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The rich ground-state phase diagram of the mixed spin-(1,1/2) Heisenberg octahedral chain was previously
elaborated from effective mixed-spin Heisenberg chains, which were derived by employing a local conservation
of a total spin on square plaquettes of an octahedral chain. Here we present a comprehensive analysis of the
thermodynamic properties of this model. In the highly frustrated parameter region the lowest-energy eigenstates
of the mixed-spin Heisenberg octahedral chain belong to flat bands, which allow a precise description of low-
temperature magnetic properties within the localized-magnon approach exploiting a classical lattice-gas model
of hard-core monomers. The present article provides a more comprehensive version of the localized-magnon
approach, which extends the range of its validity down to a less frustrated parameter region involving the Haldane
and cluster-based Haldane ground states. A comparison between results of the developed localized-magnon the-
ory and accurate numerical methods such as full exact diagonalization and finite-temperature Lanczos technique
convincingly evidence that the low-temperature magnetic properties above the Haldane and the cluster-based
Haldane ground states can be extracted from a classical lattice-gas model of hard-core monomers and dimers,
which is additionally supplemented by a hard-core particle spanned over the whole lattice representing the
gapped Haldane phase.
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I. INTRODUCTION

Electron spin systems represent promising candidate for a
design of quantum computers, because a two-level character
of the electron spin provides one of the simplest platforms
to encode a quantum bit [1]. However, the loss of quantum
information due to a quantum decoherence is regarded as the
most principal obstacle for the development of all quantum
technologies exploiting solid-state materials [2]. Molecular
magnetic materials, which are composed from discrete mag-
netic molecules, belong to the most perspective electron spin
systems for quantum computation and quantum information
processing [3,4]. A targeted design of molecular magnets
through a chemistry-based bottom-up approach ensures their
scalability, which allows not only the implementation of a
single qubit but also greater number of qubits integrated into
a more complex quantum circuit that can store and process
quantum information [5]. The molecular magnetic materials
generally possess a well-defined pattern of discrete energy
levels, whereby the associated quantum states can be easily
tuned and coherently manipulated [6]. A coherence time of
the molecular magnets has been also significantly enhanced
by suppressing a quantum decoherence arising mostly from
nuclear spins and dipolar forces [7]. The molecular magnetic
materials thus naturally satisfy most important requirements
imposed on basic building blocks of quantum computers [8,9]
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when proving their usefulness as prominent resources for
the quantum computation [10], the storage and processing of
quantum information [11].

The concept of localized magnons [12] affords a pow-
erful tool for a rigorous assignment of quantum ground
states of geometrically frustrated Heisenberg spin systems
at sufficiently high magnetic fields [13–16]. Moreover, the
localized nature of eigenstates plays an important role
in other flatband systems [16–28]. This concept can be
employed whenever destructive quantum interference traps
magnon(s) within a few lattice sites and, hence, the frus-
trated quantum Heisenberg model can be exactly mapped
onto a classical lattice-gas model with a hard-core potential
[13,14,16]. Using this approach, the microscopic nature of
the last intermediate plateau emergent in a zero-temperature
magnetization curve of the quantum spin-1/2 Heisenberg
kagome antiferromagnet has been, for instance, elucidated
along with the precise nature of a relevant second-order
phase transition emerging at low but nonzero temperatures
[13,29,30]. This exciting theoretical finding was experimen-
tally verified by high-field magnetization measurement on
kagome-like compound Cd-kapellasite CdCu3(OH)6(NO)3 ·
H2O [31]. The main advantage of the localized-magnon ap-
proach lies in that it also provides, besides an exact ground
state, accurate description of the low-temperature thermody-
namics due to a proper counting of low-lying excited states
[13,14,16].

In our recent papers, we have provided a proper descrip-
tion of the low-temperature thermodynamics of the spin-1/2
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Heisenberg octahedral chain [25,27,32] in the full range of the
magnetic fields within the highly frustrated parameter region,
because this frustrated quantum spin chain exhibits at suffi-
ciently low magnetic fields another exact ground state with
the character of the monomer-tetramer phase being composed
from a localized two-magnon state. Exactly the same ground
state with the character of monomer-tetramer phase appears
in the ground-state phase diagram of the mixed spin-(1,1/2)
Heisenberg octahedral chain, for which we have also found
a consistent description of the low-temperature thermody-
namics in the full range of the magnetic fields in a highly
frustrated parameter region [33]. It should be mentioned that
a less frustrated parameter region of the mixed spin-(1,1/2)
Heisenberg octahedral chain involves besides the monomer-
tetramer phase three additional fragmentized cluster-based
Haldane phases, which are manifested in the zero-temperature
magnetization curve as fractional magnetization plateaus at
1/6, 1/9, and 1/12 of the saturation magnetization. The
cluster-based Haldane phases appear due to a fragmentation
of the octahedral chain, which is caused by a plaquette-
singlet state incorporating four spins from an elementary
square plaquette. Moreover, the plaquette-singlet state reg-
ularly appears within the cluster-based Haldane phases at
certain periods of the octahedral chain and hence, smaller
chain fragments separated from one another by the plaquette-
singlet state can be alternatively considered as bound magnons
effectively represented by hard-core dimers, trimers, and
tetramers, respectively. This fact gives us hope for a proper
description of the low-temperature thermodynamics of the
mixed spin-(1,1/2) Heisenberg octahedral chain in the full
range of the magnetic fields also in a less frustrated pa-
rameter region from a mapping correspondence with the
classical lattice-gas model of hard-core monomers and at least
dimers.

This paper is organized as follows. The model and basic
steps of the calculation procedure are reviewed in Sec. II.
Section III deals with the effective description of the model
within the lattice-gas model of hard-core particles. Then in
Sec. IV we briefly illustrate our numerical tools, namely the
exact diagonalization (ED) and the finite-temperature Lanczos
method (FTLM). The most interesting results for the magne-
tization curves and thermodynamics are presented in Sec. V
together with numerical data obtained from ED and FTLM.
Finally, some conclusions and future outlooks are mentioned
in Sec. VI.

II. MODEL AND ITS GROUND STATES

Let us consider the mixed spin-(1,1/2) Heisenberg octa-
hedral chain, which is schematically illustrated in Fig. 1 and
given by the Hamiltonian

Ĥ =
N∑

j=1

[
J1(Ŝ1, j + Ŝ1, j+1)·(Ŝ2, j + Ŝ3, j + Ŝ4, j + Ŝ5, j )

+ J2(Ŝ2, j ·Ŝ3, j + Ŝ3, j ·Ŝ4, j + Ŝ4, j ·Ŝ5, j + Ŝ5, j ·Ŝ2, j )

− h
5∑

i=1

Ŝz
i, j

]
, (1)

FIG. 1. A schematic illustration of the mixed spin-(1,1/2)
Heisenberg octahedral chain with spin-1 particles placed on
monomeric sites and spin-1/2 particles on sites of square plaquettes.
The coupling constant J1 accounts for the antiferromagnetic inter-
action between nearest-neighbor monomeric and square-plaquette
spins, while the interaction J2 stands for the antiferromagnetic in-
teraction between nearest-neighbor spins from square plaquettes.

where Ŝi, j ≡ (Ŝx
i, j, Ŝy

i, j, Ŝz
i, j ) denotes spatial components of

the spin-1 (spin-1/2) operator for the subscript i = 1 (i =
2, 3, 4, 5). The exchange interaction J1 > 0 accounts for the
antiferromagnetic Heisenberg interaction between monomeric
spins and spins placed in vertices of square plaquette, while
the spins belonging to the same square plaquette are coupled
through the antiferromagnetic exchange interaction J2 > 0.
The last term in the Hamiltonian (1) accounts for the Zee-
man energy of magnetic moments in the external magnetic
field h � 0 and N marks the total number of five-spin unit
cells of the octahedral chain. Periodic boundary conditions
are assumed S1,N+1 ≡ S1,1 in order to eliminate boundary
effects.

Before proceeding to a discussion of the calculation
method to be used for thermodynamic description, let us
briefly recall all available ground states of the mixed-spin
Heisenberg octahedral chain, which were comprehensively

FIG. 2. The ground-state phase diagram of the mixed spin-
(1,1/2) Heisenberg octahedral chain. The numbers in curly brackets
denote the value of composite spins of square plaquettes (all phases
with more than one number correspond to a phase with sponta-
neously broken translational symmetry). The tiny phase illustrated
by red dots corresponds to the 1/12 plateau in the zero-temperature
magnetization curve, which has each fourth square plaquette in a
singlet state and other three consecutive square plaquettes in a triplet
state, i.e., {0̇1̇1̇1̇}.
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FIG. 3. A schematic illustration of a few selected ground states
of the mixed-spin Heisenberg octahedral chain given by the Hamilto-
nian (1), which are realized in the ground-state phase diagram in the
moderately frustrated regime: (a) the bound magnon-crystal phase;
(b) the monomer-tetramer phase; (c) the tetramer-hexamer phase;
(d) the Haldane phase. Red arrows represent polarized triplet state of
a given cluster shaded by the different colors, whereby spin clusters
without arrows are in a singlet state.

studied in our previous paper [33]. The ground-state phase
diagram shown in Fig. 2 was obtained in our previous work
by the use of a few complementary analytical and numerical
methods [33]. As one can see from Fig. 2, there are two
ferrimagnetic phases corresponding to 1/6 and 1/3 plateaus,
two kinds of spin-liquid phases, four fragmentized cluster-
based Haldane phases corresponding to the 1/3, 1/6, 1/9, and
1/12 plateaus, a bound-magnon crystal phase corresponding
to 2/3 plateau as well as the Haldane phase. In our recent
work [33] we have investigated thermodynamics of the mixed-
spin Heisenberg octahedral chain in the highly frustrated
parameter region J2/J1 > 3 by using the mapping to the clas-
sical lattice-gas model, which takes into consideration bound
two-magnon and one-magnon states of square plaquettes as
two different monomeric particles of the effective lattice-gas
model of hard-core monomers. More concretely, the highly
frustrated parameter region includes besides the trivial fully
polarized ferromagnetic state also the bound magnon-crystal
phase schematically shown in Fig. 3(a) and given by the
eigenvector

|BM〉 =
N∏

j=1

|1〉1, j ⊗ 1

2
(|↓2, j↑3, j↑4, j↑5, j〉 − |↑2, j↓3, j↑4, j↑5, j〉

+ |↑2, j↑3, j↓4, j↑5, j〉 − |↑2, j↑3, j↑4, j↓5, j〉) (2)

and the monomer-tetramer phase shown in Fig. 3(b) and given
by the eigenvector

|MT〉 =
N∏

j=1

|S〉1, j ⊗
[

1√
3

(|↑2, j↓3, j↑4, j↓5, j〉

+ |↓2, j↑3, j↓4, j↑5, j〉) − 1√
12

(|↑2, j↑3, j↓4, j↓5, j〉

+|↑2, j↓3, j↓4, j↑5, j〉 + |↓2, j↑3, j↑4, j↓5, j〉

+ |↓2, j↓3, j↑4, j↑5, j〉)

]
, (3)

where |S〉1, j denotes one of three available states | ±1〉i, j

and |0〉i, j of the monomeric spins. In the following we
will extend the calculation procedure in order to account
for another two ground states, the tetramer-hexamer phase
and Haldane phase, which are schematically shown in
Figs. 3(c) and 3(d).

III. EFFECTIVE LATTICE-GAS MODEL

In order to obtain magnetothermodynamics, we will use the
mapping correspondence between the Hamiltonian (1) of the
mixed-spin Heisenberg octahedral chain and the correspond-
ing lattice-gas model. For the highly frustrated parameter
region J2/J1 > 3 we have presented thermodynamic prop-
erties in our previous paper [33]. In the present work we
will elaborate more comprehensive version of the effective
description of the low-temperature magnetothermodynamics,
which will be valid down to the lower value of the interac-
tion ratio J2/J1 > 2.16 determining the upper bound for an
existence of the quantum spin-liquid state not captured within
the effective lattice-gas model. The Hamiltonian (1) can be
in the moderately frustrated regime J2/J1 ∈ (2.16; 3) mapped
to the effective monomer-dimer lattice-gas model given by the
Hamiltonian

Heff = E0
FM − 3Nh − μ

(0)
H nH − μ

(2)
1

N∑
j=1

mj

−μ
(1)
1

N∑
j=1

n j −
5∑

n=3

μ
(n)
2

N∑
j=1

d j, (4)

which can be developed by the following construction. From
the energy of the fully polarized ferromagnetic state E0

FM =
N (4J1 + J2) in zero field we have subtracted the energies
of two kinds of monomeric particles whose presence or ab-
sence is determined by occupation numbers mj and n j and a
dimeric particle determined through the occupation number
d j . The chemical potential of the first monomeric particle
μ

(1)
1 = 2J1 + 2J2 − h determines an energy cost, which is as-

sociated with creation of bound one-magnon eigenstate on
a square plaquette on a fully polarized ferromagnetic back-
ground, while the chemical potential of the second monomeric
particle μ

(2)
2 = 4J1 + 3J2 − 2h determines an energy cost

connected with creation of the singlet-tetramer state on the
ferromagnetic background. The chemical potential of the
dimeric particle μ

(n)
2 = 7J1 + 2J2 − nh (n = 3, 4, 5) repre-

sents an energy cost, which relates to the creation of a single
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FIG. 4. A schematic illustration of the mixed-spin Heisenberg
octahedral chain, in which spins from ith elementary unit are either
in bound one-magnon or two-magnon states, triplet-hexamer state or
are fully polarized. Lower panel represents a schematic illustration
of the corresponding lattice-gas model with two kinds of monomeric
particles and dimeric particles.

octahedron in one of three available lowest-energy triplet
states. All possible spin values of the triplet state Sz

T = ±1, 0,
were taken into consideration in order to obtain correct de-
generacy of the triplet-hexamer state in a zero-field limit.

The gapped Haldane phase has been introduced as a particle
spread over the whole chain as given by the occupation num-
ber nH . The chemical potential μ

(0)
H = 2NJ2 + 2NJ1(2 − εN )

determines the energy difference between the Haldane phase
and the fully polarized ferromagnetic state, where εN denotes
ground-state energy of the Haldane phase per spin for a spin-
1 Heisenberg chain of N sites with unit coupling constant.
The ground-state energy of the Haldane phase is well known
ε∞ ≈ −1.401484 in the thermodynamic limit N → ∞, while
finite-size results for the chain lengths of 8 and 12 spins
corresponding to four and six unit cells of octahedral chain
equal to ε4 = −1.417119 and ε6 = −1.405796, respectively.

Except the trivial fully polarized ferromagnetic state the
effective Hamiltonian (4) takes into account a few lowest-
energy states such as bound one-magnon and two-magnon
states of square plaquettes as well as a triplet state of an ele-
mentary octahedron composed from a single square plaquette
and its two neighboring monomeric spins (see Fig. 4). In addi-
tion, the effective Hamiltonian (4) also takes into account the
Haldane phase spread over the whole octahedral chain. The
partition function corresponding to the effective Hamiltonian
(4) reads

Z = exp
(− βE0

FM + 3βNh
) ∑

{mj }

∑
{n j}

∑
{d j}

∑
n0

H =1,0

N∏
j=1

(1 − d jd j+1)(1 − mjd j )(1 − n jd j )(1 − mjn j )

× (1 − nH nj )(1 − nH mj )(1 − nH dj )
5∑

n=3

exp
[
βμ

(0)
H nh + βμ

(2)
1 mj + βμ

(1)
1 n j + βμ

(n)
2 d j

]
, (5)

where β = 1/(kBT ), kB is the Boltzmann’s constant, T is absolute temperature, and the projection operators (1 − djd j+1)(1 −
mjd j )(1 − n jd j )(1 − mjn j )(1 − nH nj )(1 − nH mj )(1 − nH dj ) forbids the multiple occupancy of the square plaquette with more
than one particle of the effective lattice-gas model. After tracing out degrees of freedom of the monomeric particles mj and n j ,
as well as, of the Haldane phase nH , the problem of finding the partition function reduces to a problem of finding all eigenvalues
of the transfer matrix,

Z = exp(−βEH ) + exp
(− βE0

FM + 3βNh
) ∑

{d j}

N∏
j=1

T (d j, d j+1)

= exp(−βEH ) + exp
(− βE0

FM + 3βNh
)
Tr TN , (6)

where EH = −NJ2 + 2NJ1εN is the energy of Haldane phase. The expression T (dj, d j+1) denotes the transfer matrix depending
only on occupation numbers of the dimeric particles from two adjacent lattice sites satisfying the hard-core constraint,

T (d j, d j+1) = (1 − d jd j+1)
5∑

n=3

exp
(
βμ

(n)
2 d j

){
1 + (1 − d j ) exp

[
βμ

(2)
1 + βμ

(1)
1

]}
. (7)

The transfer matrix as defined by Eq. (7) has the following matrix representation:

T (d j, d j+1) =
{

1 + exp
[
βμ

(1)
1

] + exp
[
βμ

(2)
1

]
1 + exp

[
βμ

(1)
1

] + exp
[
βμ

(2)
1

]
exp

[
βμ

(4)
2

]
[1 + 2 cosh(βh)] 0

}
. (8)

After the diagonalization of the transfer matrix (8), one gets
two eigenvalues,

λ± = 1
2

{
� ±

√
�2 + 4� exp

[
βμ

(4)
2

]
[1 + 2 cosh(βh)]

}
, (9)

where � = 1 + exp[βμ
(1)
1 ] + exp[βμ

(2)
1 ]. Then the partition

function of the monomer-dimer lattice-gas model (4) is given

by the equation

Z = exp(−βEH ) + exp
(− βE0

FM + 3βNh
)
(λN

+ + λN
−).

(10)

In the thermodynamic limit N → ∞ the partition function is
given only by the larger eigenvalue of the transfer matrix

Z∞ = exp(−βEH ) + exp
(− βE0

FM + 3βNh
)
λN

+. (11)

014107-4



TOWARDS LATTICE-GAS DESCRIPTION OF … PHYSICAL REVIEW E 106, 014107 (2022)

FIG. 5. A comparison of ED and FTLM data shown by symbols with the analytical results obtained from the effective lattice-gas model
shown by solid lines for magnetic-field dependencies of [(a) and (b)] magnetization and [(c) and (d)] susceptibility of the mixed-spin
Heisenberg octahedral chain with N = 4 (left panel) and N = 6 (right panel) unit cells, the fixed value of the interaction ratio J2/J1 = 2.7
and a few selected values of temperature. The magnetization is normalized with respect to its saturation value and susceptibility is normalized
per unit cell.

From the partition function one can obtain the free energy, as
well as the magnetization, the susceptibility, the entropy and
the specific heat.

IV. EXACT-DIAGONALIZATION AND
FINITE-TEMPERATURE LANCZOS METHODS

In order to verify the results obtained from the effective
lattice-gas model, we use the full ED and the FTLM. Trivially
the Hamiltonian (1) commutes with the z component of the
total spin Ŝz

T , i.e., the Hilbert space splits into orthogonal sub-
spaces related to the eigenvalues Sz

T of Ŝz
T . In addition, we also

exploit lattice symmetries to further split the Sz
T subspaces

into smaller symmetry related subspaces. For that we use Jörg
Schulenburg’s spinpack code [34,35] to perform the ED and
the FTLM calculations.

The ED is a well-established quantum many-body tech-
nique which is widely applied to frustrated quantum spin
systems, see, e.g., Ref. [36]. The FTLM is an unbiased accu-
rate numerical approximation by which the partition function
Z is determined using trace estimators [37–46]. Z is then
given by a Monte Carlo like representation, i.e., the sum
over a complete set of basis states entering Z is replaced
by a much smaller sum over R random vectors |ν〉 for each

symmetry-related orthogonal subspace H(M, γ ) of the
Hilbert space, where γ labels the irreducible representations
of the employed symmetries.

In the present case we use full ED to calculate the partition
function Z for chains of N = 4 unit cells (i.e., 20 sites). For
a longer chain of N = 6 unit cells (i.e., 30 sites) we combine
both methods. We use the full ED to determine the contribu-
tion to Z of the upper sectors of |Sz

T | = 18, . . . , 12 and the
FTLM to calculate the contribution of the lower sectors of
|Sz

T | � 11 to Z .

V. RESULTS AND DISCUSSION

Let us proceed to a discussion of the most interesting
results. The magnetization curves of the mixed spin-(1, 1/2)
Heisenberg octahedral chain for four and six elementary unit
cells N = 4 and N = 6 (i.e., 20 spins and 30 spins in total,
respectively) are plotted in Figs. 5(a) and 5(b) for the fixed
value of the interaction ratio J2/J1 = 2.7. In accordance with
the ground-state phase diagram, one can find in the magnetiza-
tion process of the mixed spin-(1, 1/2) Heisenberg octahedral
chain three intermediate magnetization plateaus at 1/6, 1/3,
and 2/3 of its saturation magnetization. It directly follows
from a comparison of full ED and FTLM (both shown by
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FIG. 6. A comparison of ED and FTLM data shown by symbols with the analytical results obtained from the effective lattice-gas model
shown by solid lines for magnetic-field dependencies of [(a) and (b)] entropy and [(c) and (d)] specific heat of the mixed-spin Heisenberg
octahedral chain with N = 4 (left panel) and N = 6 (right panel) unit cells, the fixed value of the interaction ratio J2/J1 = 2.7 and a few
selected values of temperature. Both quantities are normalized per unit cell.

symbols) with the results obtained from the effective model
(solid lines) that the analytical results from the simplified
lattice-gas model are in perfect agreement with precise nu-
merical results in the full range of magnetic fields up to the
temperature kBT/J1 � 0.08. The insets in Figs. 5(a) and 5(b)
are focused on magnetization curves calculated in the low-
field region for two low-enough temperatures kBT/J1 = 0.02
and 0.04, where a tiny 1/6 plateau due to the cluster-based
Haldane phase with the character of a tetramer-hexamer state
is present. The presence of the 1/6 plateau is satisfactorily
described by the effective lattice-gas model including hard-
core monomeric and dimeric particles, the latter of which are
crucial for its correct description.

A perfect agreement of ED and FTLM data with the ana-
lytical results obtained from the effective lattice-gas model is
present also in the magnetic-field dependence of the suscep-
tibility depicted in Figs. 5(c) and 5(d) for N = 4 and N = 6
elementary unit cells, the interaction ratio J2/J1 = 2.7, and
three selected values of temperature. The susceptibility as a
function of magnetic field exhibits peaks around each field-
driven phase transition, which become lower and rounder on
increasing of the temperature. Besides the perfect agreement
of numerical and analytical calculations, there is only a small
visible deviation of analytical calculations from the full ED
data located in the magnetic-field range h/J1 ∈ (0.2, 0.4) at
temperature kBT/J1 = 0.08 for four unit cells [Fig. 5(c)],

whereas a somewhat greater discrepancy observable already
for the same field range at lower temperature kBT/J1 = 0.04
for six unit cells [Fig. 5(d)] might be attributed to the approx-
imate nature of FTLM data.

The magnetic-field dependence of the entropy and the
specific heat normalized per unit cell of the mixed-spin
Heisenberg octahedral chain is shown in Fig. 6 for N = 4 and
N = 6 elementary unit cells, the fixed value of the interaction
ratio J2/J1 = 2.7 and a few selected values of temperature.
The entropy of the mixed-spin Heisenberg octahedral chain
displays a peak at each field-driven phase transition, while the
specific heat exhibits a double-peak behavior in the vicinity
of all field-driven phase transitions. The observed double-
peak structure of the specific heat originates from a low-lying
excitation between a ground state and the first excited state
inherent to two phases, which are realized as the relevant
ground state just below and just above of the respective field-
driven phase transition. It is clear that the height of all peaks
in the entropy and the specific heat is invariant with respect
to a small temperature change around the latter two critical
fields, but it changes significantly around the first critical field.
It should be stressed that the entropy and the specific heat are
more sensitive for low-lying excitations above the 1/6 plateau
neglected in the effective monomer-dimer lattice-gas model,
which can be seen by more substantial discrepancies between
numerical ED data and the analytical results obtained from
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(b)

FIG. 7. A comparison of ED and FTLM data shown by symbols with the analytical results obtained from the effective lattice-gas model
shown by solid lines for magnetic-field dependencies of [(a) and (b)] the magnetization and [(c) and (d)] the susceptibility of the mixed-spin
Heisenberg octahedral chain with N = 4 (left panel) and N = 6 (right panel) unit cells, the fixed value of the interaction ratio J2/J1 = 2.3 and
a few selected values of temperature. The magnetization is normalized with respect to its saturation value and susceptibility is normalized per
unit cell.

the effective model. As a matter of fact, the more sizable
differences are visible in the low-field region even at lower
temperature kBT/J1 = 0.04 and become higher for higher
temperature kBT/J1 = 0.08 for both system sizes N = 4 and
N = 6. Nevertheless, the effective monomer-dimer lattice-gas
model qualitatively describes the peak behavior of the entropy
and the double-peak behavior of the specific heat even in
the low-field region up to moderate temperatures kBT/J1 �
0.08. Moreover, the developed monomer-dimer lattice-gas
model shows in the high-field region a perfect agreement
up to relatively high temperatures kBT/J1 ≈ 0.1. This fact
was comprehensively discussed in our previous work fo-
cusing on the description of the highly frustrated parameter
region, where the effective lattice-gas model of two kinds of
hard-core monomers satisfactorily captures the 1/3 and 2/3
plateau as well as the low-temperature thermodynamics above
them [33].

In order to examine the less frustrated parameter region
we have plotted in Figs. 7 and 8 the same set of physical
quantities of the mixed spin-(1,1/2) Heisenberg octahedral
chain for N = 4 (left panels) and N = 6 (right panels) unit
cells, the fixed value of the interaction ratio J2/J1 = 2.3
and a few different values of temperature. In this parameter
region, the mixed spin-(1,1/2) Heisenberg octahedral chain

additionally displays the Haldane phase and the magnetization
curve shown in Figs. 7(a) and 7(b) indeed exhibits besides
the 2/3, 1/3, and 1/6 plateaus a zero magnetization plateau,
which is gradually blurred with increasing of the temperature.
It can be seen from Fig. 7(a) that the effective monomer-dimer
lattice-gas model coincides well with the full ED data for
four unit cells at low-enough temperatures kBT/J1 � 0.04,
while there are more pronounced discrepancies between nu-
merical and analytical results in the low-field region at higher
temperature kBT/J1 = 0.08. It should be noticed that the
magnetization curves shown in Fig. 7(b) for six unit cells
show much greater discrepancy between the analytical re-
sults obtained from the effective monomer-dimer lattice-gas
model and numerical data obtained by combining the full ED
with FTLM (ED + FTLM) due to presence of other cluster-
based Haldane state manifested as the 1/9 plateau, which
is neglected within the effective monomer-dimer lattice-gas
model and cannot appear in the mixed-spin Heisenberg oc-
tahedral chain with the smaller number of unit cells N = 4
due to insufficient system size required for this higher-period
ground state. The higher-period cluster-based Haldane phases
thus seem to be essential for a more accurate description
of the low-temperature magnetothermodynamics in the pa-
rameter region J2/J1 ∈ (2.16; 2.59), where the 1/12 and 1/9
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FIG. 8. A comparison of ED and FTLM data shown by symbols with the analytical results obtained from the effective monomer-dimer
lattice-gas model shown by solid lines for field dependencies of [(a) and (b)] the entropy and [(c) and (d)] the specific heat of the mixed-spin
Heisenberg octahedral chain with N = 4 (left panel) and N = 6 (right panel) unit cells, the fixed value of the interaction ratio J2/J1 = 2.3 and
a few selected values of temperature. Both quantities are normalized per unit cell.

plateaus are realized in a zero-temperature magnetization
curve.

It is quite obvious from the magnetic-field dependen-
cies of the susceptibility shown in Fig. 7(c) that analytical
results obtained from monomer-dimer lattice-gas effective
model for N = 4 unit cells are in excellent agreement with
full ED data above magnetic field h/J1 > 0.5 up to rela-
tively high temperatures kBT/J1 � 0.08, while they start to
deviate more significantly at smaller magnetic fields h/J1 �
0.5. The effective monomer-dimer lattice-gas model overes-
timates the height of the susceptibility peak near the first
field-induced transition between the Haldane and tetramer-
hexamer phases, while it underestimates the local minimum
between the first and second critical field h/J1 ≈ 0.5 in com-
parison with precise numerical results. This disagreement is
caused by the construction of the effective monomer-dimer
lattice-gas model, which neglects low-lying excitations above
the Haldane state associated mainly with the emergence of
other fragmentized cluster-based Haldane phases with higher
periods, which are fully missing in the present effective
monomer-dimer lattice-gas model that would need to be sup-
plemented by hard-core trimeric and tetrameric particles. It
actually turns out that the presence of other cluster-based
Haldane phase with period three being responsible for 1/9
plateau manifests itself in the magnetic-field dependence of

the susceptibility shown in Fig. 7(d) for the mixed-spin oc-
tahedral chain with N = 6 unit cells as additional peak with
the maximum emergent approximately around magnetic field
h/J1 ≈ 0.356. This fact causes the quantitative disagreement
of the height of the low-field peaks as well as the qualita-
tive discrepancies between results obtained from the effective
monomer-dimer lattice-gas model and numerical calculations
based on the combination of full ED and FTLM. The dis-
agreement concerns thus with the position of the first peak
and the absence of a peak corresponding to 1/9 plateau in the
analytical results obtained from the effective monomer-dimer
lattice-gas model.

The magnetic-field dependence of the entropy and the
specific heat of the mixed spin-(1,1/2) Heisenberg octahe-
dral chain with N = 4 and N = 6 unit cells are depicted
in Fig. 8 for the interaction ratio J2/J1 = 2.3. It is evident
from Figs. 8(a) and 8(b) that the entropy exhibits sharp
peaks in the proximity of all critical fields at very low
temperature kBT/J1 = 0.02, which become smeared out on
increasing of temperature. The results obtained from the ef-
fective monomer-dimer lattice-gas model and the full ED
data for N = 4 or by combining the full ED with FTLM for
N = 6, are in reasonable agreement for magnetic fields higher
than h/J1 � 0.75 up to moderate temperatures kBT/J1 ≈
0.08, while the observed deviations in the low-field region
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TABLE I. Zero-field energy and degeneracy of the lowest-energy
eigenstates with the given z component of the total spin Sz

T ranging
between fully polarized state Sz

T = 18 and the eigenstate corre-
sponding to the 2/3 plateau of the mixed spin-(1,1/2) Heisenberg
octahedral chain with N = 6 unit cells (30 spins) by assuming two
different values of the interaction ratio J2/J1 = 2.3 and J2/J1 = 2.7.
The last column determines the total number of magnons.

Sz
T J2/J1 = 2.3 J2/J1 = 2.7 Degeneracy n

18 +37.8 +40.2 1 0
17 +31.2 +32.8 6 1
16 +24.6 +25.4 15 2
15 +18.0 +18.0 20 3
14 +11.4 +10.6 15 4
13 +4.8 +3.2 6 5
12 −1.8 −4.2 1 6

are mainly caused by the neglecting low-lying excited states
above the Haldane phase in the effective monomer-dimer
lattice-gas model.

On the other hand, the specific heat as a function of
the magnetic field of the mixed spin-(1,1/2) Heisenberg oc-
tahedral chain for N = 4 and N = 6 unit cells plotted in
Figs. 8(c) and 8(d) exhibits a double-peak behavior near each

field-driven phase transition for the interaction ratio J2/J1 =
2.3. It should be stressed that the analytical results obtained
from the effective monomer-dimer lattice-gas model and the
numerical results obtained for the specific heat from ED and
FTLM are in a plausible accordance in the high-field re-
gion h/J1 � 0.5 up to relatively high temperatures kBT/J1 ≈
0.08, while the disagreement at lower magnetic fields h/J1 <

0.5 relates to neglecting low-lying excited states above the
Haldane phase as well as neglecting the higher-period cluster-
based Haldane ground state corresponding to the 1/9 plateau
emergent for larger system size N = 6 [see Fig. 8(d)]. Ener-
gies and degeneracies of the lowest-energy eigenstates of the
mixed spin-(1,1/2) Heisenberg octahedral chain with N = 6
are presented in Table I for a few selected values of the total
spin Sz

T = 12, 13, . . . , 18. The fully polarized ferromagnetic
state with Sz

T = 18 is nondegenerate, while the degeneracy of
the state with n-spin deviations from the fully polarized fer-
romagnetic state equals to the combinatorial number

(6
n

)
. The

respective degeneracy
(6

n

)
relates to the number of all available

combinations with n localized magnons placed on 6 square
plaquettes of the octahedral chain. For instance, the lowest-
energy eigenstate from sector with Sz

T = 17 corresponds to
the state, in which all spins are polarized except one square
plaquette involving one localized magnon (n = 1), etc. The
lowest-energy eigenstate from the last sector with Sz

T = 12

FIG. 9. Magnetic-field dependencies of the entropy [(a) and (b)] and the specific heat [(c) and (d)] of the mixed spin-(1,1/2) Heisenberg
octahedral chain at low temperature kBT/J1 = 0.02 for the interaction ratio J2/J1 = 2.7 and three different system sizes with N = 4, N = 6,
and N → ∞ unit cells. There are obvious finite-size effects in the entropy and specific heat at low fields (left panel), but the finite-size effects
are totally absent in the high-field region (right panel).
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FIG. 10. Temperature dependencies of the entropy [(a) and (b)] and specific heat [(c) and (d)] of the mixed spin-1 and -1/2 Heisenberg
octahedral chain with N = 4 (left panel) and N = 6 (right panel) unit cells and the interaction ratio J2/J1 = 2.7 just below (h/J1 = 0.25) and
above (h/J1 = 0.35) the critical field hc/J1 = 0.3. At the critical field monomer-tetramer phase and tetramer-hexamer phase of mixed spin-1/2
and spin-1 Heisenberg octahedral chain coexist together.

corresponds to the bound magnon-crystal ground state (2),
which has one localized magnon on each square plaquette and
is responsible for magnon crystallization within 2/3 plateau.

To bring deeper insight into the finite-size effects of the
mixed spin-(1,1/2) Heisenberg octahedral chain, we have dis-
played in Fig. 9 the field dependence of the entropy and the
specific heat at relatively small temperature kBT/J1 = 0.02
with three different lattice sizes N = 4, N = 6, and N → ∞
and the interaction ratio J2/J1 = 2.7. A comparison between
the obtained analytical and numerical results, as well as be-
havior of these quantities was comprehensively discussed
above, let us therefore focus our attention to finite-size effects
only. It can be seen from Fig. 9 that sizable finite-size effects
are present in the entropy and specific heat only at low fields
(left panel in Fig. 9), while they are almost totally absent in
the high-field region (right panel in Fig. 9). More specifically,
the entropy differs for different system sizes from zero field
nearly up to the magnetic-field value h/J1 ≈ 0.25. The higher
the system size, the lower the zero-field entropy. Similarly,
finite-size effects of the specific heat persists up to nearly the
same value of the magnetic field h/J1 ≈ 0.25 [see Fig. 9(c)].

Finally, let us discuss the temperature dependencies of
the entropy and the specific heat of the mixed spin-(1,1/2)
Heisenberg octahedral chain with N = 4 and N = 6 unit cells
at the interaction ratio J2/J1 = 2.7 just below and just above
the first critical field hc/J1 = 0.3, as displayed in Fig. 10. If

the magnetic field is set to the value h/J1 = 0.25, then the
ground state of the mixed spin-(1,1/2) Heisenberg octahedral
chain is twofold degenerate tetramer-hexamer phase. Indeed,
the entropy asymptotically matches in the limit of zero tem-
perature the value S/NkB = ln 2/4

.= 0.172 for N = 4 and
S/NkB = ln 2/6

.= 0.116 for N = 6 unit cells [see Figs. 10(a)
and 10(b), respectively]. On the other hand, the ground state
of the mixed spin-(1,1/2) Heisenberg octahedral chain is for
the other higher field value h/J1 = 0.35 the nondegenerate
monomer-tetramer phase and, thus, the zero-temperature en-
tropy tends trivially to zero for both system sizes (N = 4 and
N = 6). In any case, the entropy persist almost constant also
at finite temperatures up to the value kBT/J1 ≈ 0.01 when it
starts to rise with the further increase of temperature. From the
comparison of the analytical results derived from the effective
monomer-dimer lattice-gas model with ED data for N = 4
unit cells one may conclude that the effective monomer-dimer
lattice-gas model correctly predicts the behavior of the en-
tropy whenever the temperature is lower then kBT/J1 � 0.05,
while analytical and numerical data in Fig. 10(a) starts to
deviate above this temperature. The effective monomer-dimer
lattice-gas model almost copies data obtained from the full
ED and FTLM method also for the entropy of the mixed
spin-(1,1/2) Heisenberg octahedral chain with N = 6 unit
cells up to kBT/J1 � 0.03 [see Fig. 10(b)]. Note that the tiny
deviation of the numerical FTLM data for the entropy from
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zero as T → 0 can be attributed to the approximate nature of
the FTLM.

Temperature dependencies of the specific heat of the mixed
spin-(1,1/2) Heisenberg octahedral chain with N = 4 and
N = 6 unit cells are plotted in Figs. 10(c) and 10(d) for the
interaction ratio J2/J1 = 2.7 and two magnetic fields slightly
above and slightly below the field-induced phase transition
between the tetramer-hexamer and monomer-tetramer phase.
The specific heat is zero up to kBT/J1 ≈ 0.005 and then it
displays a striking temperature dependence with a pronounced
low-temperature maximum. From the comparison of results
obtained from the effective monomer-dimer lattice-gas model
(solid lines) and numerical data acquired by ED and FTLM
(symbols) can be concluded that the effective monomer-dimer
lattice-gas model qualitatively as well as quantitatively de-
scribes the low-temperature peak of the specific heat. The
validity of the effective description seems to be much better
when considering the magnetic fields exceeding the first crit-
ical field, because the analytical and numerical data coincide
up to higher temperatures.

VI. CONCLUDING REMARKS

In the present work we have investigated in detail the
mixed spin-(1,1/2) Heisenberg octahedral chain in presence
of the external magnetic field using the extended version of
the localized-magnon approach, which establishes a mapping
relationship with the effective lattice-gas model of hard-core
monomers and dimers. By the use of monomeric and dimeric
particles we have afforded a classical description of the fully
quantum mixed spin-(1,1/2) Heisenberg octahedral chain.
We have compared our analytical results obtained from the
effective monomer-dimer lattice-gas model with the numer-
ical calculations obtained from the full ED and FTLM of
the mixed spin-(1,1/2) Heisenberg octahedral chain for two
system sizes with N = 4 and N = 6 unit cells and we have
shown that the effective monomer-dimer lattice-gas model

satisfactorily describes the 2/3, 1/3, as well as 1/6 plateau
and the zero magnetization plateau in the moderately frus-
trated parameter regime, which involves the cluster-based
Haldane phase (with character of a tetramer-hexamer ground
state) and the uniform Haldane phase. Moreover, the effective
monomer-dimer lattice-gas model qualitatively describes ther-
modynamic quantities of the mixed spin-(1,1/2) Heisenberg
octahedral chain such as susceptibility, entropy and specific
heat at very low temperatures and explains the degeneracy of
the lowest-energy eigenstates with given Sz

T ranging from the
fully polarized state up to the eigenstate corresponding to the
2/3 plateau.

Besides this, we have proven that sizable finite-size effects
appear in the low-field region, while there are no finite-
size effects in the high-field region. The presented effective
description is thus especially valuable, because it provides
reasonable results in the thermodynamic limit not accessi-
ble to unbiased numerical methods. The theory based on
the classical description developed from the monomeric and
dimeric hard-core particles lacks low-lying excitations above
the Haldane phase, which become relevant even at very low
temperatures. We consider this issue as a future challenging
task aimed at better quantitative description of thermodynam-
ics of fully frustrated quantum spin systems including the
uniform and higher-period cluster-based Haldane phases.
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[33] K. Karl’ová, J. Strečka, and T. Verkholyak, Phys. Rev. B 100,

094405 (2019).

[34] J. Schulenburg, spinpack-2.59, Magdeburg University (2020),
https://www-e.ovgu.de/jschulen/spin/index.html.

[35] J. Richter and J. Schulenburg, Eur. Phys. J. B 73, 117 (2010).
[36] A. Läuchli, Numerical simulations of frustrated systems, in

Introduction to Frustrated Magnetism, edited by C. Lacroix, P.
Mendels, and F. Mila (Springer, Berlin, 2011), p. 34.

[37] J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
[38] J. Jaklic and P. Prelovsek, Adv. Phys. 49, 1 (2000).
[39] A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000).
[40] J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535 (2010).
[41] O. Hanebaum and J. Schnack, Eur. Phys. J. B 87, 194

(2014).
[42] P. Prelovsek, The Finite Temperature Lanczos Method and its

Applications in The Physics of Correlated Insulators, Metals,
and Superconductors, edited by E. Pavarini, E. Koch, R. Scalet-
tar, and R. Martin, Vol. 7 (Forschungszentrum Jülich GmbH
Institute for Advanced Simulation, 2017), pp. 7.1–7.23.

[43] J. Schnack, J. Schulenburg, and J. Richter, Phys. Rev. B 98,
094423 (2018).

[44] K. Seki and S. Yunoki, Phys. Rev. B 101, 235115 (2020).
[45] J. Schnack, J. Richter, and R. Steinigeweg, Phys. Rev. Research

2, 013186 (2020).
[46] K. Morita and T. Tohyama, Phys. Rev. Research 2, 013205

(2020).

014107-12

https://doi.org/10.1142/S021797921330017X
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1364/OL.40.005443
https://doi.org/10.1103/PhysRevB.95.224415
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1016/j.physb.2017.09.118
https://doi.org/10.1103/PhysRevB.104.085132
https://doi.org/10.1103/PhysRevB.82.214412
https://doi.org/10.1103/PhysRevLett.125.117207
https://doi.org/10.1038/s41467-019-09063-7
https://doi.org/10.1103/PhysRevB.105.064420
https://doi.org/10.1103/PhysRevB.100.094405
https://www-e.ovgu.de/jschulen/spin/index.html
https://doi.org/10.1140/epjb/e2009-00400-4
https://doi.org/10.1103/PhysRevB.49.5065
https://doi.org/10.1080/000187300243381
https://doi.org/10.1103/PhysRevE.62.4365
https://doi.org/10.1140/epjb/e2010-10713-8
https://doi.org/10.1140/epjb/e2014-50360-5
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.101.235115
https://doi.org/10.1103/PhysRevResearch.2.013186
https://doi.org/10.1103/PhysRevResearch.2.013205

