum engine based on a single qubit: the Otto engine
and the three-stroke engine. Interaction with the thermal baths
has been described within the resource-theoretic framework
by means of thermal operations, i.e., the energy-preserving
unitaries acting on the system and its environment. Within
this approach the fundamental limitations of heat engines em-
ploying the heat strokes based on Markovian thermalization
could have been analyzed. It was shown that the Otto engine
employing non-Markovian dynamics can generate more work
during a single cycle then its Markovian counterpart; at the
same time, both setups produce more work than the three-
stroke engine, which can operate only in the non-Markovian
regime. It was also demonstrated that the non-Markovian Otto
engine can generate less work fluctuations than the Markovian
one. Furthermore, even less fluctuations are produced by the
three-stroke engine, albeit only for a low power; therefore, the
relative advantage of the non-Markovian Otto engine and the
three-stroke engine depends on whether the maximization of
power or minimization of fluctuations is desired. Additionally,
the reduction of work fluctuations in the three-stroke engine
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has been demonstrated to be a result of correlations of the
work generated in the successive cycles; a similar behavior
has been previously investigated in the classical case [43].

On a more general level, in the spirit of some previous
works [52,63], the paper confirms the particular usefulness
of resource-theoretic methods for demonstrating a genuine
beneficial influence of non-Markovianity on the performance
of quantum nanodevices. The main advantage of this ap-
proach is its generality: it provides fundamental constraints
on Markovian evolution, without assuming any specific model
of microscopic dynamics. This may inspire future studies on
applications of non-Markovianity in other areas of quantum
technology.
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APPENDIX: EMBEDDABILITY OF SINGLE-QUBIT
MARKOVIAN THERMAL OPERATIONS

For pedagogical purposes, let me here briefly demonstrate
that every Markovian operation acting on a single qubit is also
embeddable, i.e., can be realized using a time-independent

Lindblad generator

Lρ(t ) =
4∑

i=1

ri

{
Liρ(t )L†

i − 1

2
[L†

i Li, ρ(t )]

}
, (A1)

with L1 = |g〉〈e|, L2 = |e〉〈g|, L3 = |g〉〈g|, L4 = |e〉〈e|, r1 =
�pth

g , r2 = �(1 − pth
g ), and r3 = r4 = D; here � and D are

the relaxation and the pure dephasing rates, respectively. The
elements of the density matrix evolve then as

ρgg(t ) = pg(t ) = pg(0)e−�t + (1 − e−�t )pth
g , (A2)

ρee(t ) = pe(t ) = 1 − pg(t ), (A3)

ρge(t ) = ρ∗
eg(t ) = ρge(0)e−(�/2+D)t . (A4)

At the same time, a thermal operation transforms the density
matrix elements as [Eqs. (11) and (12)]

pg(t ) = pg(0)

(
1 − λ

pth
g

)
+ λ, (A5)

ρge(t ) = γ ρge(0). (A6)

As one can easily note, in the Markovian regime of λ � pth
g

the parameters of a thermal operation can be expressed as
λ = (1 − e−�t )pth

g and γ = e−(�/2+D)t , which demonstrates
the embeddability.
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[9] O. Raz, Y. Subaşı, and R. Pugatch, Geometric Heat Engines
Featuring Power That Grows with Efficiency, Phys. Rev. Lett.
116, 160601 (2016).

[10] K. Brandner and K. Saito, Thermodynamic Geometry of
Microscopic Heat Engines, Phys. Rev. Lett. 124, 040602
(2020).

[11] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and M. Scandi,
Geometric optimisation of quantum thermodynamic processes,
Entropy 22, 1076 (2020).

[12] T. Feldmann and R. Kosloff, Quantum four-stroke heat engine:
Thermodynamic observables in a model with intrinsic friction,
Phys. Rev. E 68, 016101 (2003).

[13] M. O. Scully, Quantum Photocell: Using Quantum Coherence
to Reduce Radiative Recombination and Increase Efficiency,
Phys. Rev. Lett. 104, 207701 (2010).

[14] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and
A. Svidzinsky, Quantum heat engine power can be increased
by noise-induced coherence, Proc. Natl. Acad. Sci. USA 108,
15097 (2011).

[15] U. Harbola, S. Rahav, and S. Mukamel, Quantum heat engines:
A thermodynamic analysis of power and efficiency, Europhys.
Lett. 99, 50005 (2012).

[16] K. Brandner, M. Bauer, M. T. Schmid, and U. Seifert,
Coherence-enhanced efficiency of feedback-driven quantum
engines, New J. Phys. 17, 065006 (2015).

[17] B. Karimi and J. P. Pekola, Otto refrigerator based on a super-
conducting qubit: Classical and quantum performance, Phys.
Rev. B 94, 184503 (2016).

[18] K. Brandner and U. Seifert, Periodic thermodynamics of open
quantum systems, Phys. Rev. E 93, 062134 (2016).

[19] F. Chen, Y. Gao, and M. Galperin, Molecular heat engines:
Quantum coherence effects, Entropy 19, 472 (2017).

014114-9

https://doi.org/10.1103/PhysRevE.76.031105
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1116/5.0083192
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1038/ncomms5185
https://doi.org/10.1103/PhysRevE.98.022133
https://doi.org/10.1088/1367-2630/ab4dca
https://doi.org/10.22331/q-2019-06-24-153
https://doi.org/10.1103/PhysRevLett.116.160601
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.3390/e22101076
https://doi.org/10.1103/PhysRevE.68.016101
https://doi.org/10.1103/PhysRevLett.104.207701
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1209/0295-5075/99/50005
https://doi.org/10.1088/1367-2630/17/6/065006
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.3390/e19090472
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