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Nonmonotonic heat dissipation phenomenon in close-packed hotspot systems
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Transient heat dissipation in close-packed quasi-two-dimensional nanoline and three-dimensional nanocuboid
hotspot systems is studied based on the phonon Boltzmann transport equation. It is found that, counterintuitively,
the heat dissipation efficiency is not a monotonic function of the distance between adjacent nanoscale heat
sources but reaches the highest value when this distance is comparable to the phonon mean free path. This
is due to the competition of two thermal transport processes: quasiballistic transport when phonons escape
from the nanoscale heat source and the scattering among phonons originating from the adjacent nanoscale heat
source.
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I. INTRODUCTION

With the fast development of micro- and nanotechnologies
[1–3] and the drastically reduced size of electronic devices
[3,4], Moore’s law is reaching its limit. In addition, the
increase of power density intensifies hotspot issues and in-
creases the demand for heat dissipation. The heat dissipation
problem at the micro- and nanoscales has become one of
the key bottlenecks restricting the further development of the
microelectronics industry. Hence, it is important to understand
the thermal transport mechanisms in microelectronic devices
[3,5,6] to realize optimal waste heat removal and improve
device performance and reliability.

At the micro- and nanoscales, the Fourier law of ther-
mal conduction becomes invalid and the non-Fourier phonon
transport is summarized into four major categories [1,2,4,7,8].
The first is the ballistic phonon transport [9–11], which hap-
pens when the system’s characteristic length or time is much
shorter than the phonon mean free path [12–15] or relaxation
time [16–18]. The second arises from small-scale heat sources
[19–25]. When a hotspot with small size is added in a bulk ma-
terial, if the phonon mean free path is much larger than the size
of the hotspot, phonons emitted from the hotspot do not suffer
sufficient phonon-phonon scattering near the hotspot region
so quasiballistic phonon transport occurs even if there is no
boundary or interface scattering inside the systems [21,22,24].
The third is the coherent phonon transport [26–28], which
appears when the system’s characteristic length is comparable
to the phonon wavelength. The fourth is the hydrodynamic
phonon transport, which requires the momentum-conserved
normal scattering to be much more extensive than the bound-
ary scattering and the boundary scattering to be much more
sufficient than the momentum-destroying resistive scattering
[29–31]. So far, the phonon hydrodynamics phenomena have
been experimentally measured in a few three-dimensional
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(3D) materials (e.g., graphite and NaF) at low temperatures
[31–33].

Except for the above situations, recent studies have re-
vealed the importance of the distance between adjacent
nanoscale heat sources on the heat dissipation in hotspot
systems [34–38]. Zeng and Chen [36] studied quasibal-
listic heat conduction for quasi-2D nanoline heat sources,
which are periodically deposited on a substrate. Based on
the frequency-independent phonon Boltzmann transport equa-
tion (BTE) under the relaxation time approximation, they
found that the collective behavior caused by closely packed
hotspots could counteract the quasiballistic effects in an
isolated nanoscale hotspot. However, the result depends on
which temperature signal is used as the fitting data of the
diffusion equation. Hoogeboom-Pot et al. measured this unex-
pected phenomenon by advanced dynamic extreme ultraviolet
scatterometry [34]. To reveal a comprehensive microscopic
understanding of this unexpected heat dissipations, Honarvar
et al. [38] performed the steady-state molecular dynam-
ics simulations on silicon samples featuring close-packed
nanoheaters. They made a qualitative comparison between
the molecular dynamics simulations and extreme ultravi-
olet experiments by controlling the equal ratio between
the phonon mean free path and geometry size. By using
atomic-level simulations to accurately access the temperature,
phonon scattering, and transport properties, they explained
that the phonons emitted from the nanoscale heat source
may scatter with each other in the in-plane direction and
promote the cross-plane heat dissipation when the distance
between two nanoscale heat sources is smaller than the
phonon mean free path. This heat dissipation phenomenon
was also reported by Minnich and co-workers resulting from
the phonon BTE and time-domain thermoreflectance exper-
iments [39,40]. Those results suggest that heat dissipation
or cooling in nanoscale hotspot systems including integrated
circuits [3,5] might not be as challenging as previously
expected.

However, the fundamental physical mechanisms of this
phenomenon are still not unified. In addition, it is worth noting
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that various macroscopic constitutive relationships between
the heat flux and temperature have been used to fit the ex-
perimental data by different research groups [34,36,37,40].
By artificial fitting, an effective thermal conductivity can be
obtained, which varies nonmonotonically when the distance
between the nanoscale hotspot decreases gradually. Usually,
the heat diffusion equation with a constant effective thermal
conductivity is widely used during data postprocessing, as
done by Hoogeboom-Pot et al. [34] and Zeng and Chen
[36], but this model cannot simultaneously fit both the am-
plitude and phase well [37,39,40]. Under the semi-infinite
assumption, Hua and Minnich [40] obtained a constitutive
relationship between the heat flux and temperature by an-
alytically deriving the phonon BTE under the relaxation
time approximation, which is valid for all phonon transport
regimes. However, this analytical strategy is very challeng-
ing for complex geometries and hotspot systems with finite
size. Beardo et al. used a macroscopic moment equation with
adjustable parameters to fit the experimental data, and both
the nonlinear and nonlocal terms of the heat flux are taken
into account in their model [37]. They uncovered the exis-
tence of two timescales: an interface resistance regime that
dominates on short timescales and a quasiballistic phonon
transport regime that dominates on longer timescales. This
moment equation is derived from the phonon BTE under
the small-perturbation expansion, so it might be question-
able when the system size is smaller than the phonon mean
free path.

Summing up the above, it seems that how to interpret
the raw experimental data in the nondiffusive regime with
reasonable constitutive relationships is still an open question.
As reported by Zeng and Chen [36], using the temperature
signals in different positions for data postprocessing might
lead to different result. Hence, it is necessary to obtain the
macroscopic physical fields in the whole domain.

Note that there are only a few detection sites in the
micro- and nanoscale thermal measurement experiments
[11,16,21,22,24,34,38,39], which indicates that it is hard to
measure the whole temporal and spatial macroscopic physical
fields. On the other hand, as is well known, heat dissipation
in practical thermal engineering spans multiple scales of time
and space, for example, from picoseconds to microseconds
or from transistors at the nanoscale to the heat dissipation
of a supercomputer [5]. Although the molecular dynamics
simulation is accurate, it is still too expensive to simulate
the dimensions and scales of actual experimental samples or
thermal systems. For example, in the work of Honarvar et al.
[38], the transient extreme ultraviolet experiment is usually
at hundreds of nanometers, but the steady-state molecular
dynamics simulation is below 100 nm.

The phonon incoherent transport dominates heat conduc-
tion in room temperature silicon over tens of nanometers
[28,36,39–42]. Simultaneously considering the accuracy and
computational efficiency, the phonon BTE simulations are
conducted in our work to show the temporal and spatial vari-
ations of macroscopic physical fields in the whole 3D finite
geometry region. We mainly focus on how long it takes for
the heat to dissipate completely from the heat source. No
artificial fitting or effective thermal conductivity is used to
avoid possible controversy caused by data postprocessing

FIG. 1. (a) Schematic of the transient heat dissipation in a quasi-
2D nanoline heat source with a periodic array arrangement. (b) Heat
dissipation process of the average temperature (7) based on the
gray model, where Kn = 1.0. (c) Time decay tdecay with various P∗

and Kn.

methods and the raw data calculated by the phonon BTE are
plotted directly.

The rest of the paper is organized as follows. In Sec. II
the phonon BTE is introduced. The results and discussion of
quasi-2D nanoline [Fig. 1(a)] and 3D nanocuboid [Fig. 4(a)]
hotspot systems are given in Sec. III and IV, respectively. A
summary is given in Sec. V.

II. PHONON BTE

In this work we mainly focus on the heat conduction in
conventional 3D semiconductor materials, e.g., monocrys-
talline silicon and germanium [39,40,43,44]. In these mate-
rials, the normal process scattering can be ignored and the
resistive process scattering dominates the heat conduction
[18,36,39,40,43]. The phonon BTE under the relaxation time
approximation [10,17,18,40,41,45,46] is used to describe the
transient heat conduction in these materials

∂e

∂t
+ vgs · ∇xe = eeq − e

τ
, (1)

where vg is the group velocity and e = e(x, ω, s, t, p) is the
phonon distribution function of energy density, which de-
pends on spatial position x, unit directional vector s, time t ,
phonon frequency ω, and branch p (Appendix A). The whole
wave-vector space is assumed to be isotropic. In addition,
eeq and τ are the equilibrium distribution function and the
relaxation time, respectively. We assume that the temperature
T slightly deviates from the reference temperature T0, i.e.,
|T − T0| � T0, so that the equilibrium distribution function
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can be linearized as

eeq
R (T ) ≈ C

T − T0

4π
, (2)

where C = C(ω, p, T0) is the mode specific heat at T0. The
phonon scattering term satisfies the energy conservation, so
we have

0 =
∑

p

∫∫
eeq(Tloc) − e

τ (T0)
d� dω, (3)

where the integral is carried out in the whole solid angle
space d� and frequency space dω. Here Tloc is the local pseu-
dotemperature, which is introduced to ensure the conservation
principles of the scattering term and can be calculated by

Tloc = T0 +
∑

p

∫ ∫
e d�

τ
dω∑

p

∫
C
τ

dω
. (4)

The local temperature T and heat flux q can be calculated as
the moments of the distribution function

T = T0 +
∑

p

∫∫
e d� dω∑

p

∫
C dω

, (5)

q =
∑

p

∫∫
ve d� dω. (6)

III. QUASI-2D NANOLINE HEAT SOURCE

A. Problem description

The heat dissipations in quasi-2D nanoline hotspot systems
are investigated numerically. As shown in Fig. 1(a), a heat
source is added on the top of a rectangle substrate and its
sizes in the x and z directions are Lh and h, respectively.
The sizes of the substrate in the x and z directions are P and
H , respectively. The bottom of the substrate is the heat sink
with environment temperature T0 and the isothermal boundary
condition is used [Eq. (B2)]. The left and right boundaries
of the substrate are periodic and the others are diffusely re-
flecting adiabatic boundaries [Eq. (B3)]. We set h/H = 1/8
and Lh/P = 1/4, and the whole domain is a homogeneous
material in order to eliminate the thermal interface resistance
between two dissimilar materials [47,48].

At the initial moment t = 0, the temperature of the heat
source and the other areas are Th and T0, respectively, where
Th > T0. When t > 0, the heat dissipates from the heat source
to the heat sink. The temporal evolutions of the average tem-
perature T are studied based on the phonon BTE

T ∗ = T − T0

Th − T0
, (7)

where T is the average temperature over the whole heat
source. We mainly focus on how long it takes for heat to dis-
sipate completely from the heat source. Specifically, we study
the factors that influence the time decay tdecay, which is defined
as the time cost when T ∗ decreases from 1.0 to 0.1. Based on
dimensional analysis [49], the transient heat dissipations in
the quasi-2D nanoline hotspot systems are totally determined
by these length scales, including the phonon mean free path
λ = vgτ , the spatial period P, the height H , and the size of the

hotspot Lh. Equation (1) can be written in the dimensionless
form

∂e

∂t
+ s · ∇xe = eeq − e

Kn
, (8)

where the distribution function is normalized by eref =
C�T /4π , with �T = Th − T0 the temperature difference in
the domain, the spatial coordinates normalized by H , and
time normalized by tref = H/vg. The dimensionless Knudsen
number is

Kn−1 = H

λ
= H

vgτ
. (9)

In order to better pinpoint the relationships among various
influencing factors, two dimensionless parameters are intro-
duced and are defined as

P∗ = P

H
, t∗ = vgt

H
. (10)

B. Effects of geometric sizes and phonon scattering

The phonon gray model [36,41] and the linear phonon
dispersion are used. In this simulation, the height H is
fixed. Detailed numerical solutions of the BTE are shown
in Appendix B and the independence test is conducted in
Appendix C.

The thermal effects of the spatial period P are investigated.
As shown in Fig. 1(b) with Kn = 1.0, the heat dissipation
efficiency is not monotonic when P∗ decreases from 8 to 0.01.
The time decay tdecay is also plotted in Fig. 1(c). When P∗ =
1.0 or 0.4, the heat dissipation speed is the fastest. Note that
both vg and H are fixed when the spatial period P changes, so
the dimensionless time t∗ is equivalent to the actual physical
time t .

Next a number of simulations are carried out with various
Kn. It can be found that the nonmonotonic heat dissipation
phenomenon still exists with different Knudsen numbers. The
present results clearly contradict the previous intuitive under-
standing of micro- and nanoscale heat transfer, namely, the
more densely packed and smaller the electronics, the more
difficult it is to dissipate heat [3,5].

C. Physical mechanisms

Motivated by previous studies of quasiballistic phonon
transport [20,34,36,38–40], the fundamental physical mech-
anisms of the above unexpected thermal transport phenomena
in different phonon transport regimes are discussed qualita-
tively. From Fig. 1(a) or 2 it can be found that there are
two main thermal transport processes when heat is transferred
from the heat source to the heat sink [34,36]: Phonons es-
cape from the heat source to the substrate and phonons are
transported from the substrate to the heat sink. Based on di-
mensionless analysis [49], for the first process, the size of the
heat source is the key factor, especially Lh/h. For the second
process, namely, when phonons with high energy are absorbed
by the heat sink, the distance P between the nanoscale heat
source and height H determines the heat dissipation efficiency.
In addition, the phonon group velocity and relaxation time
influence both transient heat dissipation processes.
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FIG. 2. Schematic of phonon transport and scattering in (a) a single hotspot and (b) close-packed hotspot systems.

1. Diffusion

When the spatial period is much larger than the phonon
mean free path, P � λ and Lh � λ, the phonon scattering is
sufficient inside both the heat source and substrate areas and
phonons undergo a diffusive process. Hence, Fourier’s law is
valid and the temperature decreases exponentially.

2. Quasiballistic transport

When the spatial period decreases and becomes compa-
rable to the phonon mean free path, the thermal dissipation
mechanisms become much complicated. For the first process,
Lh/h decreases so that it becomes difficult for phonons to
escape from the heat source areas. For the second process,
if there is only a single nanoscale heat source, as shown in
Fig. 2(a), when phonons escape from the heat source, there
is rare phonon-phonon scattering within the spatial range of
a phonon mean free path. The insufficient phonon scattering
blocks the efficient energy exchange among phonons and a
large thermal resistance appears near the outlet position of the
heat source [8,20].

When a number of heat sources are periodically deposited
on a substrate, it should be noted that the distance between two
nanoscale heat sources decreases if P decreases. The phonons
that escape from one nanoscale heat source may scatter with
others that escape from the adjacent heat source. In other
words, when the distance between two nanoscale heat sources
decreases and P ≈ λ, compared to that with a single nanoscale
hotspot, the probability of actual phonon scattering is instead
boosted within the spatial range of a phonon mean free path,
as shown in Fig. 2(b). The heat flux in the x direction is
canceled out by phonons coming from opposite directions. In
addition, the heat conduction in the z direction is increased,
which is totally different from that of a single nanoscale heat
source [34,38].

3. Ballistic transport

When the spatial period is much smaller than the phonon
mean free path, P � λ and Lh � λ, the ballistic phonon trans-
port dominates heat conduction inside both the heat source
and substrate areas. Although the smaller distance between
two nanoscale heat sources could promote scattering, the ratio
Lh/h decreases significantly so that the phonon transport is

blocked by the diffusely reflecting boundaries and it is very
difficult for most of the heat and phonons to escape from the
heat source to the substrate areas. In other words, the first
process totally dominates phonon transport and limits the heat
dissipation.

Combined with our numerical results in Fig. 1 and the the-
oretical analysis of quasiballistic phonon transport [34,36,38],

(a)

(b)

FIG. 3. (a) Heat dissipation process of the average temperature
(7) in silicon materials with quasi-2D nanoline geometry [Fig. 1(a)]
based on the frequency-dependent BTE, where H = 300 nm and
T0 = 300 K. (b) Time decay tdecay with various P in silicon and
germanium materials.
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FIG. 4. (a) Schematic of the transient heat dissipation in a 3D nanocuboid heat source with a periodic array arrangement. (b) Heat
dissipation process of the average temperature (7) based on the gray model, where Kn = 1. (c) Time decay tdecay with various P∗ and Kn.

it is concluded that in quasi-2D hotspot systems, the heat dissi-
pation efficiency reaches the highest value when P∗/Kn ≈ 1.
It is a result of the competition between the two phonon
transport processes: quasiballistic transport when phonons es-
cape from the nanoscale heat source and the scattering among
phonons originating from the adjacent nanoscale heat source.

D. Silicon and germanium materials

The quasi-2D nanoline hotspot systems [Fig. 1(a)] with
room temperature monocrystalline silicon and germanium
materials are studied based on frequency-dependent phonon
BTE. The input parameters of the BTE including nonlinear
phonon dispersion and frequency-dependent scattering pro-
cesses are given in Appendix A, which have been validated
by experiments in previous studies [43,44,50]. The average
phonon mean free path λ = ∑

p

∫
Cv2

gτ dω/
∑

p

∫
Cvgdω of

room temperature silicon is about 171 nm. The thermal effects
of the spatial period P on the heat dissipation are investigated
and the height is fixed at H = 300 nm [38]. From Figs. 3(a)
and 3(b) it can be found that in silicon the heat dissipation
efficiency is low when P = 2 μm or 10 nm and the effi-
ciency is the fastest when P ≈ 100 nm. Similar nonmonotonic
heat dissipation phenomena are also observed in germanium
materials with the average mean free path λ = 126 nm [see

Fig. 3(b)]. These results are consistent with our analysis in
Sec. III C, namely, that the heat dissipation efficiency reaches
the highest value when the spatial period P is approximately
the phonon mean free path λ, i.e., P∗ ≈ Kn.

IV. THREE-DIMENSIONAL NANOCUBOID HEAT SOURCE

The 3D close-packed nanocuboid heat source is simulated
in this section. As shown in Fig. 4(a), a number of nanocuboid
heat sources are arranged periodically on the top of the sub-
strate. The bottom of the 3D geometry is the heat sink with
fixed temperature T0 and the isothermal boundary condition
is used [Eq. (B2)]. Its front and left views are both the same
as the front view plotted in Fig. 1(a). The boundaries of the
heat source and the top surface of the substrate are diffusely
reflecting adiabatic boundaries [Eq. (B3)]. From the top view,
there are two concentric squares with side lengths P and
Lh and the boundaries of the substrate are all periodic. The
lengths of the substrate and nanocuboid in the z direction are
H and h = H/8, respectively. The basic settings are similar
to those in quasi-2D hotspot systems [Fig. 1(a)]. At the initial
moment t = 0, the temperature of the heat source is Th and the
temperature of the other surfaces is T0. When t > 0, the heat
dissipates from the heat source to the heat sink.
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FIG. 5. (a) Schematic of the transient heat dissipation in a 3D nanocuboid heat source with a periodic staggered arrangement. (b) Heat
dissipation process of the average temperature (7) based on the gray model, where Kn = 1. (c) Time decay tdecay with various P∗ and Kn.

The detailed numerical solutions are shown in Appendix B.
Due to the large computational amount, fewer numerical cases
are simulated compared to those in quasi-2D hotspot systems
and the frequency-independent BTE is solved. The thermal
effects of phonon scattering and spatial period P are inves-
tigated. From Fig. 4 it can be found that the heat dissipation
phenomena are similar to those in Fig. 1, namely, there is non-
monotonic heat dissipation phenomenon when the distance
between two adjacent nanoscale hotspot decreases gradually.
The fastest heat dissipation speed appears when P∗ ≈ Kn.

In addition, changing the spatial distributions of
nanocuboid heat sources, from a periodic array to a staggered
arrangement, as shown in Fig. 5, numerical results show
that this nonmonotonic heat dissipation phenomenon still
exists. Thus, it can be concluded that the nonmonotonic
heat dissipation phenomena are general in both close-packed
quasi-2D and 3D hotspot systems.

V. CONCLUSION

In summary, the heat dissipation in close-packed quasi-
2D nanoline and 3D nanocuboid hotspot systems has been
studied based on the phonon BTE. Contrary to the previous
intuitive understanding of micro- and nanoscale heat conduc-
tion, the present results have revealed that the heat dissipation

efficiency is not monotonic with the distance between heat
sources. The highest heat dissipation efficiency is reached
when P∗/Kn ≈ 1. It is a result of the competition between the
two processes: quasiballistic phonon transport when phonons
escape from the nanoscale heat source and the scattering
among phonons originating from the adjacent nanoscale heat
source.
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APPENDIX A: NONLINEAR PHONON DISPERSION
AND SCATTERING

The thermal contribution of optical phonons is small in
room temperature silicon or germanium, so we only consider
the longitudinal and transverse acoustic phonons (LA and
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TABLE I. Quadratic phonon dispersion coefficients for silicon
and germanium [43,44,51].

Material Phonon c1 (105 cm/s) c2 (10−3 cm2/s)

Si LA 9.01 −2.0
Si TA 5.23 −2.26
Ge LA 5.63 −1.5
Ge TA 2.60 −1.13

TA). The formulas in [51] are used to express the isotropic
dispersion relations of the acoustic phonon branches,

ω = c1k + c2k2, (A1)

where the wave vector k ∈ [0, kmax], kmax = 2π/A is the maxi-
mum wave vector in the first Brillouin zone, and A is the lattice
constant. For silicon, A = 0.543 nm, and for germanium, A =
0.565 nm. The value of the group velocity is vg = c1 + 2c2k.
The specific values of these coefficients in Eq. (A1) are shown
in Table I.

Matthiessen’s rule is used to calculate the effective re-
laxation time τ−1 = τ−1

impurity + τ−1
U + τ−1

N = τ−1
impurity + τ−1

NU ,

where τ−1
impurity = Aiω

4. For the LA branch, τ−1
NU = BLω2T 3;

for the TA branch, when 0 � k < kmax/2, τ−1
NU = BT ωT 4, and

when kmax/2 � k � kmax, τ−1
NU = BU ω2/sinh(h̄ω/kBT ). The

specific values of these coefficients of relaxation time are
shown in Table II. These input parameters of the phonon BTE
have been validated by experiments [50] in previous studies
[43,44].

APPENDIX B: NUMERICAL METHOD FOR THE BTE

The discrete unified gas kinetic scheme [52] is used to
solve the phonon BTE numerically. Detailed introductions
and numerical validations of this scheme were given in
Refs. [10,17,18]. For quasi-2D nanoline hotspot systems, the
spatial space is discretized with 90 uniform cells in the z di-
rection and 40–200 uniform cells in the x direction. In silicon
or germanium materials, the spatial space is discretized with
Nz = 90 uniform cells in the z direction and Nx = 40–120 uni-
form cells in the x direction. Similarly, for the 3D nanocuboid
hotspot systems, the spatial space is discretized with Nz =
90 uniform cells in the z direction and Nx = Ny = 80–200
uniform cells in both the x and y directions. The number
of discretized cells in the x or y direction depends on the
spatial period P. The larger the spatial period P is, the more
discretized cells are used.

The phonon dispersion and scattering in silicon and ger-
manium materials are given in Appendix A. For each of the

TABLE II. Relaxation time coefficients for silicon and germa-
nium [43,44].

Coefficient Silicon Germanium

Ai (s3) 1.498 × 10−45 2.40 ×10−44

BL (K-3) 1.180 × 10−24 2.30 ×10−24

BT (K-3) 8.708 × 10−13 3.0 ×10−12

BU (s) 2.890 × 10−18 1.50 ×10−18

phonon (LA and TA) branches, the wave vector is discretized
into NB equally and the midpoint rule is used for the numerical
integration of the frequency space. In total, 2NB discretized
frequency bands are considered. Here we set NB = 20.

The three-dimensional solid angle is s =
(cos θ, sin θ cos ϕ, sin θ sin ϕ), where θ ∈ [0, π ] is the
polar angle and ϕ ∈ [0, 2π ] is the azimuthal angle.
The cos θ ∈ [−1, 1] is discretized with the Nθ -point
Gauss-Legendre quadrature, while the azimuthal angular
space ϕ ∈ [0, π ] (due to symmetry) is discretized with the
Nϕ

2 -point Gauss-Legendre quadrature. In this study, we set
Nθ × Nϕ = 40 × 40.

The van Leer limiter is used to deal with the spatial gradient
of the distribution function and the time step is

�t = CFL × �x

vmax
, (B1)

where �x is the minimum discretized cell size, CFL is the
Courant-Friedrichs-Lewy number, and vmax is the maximum
group velocity. In this simulation, CFL = 0.4.

The isothermal boundary condition is used for the heat
sink, where the incident phonons are all absorbed and the
phonons emitted from the boundary are in the equilibrium
state with the boundary temperature TBC. Its mathematical
formula is

e(TBC, s, ω) = C(TBC − T0), s · n > 0, (B2)

where n is the normal unit vector of the boundary pointing to
the computational domain. The diffusely reflecting adiabatic
boundary condition controls the total heat flux across the
boundary to be zero and phonons with the same frequency
reflected from the boundary are equal along each direction.
Its mathematical formula is

e(s, ω) = C(Tw − T0), s · n > 0, (B3)

where

Tw = T0 + −∑
p

∫∫
s′ ·n<0 vges′ · n d� dω∑

p

∫∫
s·n>0 vgCs · n d� dω

. (B4)

APPENDIX C: INDEPENDENCE TESTS
OF DISCRETE PARAMETERS

Independence tests of the discrete parameters in the whole
phase space are conducted. First, the bulk thermal conduc-
tivity κbulk = ∑

p

∫
Cv2

gτ/3dω is used to find the optimized
number of frequency bands. With different discretized num-
bers of the phonon frequency bands NB = 20, 40, 100, the
calculated bulk thermal conductivities of silicon at room
temperature are all 145.9 W/m K. Similarly, the bulk ther-
mal conductivity of germanium at room temperature is
58.8 W/m K. Hence the numerical integration in the phonon
frequency space is regarded as converged when NB � 20.

Second, the independence tests of the discretized solid an-
gle space and time step are implemented, which is necessary
to ensure that the ray effect and false scattering have little
effect on the numerical results. We take the quasi-2D hotspot
system [Fig. 1(a)] as an example. The ray effects usually
appear in the ballistic regime, so we simulate the case with
Kn = 10 and P∗ = 1. The temporal evolution processes of
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FIG. 6. Independence tests of the discrete parameters for the heat dissipation process of the average temperature (7) in the quasi-2D
hotspot system, when P∗ = 1. (a) Different numbers of discretized solid angles Nθ × Nϕ , fixed discretized cells in the x direction Nx = 80, and
fixed CFL number 0.4 for Kn = 10. (b) Different CFL number, fixed Nθ × Nϕ = 40 × 40, and fixed Nx = 80 for Kn = 10. (c) Different CFL
numbers, different Nx , and fixed Nθ × Nϕ = 40 × 40 for Kn = 0.1.

the average temperature with different discretized solid angles
and CFL numbers are plotted in Fig. 6. The numerical results
confirm that the choice of Nθ × Nϕ = 40 × 40 and CFL = 0.4
are enough to accurately predict the transient ballistic heat
conduction.

Finally, the discretized spatial cells are also tested. Usually,
more discretized cells are needed near or in the diffusive

regime, so we simulate the case with Kn = 0.1 and P∗ = 4.
Different discretized numbers in the x direction are tested
and we find that 80 discretized cells in the x direction and
CFL = 0.4 are adequate.

In summary, the present discretizations in Appendix B are
accurate to capture the multiscale transient heat conduction in
3D materials.
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