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When stochasticity leads to cooperation
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The evolution of cooperation has gained more attention after Smith introduced game theory in the study of
evolutionary biology. Subsequent works have extensively explained this phenomenon, consistently showing the
importance of spatial structure for the evolution of cooperation. Here we analyze the effect of stochasticity on the
evolution of cooperation in group-structured populations. We find a simple formula for the fixation probability
of cooperators and show that cooperation can be favored by selection if a condition similar to Hamilton’s rule
is satisfied, which is also valid for strong selection and high migration. In fact, cooperation can be favored even
in the absence of population viscosity and in the limit of an infinite number of finite-size groups. We discuss
the importance of stochastic fluctuations in helping cooperation. We argue that this may be a general principle
because fluctuations favoring the cooperators are often much more impactful than those favoring the defectors.
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I. INTRODUCTION

The problem of explaining the emergence of cooperation
by natural selection has been addressed recently with some
microscopic models that shed much light on this apparently
paradoxical phenomenon [1–10]. After all, the cooperator
pays reproductive costs to benefit others in a world of fierce
competition. Most authors agree that spatial restrictions de-
limiting the interactions of individuals can favor the evolution
of cooperation, increasing population viscosity [11]. Here we
argue that the stochastic nature of the evolutionary dynamics
may also be one of the key features that can make cooperation
thrive [1,9,12–14].

To illustrate the problem of cooperation, let us consider a
colony of ancestral bacteria living in an environment with a
potential resource that cannot be metabolized. Is a mutation
that promotes the synthesis of a new enzyme, which the bac-
teria can release to break down this resource, an advantageous
one? It may seem advantageous at first look. However, if the
enzyme is shared as a public good, the mutant will bear the
energetic cost of producing it, with the nonmutants benefit-
ing from the resource without paying any costs. Thus, the
nonmutant type will reproduce more, preventing the spread
of the new cooperative mutation. The yeast Saccharomyces
cervisiae faces this dilemma and does not produce an enzyme
needed for the digestion of sucrose, relying on a defector
strategy for proliferation [15]. However, if it is so challenging
to have cooperation, how is the first emergence of multicel-
lular organisms explained [16]? Or the enormous success of
eusocial insects [17], with just ants corresponding to 15–20 %
of terrestrial animals biomass [18]?

Based on the idea that cooperation can be advantageous
because groups with more cooperators are selected, the group
selection theory is advocated as one of the key mechanisms
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in promoting cooperation. However, it has received some
discredit in the academy [19]. The main criticism is that
group selection is an evolutionary force much weaker than
individual selection [20]. Although subsequent works showed
that group structure could favor cooperation [1,21], later
critics have argued that group selection and other kinds of
interacting-neighbor dynamics are just different approaches
to kin selection. Moreover, it has been claimed that all these
phenomena can be treated with the same mathematical frame-
work [22]. However, these views have also been contested
because misrepresentation of the concept of relatedness is
often necessary [23]. In addition, in a recent work [24], the
authors found that group structure can sustain cooperation
under the pairwise comparison update, but cannot under the
Moran process update.

Here we investigate the intrinsic stochasticity typical of
evolutionary dynamics in group-structured populations. We
show that the stochasticity, and not the viscosity created by
the population structure, is the mechanism that drives cooper-
ation. We use modern stochastic process methods to derive a
simple analytic formula for the fixation probability of coop-
erators for any initial fraction and any strength of selection.
We conclude that for cooperation to be advantageous, it is
only necessary that an inequality similar to Hamilton’s rule
is satisfied: b/c > k, where b is the bonus of cooperation,
c is its costs, and k is roughly the number of individuals in
each group. More interestingly, we show that cooperation can
be selected only because of the stochastic fluctuations in the
system, which is observed even in the limit where offspring
always migrate to different groups and in the limit of infinite
populations with finite-size groups.

In the next section we define the stochastic model and
derive the master equation describing the process. Then we
divide the analysis into three parts. First, we look at the
deterministic limit, which provides a baseline for comparing
stochastic effects. Second, we analyze the regime of high
migration, where we derive a simple Hamilton-like inequality
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FIG. 1. Illustration of the selection process taking place in a
group-structured population. The individuals live in separated groups
of the same constant size and produce spores ready to flourish as
soon as they find a vacant place. Eventually, spores from one group
arrive in another group. So two competing evolutionary forces take
place: A defector produces more spores than a cooperator of the
same group, but the groups with more cooperators produce more
spores than groups with more defectors. So our goal is to establish
the threshold between the two competing forces and reveal the role
of stochasticity.

from the analysis of the fixation probability. Third, we analyze
the regime of low migration using a time-separation technique
to obtain an analytical approximation for the fixation probabil-
ity.

II. MODEL AND MASTER EQUATION

The analytical results in our work are based on the Moran
process with N individuals [25]. The population is divided
into n groups of the same size, and the reproductive fitness of
the individuals is determined only by the interactions within
the individual’s group. In Fig. 1 we provide a schematic
illustration of an example of a real process that can be approx-
imated as a Moran process in group-structured populations.

Every time step, one individual in the entire population is
randomly chosen to die. Let us suppose that the dead individ-
ual was in group i. Then another is chosen to reproduce with
probability proportional to its fitness. The newborn comes
from the same group i with probability proportional to μii

and from group j with probability proportional to μi j . There
are two types of individuals, A and B. Let NAi and NBi be
the number of individuals of type A and B in the group i,
respectively, and let FAi and FBi be the fitness of each type in
the group i. Note that there are only n independent variables
because of the constraint NAi + NBi = N/n.

Let P(N, t ) be the probability that the population is in
state N = (NA1, . . . , NAn) at time t . This probability obeys the
master equation

∂

∂t
P(N, t ) =

∑
i

T +
i (NAi − 1)P(NAi − 1, t )

+
∑

i

T −
i (NAi + 1)P(NAi + 1, t )

−
∑

i

[T +
i (N) + T −

i (N)]P(N, t ), (1)

with transition rates given by

T +
i = 1

Z

NBi

N

∑
j

μi j
NA j

N
FA j,

T −
i = 1

Z

NAi

N

∑
j

μi j
NB j

N
FB j,

where Z is a normalization factor. The migration rates are
defined as μi j = 1 for i = j and μi j = μ for i �= j. Note that
for μ = 0 a vacant place in one group is occupied only by
offspring coming from the same group and for μ = 1 the
vacant place can be occupied by individuals from any group
with equal probability. Finally, for μ → ∞ the vacant place
is always occupied by an individual from another group.

III. RESULTS AND ANALYSIS

A. Deterministic limit

Defining the fraction of Ai individuals in the population by
xi = NAi/N and the state vector x = (x1, . . . , xn), we can write

∂

∂t
P(x, t ) =

∑
i

T +
i

(
xi − 1

N

)
P

(
xi − 1

N
, t

)

+
∑

i

T −
i

(
xi + 1

N

)
P

(
xi + 1

N
, t

)

−
∑

i

[T +
i (x) + T −

i (x)]P(x, t ).

Assuming that N is large enough so that we can treat xi as
a continuum variable and ρ(x, t ) = NP(x, t ) as a probability
distribution, we can take the Kramers-Moyal expansion of the
master equation

∂

∂t
ρ(x, t ) =

∑
i

(1 − e−(1/N )(∂/∂xi ) )T +
i (x)ρ(x, t )

+
∑

i

(1 − e(1/N )(∂/∂xi ) )T −
i (x)ρ(x, t ).

Keeping only the first two terms and rescaling the time τ =
t/N , we arrive at the Fokker-Plank equation

∂

∂τ
ρ(x, τ ) = −

∑
i

∂

∂xi
[T +

i (x) − T −
i (x)]ρ(x, τ )

+ 1

2N

∑
i

∂2

∂x2
i

[T +
i (x) + T −

i (x)]ρ(x, τ ),
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from which we can promptly obtain the Itô process that de-
scribes our system, that is,

dxi(τ ) = (T +
i − T −

i )dτ +
√

T +
i + T −

i

N
dBi(τ ), (2)

where dBi(τ ) is the Brownian random variable.
We would like to see if cooperators can spread and take the

environment despite having local disadvantages against defec-
tors. Thus we take the traditional game theoretical analysis
with the payoff matrix (b − c −c

b 0 ), where b is the bonus of
cooperation and c the associated cost.

Suppose that each group is well mixed so that the individ-
uals interact with each other with the same probability. Then
expected payoffs of types A and B in group i are

fAi = (b − c)nxi + (−c)(1 − nxi ) = bnxi − c,

fBi = bnxi + 0(1 − nxi ) = bnxi, (3)

where nxi is the fraction of cooperators and 1 − nxi the frac-
tion of defectors in group i. The average fitness of A and B
individuals in group i are given by

FAi = 1 + bnxi − c, (4)

FBi = 1 + bnxi, (5)

where we choose 1 as the base fitness without loss of general-
ity. Clearly, we must have c < 1 to avoid negative probability
and b > c for cooperation to make sense.

Let us first look at the Itô equation in the limit N → ∞ to
drop the diffusion term. The deterministic set of differential
equations that describes the system is then

dxi(τ ) = γμ

1 + (b − c)x

[∑
j

1

n
(1 + bnx j )(x j − xi )

]

− γ c

1 + (b − c)x

(
1

n
− xi

)∑
j

μi jx j,

where x = ∑
i xi and γ = n/[1 + μ(n − 1)]. The analysis is

trivial in this limit. The first term drives the variables near each
other and becomes zero when xi = x j for all i, j. The second
term is always negative and has the effect of decreasing the
value of xi. So the only equilibrium which is a global attractor
is xi = 0 for all i. The defectors win.

Now we raise two issues. First, populations are always
of finite size and we should analyze the role of stochastic
effects carefully. Second, this deterministic limit analysis does
not say what happens if n → ∞. In fact, we will see that
cooperation can be advantageous even in the limit N → ∞,
as long as we keep N/n = const.

B. Stochastic system with high migration

We saw that the first term of the Itô stochastic description
in Eq. (2) is a deterministic drift that approximates the vari-
ables to each other. Thus, we can assume that, after a short
relaxation time, we can make the approximation xi ≈ x/n for
all i. We use this fact to describe the system only in terms of
the total fraction of cooperators x. Then we use the formula

for the fixation probability of cooperators in terms of a sin-
gle random variable x ∈ [0, 1] subjected to transitions rates
T +(x) = ∑

i T +
i and T −(x) = ∑

i T −
i , with initial condition

x0 [26]. Notice that x0 is the initial fraction of cooperators in
the entire population. This probability is given by

φA(x0) =
∫ x0

0 exp
(− ∫ 2A(x′ )

B(x′ ) dx′)dx′∫ 1
0 exp

(− ∫ 2A(x′ )
B(x′ ) dx′)dx′

, (6)

where A(x) = T +(x) − T −(x) and B(x) = [T +(x) +
T −(x)]/N .

The formula (6) is valid for any value of c. To obtain a
simple threshold equation for cooperation, we take the ap-
proximation c � 1, which we show to be consistent in the
parameter region of interest. Under this approximation, we
obtain

B(x) = 2x(1 − x)

N
(7)

and

A(x) = μγ b/2

1 + (b − c)x

∑
i, j

(x j − xi )
2 − cx(1 − x)

1 + (b − c)x
, (8)

where we also approximate xi = x/n in the second term of
A(x). As we have discussed, in a deterministic description,
the variables xi should become equal as soon as the system is
released. However, we cannot make the same approximation
in the first term because we would get zero and completely
lose the cooperation-driven effect due to the differences in
xi [note that the first term of A(x) is always positive]. In a
population with finite group size, it is improbable that the
variables xi always have the same value. So, depending on the
magnitude of the stochastic fluctuations, the first term of A(x)
could counterbalance the negative rate due to the cooperation
cost c.

The next step is to approximate the value of (x j − xi )2 as
〈(x j − xi )2〉 to simplify the summation in the first term in
Eq. (8). Note that we cannot neglect the cooperation cost c
in Eq. (8) because we do not know how small it is compared
to 〈(x j − xi )2〉. However, we know that this average quadratic
distance must be attained very soon after the system is re-
leased because we have a deterministic drift trying to put all
the variables together. Then we assume that the fluctuations in
xi and x j are weak and noncorrelated so that we have

〈(x j − xi )
2〉 = 〈

x2
j

〉 + 〈
x2

i

〉 − 2〈x jxi〉

= 〈
x2

j

〉 − (
x

n

)2

+ 〈
x2

i

〉 − (
x

n

)2

= 2 Var(xi ).

Now we only need to calculate Var(xi ). Note that we start
the system with the same initial fraction of cooperators in all
groups, xi(0) = x/n for all i, because this metaequilibrium is
reached after a small relaxation time.

To calculate Var(xi ), we return to the Itô stochastic
description of the variables [Eq. (2)]. We take c = 0,
(1 + bnx j ) = (1 + bx) for the drift term, and xi = x/n for
the diffusion therm so that our stochastic process can be
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approximated by

dxi(τ ) = μγ
( x

n
− xi

)
dτ +

√
2x(1 − x)

nN
dB(τ ),

where we consider x as a constant in the small interval needed
for the variable to reach its maximum variance. We also make
the change of variables x′ = x/n − xi to obtain

dx′ = −μγ x′dτ +
√

2x(1 − x)

nN
dB(τ ),

where we can take −dB(τ ) = dB(τ ) with no change in the
process. This equation can be easily solved using the Itô
formula, resulting in

x′(τ ) = e−μγ τ

∫ τ

0
eμγ t

√
2x(1 − x)

nN
dB(t ),

where x′(0) = 0 since xi(0) = x/n. The variance of xi is just〈(
xi(τ ) − x

n

)2〉
= 〈[x′(τ )]2〉

= e−2μγ τ 2x(1 − x)

nN

∫ τ

0
e2μγ t 〈dB(t )2〉

= 1

μγ nN
x(1 − x)(1 − e−2μγ τ ),

where we use that 〈dB(t )2〉 = dt . As we have previously dis-
cussed, the variance becomes close to its maximum value in
a very short time. So we can take Var(xi ) ≈ x(1 − x)/μγ Nn,
and our estimate for the average quadratic distance of xi and
x j is just

〈(x j − xi )
2〉 ≈ 2x(1 − x)

μγ Nn
.

Using these approximations, we obtain the simplified for-
mula

φA(x0) = [1 + (b − c)x0](α+1) − 1

[1 + (b − c)](α+1) − 1
, (9)

where α = [−b(n − 1) + cN]/(b − c). Interestingly, the fixa-
tion probability is independent of μ. There is a balance: On
one side, the increase of μ increases the cooperation-driven
effect in A(x); on the other side, it decreases the average
quadratic distance of variables in the same proportion. The
theoretical expression (9) agrees very well with the simulation
results for high-migration rates (μ > 0.5), as shown in Fig. 2.

Finally, to obtain the threshold that gives the cooperators a
fixation probability higher than that of defectors at the same
initial fraction, we have to analyze the concavity condition for
the function in Eq. (9). If φ(x0) is the fixation probability of
cooperators, then 1 − φ(x0) is the fixation probability of de-
fectors in a population starting with x0 cooperators. Thus, the
value 1 − φ(1 − x0) gives the fixation probability of defectors
that we must compare to the fixation probability of coopera-
tors φ(x0). Hence, we must require the second derivative of
the function in Eq. (9) to be negative. The second derivative is
given by

∂2φA(x0)

∂2x0
= (b − c)2(α + 1)α[1 + (b − c)x0](α−1)

[1 + (b − c)](α+1) − 1
.

FIG. 2. Fixation probability of cooperators in the high-migration
regime. The x axis is the initial fraction of cooperators in the entire
population, with all groups initialized with the same fraction of
cooperators. The middle curve is the neutral case b = c = 0, above
which the cooperators have an advantage and below which the defec-
tors have an advantage. The theoretical expression given by Eq. (9)
(solid lines) agrees well with the simulation results (symbols). The
parameters are N = 400, n = 8, μ = 1, b = 10, and the values of c,
from top to bottom, c = 0.12, 0.155, 0.2, and 0.3.

Thus, we must have

b

c
>

N

n − 1
. (10)

If Eq. (10) is satisfied, we say that selection favors cooperators
replacing defectors [27]. For n = 1, the right-hand side of
Eq. (10) diverges, which is expected because cooperation has
no chance in a single well-mixed group. For large N and n, this
condition can be approximated by b/c > k, where k = N/n
is the number of individuals in the same group. Thus we
have just recovered a condition similar to Hamilton’s rule
[28]. Astonishingly, in the limit N, n → ∞ with k = const,
cooperators have probability one of taking the environment if
the condition in Eq. (10) is satisfied.

C. Stochastic system in low migration

In the low-migration regime (μ < 0.5), the formula (9)
is not accurate. In this case, the deterministic drift that
approximates the variables to each other is weak and the
approximation xi ≈ x/n is no longer reasonable. However, if
the migration between groups is rare, the dynamics can be
analyzed using a timescale separation technique [29]. If muta-
tion is rare, all groups reach fixation before the next migration
occurs. Thus, what is really observed in a slow timescale is
that each group is composed of a single type and that the
number of groups of type A is a discrete variable jumping in
the state space {0, 1, . . . , n}.

The fixation probability of type A in the Moran process
in a well-mixed population of size N [30], starting with NA
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individuals of type A, is given by the formula

φ(NA) = 1 + ∑NA−1
j=1

∏ j
k=1 γ (k)

1 + ∑N−1
j=1

∏ j
k=1 γ (k)

,

where

γ (k) = T −(k)

T +(k)

is defined in terms of the transition rates, which are given by

T +(NA) = 1

Z

NA

N

(
1 − NA

N

)
FA(NA),

T −(NA) = 1

Z

NA

N

(
1 − NA

N

)
FB(NB). (11)

Recall that in our study the fitness is given by FA(NA) =
1 + bNA/N − c and FB(NA) = 1 + bNA/N . In a well-mixed
population, the fixation probability of a cooperator is never
higher than the fixation probability of a defector (compared
with the same initial fraction of individuals), no matter how
small the cooperation cost c is. In fact, it becomes exponen-
tially small with the increase of the population size. However,
as we showed for the high-migration regime, the cooperators
may have an overall advantage if we consider the competition
between groups.

In the slow timescale, each group is composed of a single
type. Let i be the number of groups of type-A individuals and
n − i the number of groups of type-B individuals. Let �A(i) be
the fixation probability of type A in the whole population if the
system starts with i groups of type A. There are two absorbing
states: i = 0 and i = n. Because the migration probability is
small, all groups are always homogeneous when a new migra-
tion happens. The probability that this migration leads to an
increase in one in the number of groups of type A (i → i + 1)
is given by

T + = 1

Z

i

n

n − i

n

FA(N )

FA(N ) + FB(0)
φ(1),

where FA(N ) = 1 + b − c and FB(0) = 1 are the fitness of
the individuals in the type-A and type-B groups, respectively.
Similarly, the probability that the migration increases the
number of groups of type B (i → i − 1) is given by

T − = 1

Z

i

n

n − i

n

FB(0)

FA(N ) + FB(0)
[1 − φ(N − 1)].

Note that the Markov chain in the state space of homogeneous
groups is analogous to the Moran process in a well-mixed
population. Therefore, the fixation probability �A(i) is given
by

�A(i) = 1 + ∑i−1
j=1

∏ j
k=1 	(k)

1 + ∑n−1
j=1

∏ j
k=1 	(k)

,

where 	(k) = T −(k)/T +(k).
Finally, the fixation probability of cooperators if one of the

n groups starts with NA cooperators is just

φ(NA)�A(1), (12)

which is the product of the fixation probability of NA cooper-
ators in one well-mixed group and the fixation probability of
one type-A group.

FIG. 3. Fixation probability of cooperators in the low-migration
regime. The x axis is the cooperation cost c. The initial fraction of
cooperators is 1%, all placed in the same group. Notice that there
is an intercept point of the curves occurring approximately at c∗ =
0.04 = b/k. The parameters are k = 50, b = 2, μ = 0.001, b = 2,
and, from top to bottom (on the left side), the number of groups n =
8, 6, 4, and 2.

In Fig. 3 we compare the simulations and the analytical
formula (12) for different values of the cost c. We considered
a small initial fraction of 1% of cooperators in the total popu-
lation, all cooperators starting in the same group. If the costs
are small, cooperation can be advantageous for any quantity
of groups (n > 1), fixating more than 1% of the time.

In this low-migration scenario, stochasticity is only respon-
sible for the initial fluctuation that fixates cooperation in one
of the groups. After this initial lucky event, the mechanism
that promotes cooperation is the protection from the defectors
due to the differences in the group payoffs and population
timescales. Recall that cooperators always have more trouble
reaching fixation in a single well-mixed group than the de-
fectors have. However, once the inside-group dynamics has
stabilized, if at least one group of type A is formed, it gener-
ates more migrants because its individuals have the maximum
fitness. Nevertheless, it is still stochasticity that prevents all
groups from being always initially dominated by defectors, an
indispensable condition for the temporal protection of defec-
tors to work.

Notice in Fig. 3 that all curves intercept at a point c∗. For
c < c∗, having more groups in the population is good for the
cooperators (keeping the group size constant), but for c > c∗
the cooperators are better off if the population has few groups.
Interestingly, this value is given approximately by c∗ ≈ b/k,
where k = N/n is the size of the group. The explanation
for the result is simple. A single cooperator in a group of
defectors pays a cost c to provide the group a benefit b, which
all k individuals share. The average payoff of a cooperator is
then given by b/k − c = c∗ − c, which is positive if c < c∗
and negative if c > c∗. Thus, if c < c∗, the cooperator does
better than any individual in an all-defector group and adding
a new all-defector group will only enhance the cooperator
advantage relative to the total population. If c > c∗, adding
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FIG. 4. Simulations for pairwise comparison update. The x axis
is the initial fraction of cooperators and the y axis is the fixation
probability. The parameters are N = 200, n = 4, μ = 1, b = 2, and
the values of c, from top to bottom, c = 0.01 and 0.02. The solid
curve is the neutral case. The cooperators are advantageous for small
costly cooperation for any initial condition.

a new all-defector group decreases the relative advantage of
the cooperator in the population and it is better to have fewer
groups.

IV. OTHER RULE UPDATES

The Moran process in group-structured populations is a
model that yields simple analytical expressions for the fixation
probability. We also verified through simulations that other
update rules yield the same results, showing that small, costly
cooperation can be favored by selection.

A. Pairwise comparison

In the pairwise comparison update, a randomly selected in-
dividual is replaced by a clonal offspring of another randomly
picked individual with a probability that depends on the fitness
difference between the model and the focal individual. The
Fermi function is often adopted as the probability of strategy
replacement, with the first chosen individual X adopting the
strategy of the second chosen individual Y with probability

pX→Y = 1

1 + eFX −FY
,

where FX and FY are the fitness of individuals X and Y ,
respectively. In our model, the transition rates for this update
rule becomes

T +
i = n

1 + μ(n − 1)

(
1

n
− xi

) ∑
j

μi jx j

1 + ebn(xi−x j )+c
,

T −
i = n

1 + μ(n − 1)
xi

∑
j

μi j ( 1
n − x j )

1 + ebn(xi−x j )−c
.

The simulation results are shown in Fig. 4.

FIG. 5. Simulations for Wright-Fisher update. The x axis is the
cost of cooperation and the y axis is the fixation probability for
x0 = 1/2. The parameters are N = 150, n = 3, and b = 2. The coop-
erators are advantageous for small costly cooperation. In particular,
for these parameters, they dominate more than half of the times when
c < 0.025.

B. Wright-Fisher process

In the Wright-Fisher update, every time step, all individuals
of the current generation are replaced by their offspring, which
are randomly placed in the groups. If the population is in
state (NA1, . . . , NAn) at time t , any vacant place in the new
generation t ′ will have a probability

p = 1

1 + (b − c)x

∑
i

xi(1 + bxi − c)

of being filled by a cooperator and a probability q = 1 − p of
begin filled by a defector. Therefore, the probability of any
group i having N ′

Ai cooperators in the next generation t ′ is
given by the binomial distribution

P(N ′
Ai ) =

(
N/n

N/n − N ′
Ai

)
pN ′

Ai qN/n−N ′
Ai .

The simulations of this dynamics are shown in Fig. 5. As
before, small costly cooperation favors cooperation.

V. DISCUSSION

Finally, let us compare our results with previous works.
First, our analysis sheds light on the discussion between group
selection and kin selection. Although both approaches may
sometimes give the same threshold for cooperation emergence
[4,22], the mechanisms are different. Cooperation driven by
kin selection is due to interacting with close relatives pref-
erentially. Cooperators end up interacting more often with
other cooperators, preventing the exploitation by defectors.
It is understandable to view the cooperation induced by
interacting-neighbor models on graphs as an instance of kin
selection [5,31], since cooperators interact more often with
cooperators as a consequence of population viscosity [3].
However, in our model, it is not the viscosity of the population
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that promotes cooperation, but the competition between the
groups, where by competition we mean the groups competing
to send more migrants to occupy new vacant places. In fact,
we showed that the threshold for cooperation does not depend
on the migration rate for μ > 0.5 and cooperators can still be
advantageous in the limit μ → ∞, where a newborn individ-
ual in one group always comes from another group.

The role of the stochasticity in our model is even more
evident if we look at the deterministic model, making dBi = 0
in Eq. (2). In this scenario, cooperation cannot be sustained for
any population size N and ratio b/c. After a relaxation time,
the groups have the same proportion of cooperators, stopping
the competition between them. Because cooperation induced
by viscosity can be advantageous even in deterministic models
[11,32,33], the stochastic effect may play a significant role
in promoting cooperation. Also, it is commonly said that the
rule b/c > k for the evolution of cooperation in graphs is
a consequence of the linearity introduced by weak selection
[23,34]. In our model, for high migration, this simple rule is
extended for any strength of selection.

VI. CONCLUSION

To sum up, our analysis suggests that, in addition to
positive correlation in the interaction between cooperators

caused by spatial structure, the stochastic nature of the
evolutionary dynamics can be a core mechanism for cooper-
ation success. In [1] Fletcher and Zwick analyzed a similar
version of our model using the Wright-Fisher update and,
using inclusive fitness analyses, found a similar threshold
b/c > k. They provided an intuitive explanation of stochas-
ticity’s role in favoring cooperation. In their words, “[t]he
groups that are by chance initially dominated by altruists
grow larger compared to other groups and even though the
fraction of altruists declines in these groups, the absolute
number of altruists poised to benefit other altruists in a sub-
sequent generation increases.” The same holds in our model,
where cooperation can only be advantageous because some
groups have more cooperators than others due to pure fluctu-
ations, which may increase the overall fraction of cooperators
in the population due to the indirect competition between
groups. Hence, we claim that stochasticity is a key mecha-
nism for promoting cooperation in populations structured in
groups, since the fluctuations that happen to favor cooper-
ators tend to have much more impact than those that favor
defectors.
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