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We study the classical two-dimensional RP2 and Heisenberg models, using the tensor-network renormalization
(TNR) method. The determination of the phase diagram of these models has been challenging and controversial
due to the very large correlation lengths at low temperatures. The finite-size spectrum of the transfer matrix
obtained by TNR is useful in identifying the conformal field theory describing a possible critical point. Our
results indicate that the ultraviolet fixed point for the Heisenberg model and the ferromagnetic RP2 model in
the zero-temperature limit corresponds to a conformal field theory with central charge c = 2, in agreement
with two independent would-be Nambu-Goldstone modes. On the other hand, the ultraviolet fixed point in the
zero-temperature limit for the antiferromagnetic Lebwohl-Lasher model, which is a variant of the RP2 model,
seems to have a larger central charge. This is consistent with c = 4 expected from the effective SO(5) symmetry.
At T > 0, the convergence of the spectrum is not good in both the Heisenberg and ferromagnetic RP2 models.
Moreover, there seems to be no appropriate candidate of conformal field theory matching the spectrum, which
shows the effective central charge c ∼ 1.9. These suggest that both models have a single disordered phase at
finite temperatures, although the ferromagnetic RP2 model exhibits a strong crossover at the temperature where
the dissociation of Z2 vortices has been reported.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition in
the classical XY model is a milestone for studying topo-
logical phase transitions [1–4]. The U(1) spin configuration
allows the topological defects (vortex-antivortex) with inte-
ger charge, and its phase transition mechanism is currently
well understood [4]. In contrast to the remarkable success in
the XY model, the nature of the topological dynamics with
the other types of topological defects remains elusive. The
Lebwohl-Lasher (LL) [5] and the antiferromagnetic Heisen-
berg model on the triangular lattice [6–8] host Z2 vortices
thanks to the Z2-valued fundamental group of the target space.
In analogy to the BKT transition, it is tempting to expect a
topological phase transition driven by the Z2 vortices with a
quasi-long-range order in the low-temperature phase. In fact,
such a phase transition has been advocated and also supported
by several numerical studies [9–14].

However, even after more than 30 years, the existence of
the phase transition is still inconclusive. From the standpoint
of the continuum effective field theory, the LL model, for
example, would be described by a nonlinear sigma model
with the RP2 as the target space, in 1 + 1 dimensions. RP2

is simply the two-dimensional sphere S2 with the antipodal
points identified. Thus, as far as the local geometry of the
target space is concerned, the RP2 nonlinear sigma model is
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the same as the more standard O(3) nonlinear sigma model
(with S2 as the target space). Since the lowest-order term
in the renormalization group (RG) beta function is given by
the curvature of the target space [15], both the RP2 and the
O(3) nonlinear sigma models are asymptotic-free [16,17] (an
infinitesimal coupling will be eventually renormalized to a
strong coupling at large enough lengthscale). In the context of
statistical mechanics, the asymptotic freedom of the nonlinear
sigma model suggests that the corresponding lattice model is
disordered for any nonzero temperature. In fact, this is perhaps
the standard picture on the phase diagram of the classical
Heisenberg model [18–21] defined by

H = −J
∑
〈i, j〉

�Si · �S j, (1)

where 〈i, j〉 runs over the pairs of nearest-neighbor sites i
and j, and �Si denotes a three-component unit vector. This is
one of the most fundamental models in statistical mechanics.
However, even for the classical Heisenberg model, there is
a controversy on the phase diagram, since a phase transition
at finite temperature was suggested based on numerical sim-
ulations [22–28] and high-temperature expansions [29,30].
While the nonlinear sigma model description looks reason-
able, its applicability to the lattice model is not rigorously
established, and thus it is possible that the lattice model be-
haves differently from the nonlinear sigma model prediction.
The phase diagram of the RP2 model [31–37] is even more
controversial than that of the Heisenberg model. While the
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Monte Carlo simulations are very powerful for those classical
spin systems, it is difficult to distinguish a crossover from
a phase transition because of the extremely large correlation
length [25–28,34,35,37–40].

In this paper, we reinvestigate the classical Heisenberg and
RP2 models on the square lattice using the tensor network
renormalization (TNR) scheme [41–46]. Contrary to the con-
ventional Monte Carlo methods, TNR offers direct access to
the spectrum of the transfer matrix and central charge of the
conformal field theory (CFT), and it proves to be a powerful
tool to study BKT transitions [47–49]. First we consider the
T → 0 fixed point, where spontaneous symmetry breaking is
not prohibited by the Mermin-Wagner theorem [50].

Taking advantage of the TNR, we directly calculate the UV
central charge of the Heisenberg model in the T ∼ 0 limit
using TNR to find that the central charge is c = 2, which is
strong evidence of the asymptotic freedom. We also analyze
the T → 0 limit of the RP2 model in a similar manner. In-
terestingly, our numerical result indicates that the ultraviolet
T → 0 RP2 fixed point also has the central charge c = 2.
On the other hand, the transfer matrix spectra of these two
models have different structures, suggesting that the UV limits
are distinct. Moreover, the possibility of the phase transition
at finite temperature is also discussed. Our results support a
crossover rather than a true phase transition. However, the
observed strong crossover corresponds to a sudden change of
the RG flow of the RP2 model in the vicinity of the reported
transition temperature, suggesting the existence of a repulsive
fixed point near the actual RG trajectory.

This paper is organized as follows. In Sec. II, we first
explain our models and their implementations in the tensor
network in detail. Then, we provide the methodology on how
to extract the universal information from the renormalized
tensors in Sec. III. As our main results, the numerically ob-
tained data for the zero- and finite-temperature fixed points are
displayed in Secs. IV and V, respectively. The interpretations
and discussion thereof are given in Sec. VI, and we summarize
and refer to our future issues in Sec. VII.

II. TWO-DIMENSIONAL RP2 MODELS

As discussed in the Introduction, we are interested in clas-
sical spin models with a spin “target space” M for which
π1(M ) = Z2. This allows Z2 vortices as topological defects,
which are argued to induce a phase transition. There are actu-
ally many different models that can host the Z2 vortices. The
simplest choice of the target space is M = RP2. We refer to
such a spin model in general as an “RP2model.” There are a
few variations within the RP2 model. The first is to consider
the square of the Heisenberg interaction, and it is called the
Lebwohl-Lasher (LL) model [5],

H = −J
∑
〈i, j〉

(�Si · �S j )
2, (2)

where �Si is a three-component classical spin with |�Si| = 1, as
in the Heisenberg model. One can immediately check that
this model is invariant to the local head-tail flip �Si → −�Si

simultaneously at all the sites i. There is plenty of research on
the J > 0 model, but less is found for J < 0 in the literature.
We refer to these cases, respectively, as “ferromagnetic” and

“antiferromagnetic” LL models. In the case of the Heisenberg
model, the ferromagnetic and antiferromagnetic models on the
square lattice are equivalent, being mapped to each other by
a redefinition of the spin variables �Si → −�Si on the odd sites.
In contrast, ferromagnetic and antiferromagnetic LL models
are not equivalent to each other. In the antiferromagnetic LL
model, the orthogonal alignment of neighboring “spins” is
favored; because of the freedom in choosing the orthogonal
direction, the dimension of the ground-state manifold is larger
in the antiferromagnetic LL model.

Another realization of the RP2 model is by introducing the
Ising spins σi j = ±1 on the bonds [51,52], which act as a Z2

gauge field on the lattice. The Hamiltonian is given by

H = −J
∑
〈i, j〉

σi j �Si · �S j, (3)

which we call the RP2 gauge model.
To compute the physical quantities by a tensor network,

we decompose the local Boltzmann weights by the spherical
harmonic and Legendre functions [53,54] as

e[β cos(γi j )]2 =
∑

l

fl (β )
l∑

m=−l

Ȳlm(θi, φi )Ylm(θ j, φ j ) (4)

fl (β ) = 2π

∫ +1

−1
dx Pl (x)eβx2

, (5)

where (θi, φi ) is the position of the spin on S2, and γi j is
the angle between two spins. This allows us to rewrite the
partition function in terms of the transfer matrix on each site,

Z = Tr
∏

i

∫
d�

4π

∏
e[β cos(γi j )]2

(6)

= Tr
∏
i∈L

∑
li,mi

fli (β )
∏

s

F l3m3,l4m4
l1m1,l2m2

, (7)

where

F l3m3,l4m4
l1m1,l2m2

= 1

4π

∑
l,m

G(l1, l2, l, m1, m2, m)

× G(l3, l4, l, m3, m4,−m),

with G being the gaunt function [55]. Finally, one can express
the local Boltzmann weights with a four-leg tensor as follows
[54]:

.

The index mi takes the values in the range of −li < mi < li
just like the magnetic quantum numbers. In practice, we in-
troduce the cutoff for li as −lmax < li < lmax with its bond
dimensions (lmax + 1)2 because the convergence of the trans-
fer matrix takes place for a large lmax. Moreover, as the
head-tail symmetry prohibits li from being odd, the bond di-
mension decreases to 1

2 (lmax + 1)(lmax + 2). In the same way,
one can construct the tensor network representation of the RP2
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gauge model by changing fi(β ) to

fl (β ) = 4π

∫ +1

−1
dx Pl (x) cosh (βx). (8)

As the angular momentum cutoff, we use lmax = 4 for the
Heisenberg model and lmax = 6 for both RP2 models. We note
that the cutoffs above are not sufficient to calculate the accu-
rate observables such as the free-energy density. Nonetheless,
the truncation preserves the symmetry of the models, and thus
we suspect that the universal information at criticality such as
the central charge should remain intact under this truncation.

III. METHODOLOGY

Critical points of statistical mechanical models correspond
to RG fixed points. In two dimensions, those RG fixed points
are generally described by CFT in 1+1 dimensions. Even if
the system is off-critical, it could be described by a perturbed
CFT when the correlation length is large. Therefore, it is
important to identify the CFT describing a possible critical
point/phase, or underlying the region with a large correlation
length. The central charge c is the most fundamental quan-
tity characterizing a CFT. Intuitively, it gives the “number of
degrees of freedom,” so that free massless boson field theory
has a central charge 1 for each independent component. Under
certain general assumptions, Zamolodchikov proved that the
central charge can only decrease along the RG flow [56].

In general, a two-dimensional statistical mechanical
model, such as the Heisenberg model or the RP2 model stud-
ied in this paper, can be mapped to a quantum many-body
system in one spatial dimension. The transfer matrix for the
former corresponds to (the exponential of) the Hamiltonian of
the latter. This leads to many useful observations. In particular,
the TNR approach we employ naturally produces the spec-
trum of the transfer matrix, which corresponds to the energy
spectrum of the quantum many-body system in one spatial
dimension. When the system is critical and described by a
CFT, the energy spectrum is dictated by the CFT. In partic-
ular, it contains information on the central charge and scaling
dimensions of operators. The finite-size energy spectra of one-
dimensional quantum systems have been extensively used to
study quantum phases. While it had been difficult to apply
a similar method to two-dimensional statistical mechanical
models, recently a combination of the TNR and the finite-size
scaling of the spectrum was demonstrated successfully for the
two-dimensional XY model [49]. In this paper, we extend the
application of the TNR-based finite-size scaling to the classi-
cal Heisenberg model and the RP2 models. Since the analysis
of the finite-size spectrum has been largely developed for one-
dimensional quantum systems, we will refer to (the logarithm
of) the eigenvalue spectrum of the finite-size transfer matrix
as “energy levels,” referring to the quantum counterparts. The
nth lowest energy eigenvalue En(L) (n = 0, 1, 2, . . .) is deter-
mined as

En(L) = − 1

L
ln λn(L), (9)

where λn(L) is the nth largest eigenvalue of the renormal-
ized tensor representing an L × L block contracted in the
x-direction. The (effective) central charge can be extracted

from the scaling of the “ground-state energy” at each scale
[57],

E0(L) ∼ ε0L − πc

6L
. (10)

Although the central charge is defined only for CFTs, we
may define the effective central charge in terms of the scaling
behavior of the “ground-state energy” E0 as above in a given
range of the scale. Moreover, at a RG fixed point described
by a CFT, the scaling dimensions xn of operators in the CFT
can be extracted from the scaling of the finite-size “excitation
energies” [49,57] as

2πxn

L
= En(L) − E0(L). (11)

Away from the RG fixed point, xn extracted from numerical
data using this relation does not give a scaling dimension of
a CFT. However, again we often consider such a quantity xn

as an effective scaling dimension, as it is useful in visualizing
the RG flow.

In particular, x1(L) contains useful information about the
correlation length ξ (L). Using the eigenvalues of an L × L
transfer matrix, the correlation length ξ (L) can be represented
as

ξ (L) = L

ln (λ0(L)/λ1(L))
. (12)

Combining it with Eqs. (9) and (11), we find the following
relation between x1(L) and ξ (L):

x1(L) = 1

2π

L

ξ (L)
. (13)

At criticality, ξ (L) diverges as L increases, and x1(L)
converges to a finite value, corresponding to the scaling di-
mension of its theory. On the other hand, ξ (L) saturates for
finitely correlated systems, leading to the divergence of x1(L).
Thus, it is a sign of a finite correlation length if x1(L) increases
with RG steps (given that the ground state is unique in the IR
limit). We carry out this analysis to find the finite correlation
length of the RP2 models shown in Figs. 3 and 5.

IV. ULTRAVIOLET FIXED POINT FOR T → 0

The ground states of the Heisenberg or RP2 model are
given by spins aligned in the same direction. This means that
we have a spontaneous symmetry breaking (SSB) at T = 0.
On the other hand, since these models have continuous SO(3)
symmetry, the Mermin-Wagner theorem [50] prohibits SSB at
any finite temperature T > 0.

It is interesting to consider the limit of T → +0 from
the finite temperature. This has been studied for the O(3)
nonlinear sigma model, which is believed to be the effective
field theory for the classical Heisenberg model. The SSB of
continuous SO(3) symmetry in the T → 0 limit implies the
existence of the Nambu-Goldstone modes. In the case of the
O(3) nonlinear sigma model, the “spin” can fluctuate in two
orthogonal directions around the ordered state. Thus, the T →
0 limit may be identified with the two-component free boson
field theory with the central charge c = 2. The asymptotic
freedom of the O(3) nonlinear sigma model implies that, at
any T > 0, the theory is described by the c = 2 conformal
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FIG. 1. (a) Calculated central charge of the ferromagnetic LL, Heisenberg, and antiferromagnetic LL models at T = 0.005. The ultraviolet
central charge for the first two models is c = 2, whereas that of the AF-LL model is c = 4. The numerically obtained data are c = 2.003 and
1.998 for the Heisenberg and LL model, respectively, at the fourth RG step. The cusp around ten RG steps appears because we derive the
central charge by a derivative of L as E0(L) ∼ ε0L − πc

6L . [We only know E0(L) for L = √
2

n
, so linear fitting is needed.] The appearance of

the cusps is a common feature when the system size reaches the correlation length. It could be the gap due to the finite bond dimensions. (b) The
finite-size scaling dimension of the Heisenberg and LL models at T = 0.01. The lowest excitation corresponds to spin 1 and 2, respectively.
The degeneracy is slightly lifted due to the non-negligible finite-bond dimension effect at the large inverse temperature. To avoid unnecessary
divergence of the Boltzmann weights, we shifted the energy in the computation, e.g., H = −J

∑
〈i, j〉[(�Si · �Sj )2 − 1] for the RP2 LL model.

field theory with a relevant operator. This means that the c = 2
CFT is the ultraviolet (UV) fixed point, and the O(3) nonlinear
sigma model corresponds to the RG flow emanating from it. It
is believed that the RG flow from the UV fixed point ends up
in a massive theory, implying the absence of any intermediate
phase or phase transitions in the Heisenberg model at T > 0.
This picture has been confirmed by the exact Bethe ansatz cal-
culation of the free energy using the factorizable S-matrix for
the nonlinear sigma model [58,59], though the phase diagram
for the Heisenberg model has yet to be identified [25–28,40].

On the other hand, the RG picture has not been clarified
well for the RP2 model. Since the target spaces of the RP2 and
Heisenberg models are locally isomorphic to each other, we
may also expect two-component c = 2 free boson CFT as the
effective theory of the would-be Nambu-Goldstone modes in
T → 0. However, to the best of our knowledge, this has not
been studied for the RP2 model in Eqs. (2) and (3). Thus, here
we present our TNR study on the “effective central charge” of
the RP2 model.

Practically, it is challenging to simulate the limit T → 0
due to the diverging Boltzmann weights. Nevertheless, since
the zero-temperature fixed points should be RG-unstable,
observing the UV behavior (finite-size behavior) of T ∼ 0
allows us to access the information of the zero-temperature
fixed point. Figure. 1(a) shows the central charge c estimated
with Eq. (10) from Loop-TNR [44] at D = 40 and T = 0.005.
We see that the effective central charge for both the Heisen-
berg model and the ferromagnetic LL model is stable at c ∼ 2

at small RG steps. As representative values, at L = 16 (the
fourth RG step), we estimate c = 2.003 and 1.998, respec-
tively, for the Heisenberg and the ferromagnetic LL model.
This suggests that each of the systems behaves as a c = 2 CFT
at short distances. In other words, the UV fixed point of these
models is the c = 2 CFT, as expected.

While the finite bond dimension effects are a limitation
of the tensor-network-type calculations in general, the results
are very accurate within lengthscales smaller than the bond-
dimension induced correlation length. The comparison with
the CFT can be carried out for these lengthscales, as has been
demonstrated in other contexts [49]. The detailed results of
the finite bond dimension effects are summarized in Fig. 6.
Therefore, we believe that our identification of the c = 2 CFT
as the UV fixed point for the low-temperature regime of the
Heisenberg and ferromagnetic RP2 models stands, in spite of
the challenging nature of the problem. On the other hand, this
observation does not directly answer the question about the
nature of the “transition” to the disordered phase at higher
temperature.

It is also interesting to study the antiferromagnetic LL
model for comparison. As mentioned in Sec. II, the antifer-
romagnetic LL model has a higher-dimensional ground-state
manifold. It turns out that it corresponds to a O(5) “spin”
model, as discussed in detail in Appendix B. It is then ex-
pected that the UV fixed point is a c = 4 free boson CFT,
corresponding to four independent Nambu-Goldstone modes.
As shown in Fig. 1, we indeed find that the effective central
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charge of the antiferromagnetic LL model is significantly
larger than the other models. Although we do not observe the
complete convergence, we think that the numerical result is
consistent with our expectation of c = 4 CFT representing the
UV fixed point representing the T → 0 limit.

We also note that Kawamura and Miyashita studied an
antiferromagnetic Heisenberg model on the triangular lattice.
Effectively, this model would be described by a nonlinear
sigma model with the SO(3) group element as the field
(principal chiral model). Topologically, the SO(3) group is
homeomorphic to RP3 and has the Z2 vortices. We expect
that the UV fixed point representing the T → 0 limit of these
models is a c = 3 CFT. It would be interesting to confirm this
expectation numerically.

Meanwhile, it is noteworthy that the spectra of these two
models are different in spite of the same central charge.
One can immediately see this in the effective scaling dimen-
sions defined by Eq. (11). In the field theoretical description,
the scaling dimensions correspond to the energy levels of the
collective excitation. In particular, the lowest ones are three
degenerate spin-1 excitations for the Heisenberg model. In
contrast, the O(3) spin is no longer the order parameter for
the LL model under the local Z2 flip symmetry. Instead, we
have nematic order parameter Q defined as

Qαβ = sαsβ − 1
3δαβ, (14)

where α and β run through (x, y, z). Thus, the lowest ex-
citation of the LL model is spin 2 with its multiplicity 5.
The numerically obtained finite-size scaling dimensions in
Fig. 1(b) are consistent with the argument above. This sug-
gests that, although both are characterized by the same central
charge c = 2, the UV limits for the Heisenberg and RP2 mod-
els are distinct.

V. Z2 VORTEX DISSOCIATION AT T ∼ T∗

The main interest in the RP2 model is the possible topo-
logical phase transition due to the dissociation of the Z2

vortices, similar to the well-established BKT transition in the
two-dimensional XY model [1–4]. While there have been
numerous studies supporting the existence of the transition,
its nature has not been clarified. Moreover, the very existence
of the transition is still a question.

If the purported Z2 vortex dissociation transition is a
second-order phase transition, it would be described by a CFT.
Likewise, if the system has a critical low-temperature phase
similar to the low-temperature phase of the BKT transition,
that phase would be also described by a CFT. Hence, we have
numerically estimated the effective central charge and scaling
dimensions in the temperature region where the Z2 vortex
dissociation is expected.

As a reference, we have also applied the same methodol-
ogy to the classical Heisenberg model. Figure 2 shows the
effective central charge of the Heisenberg and RP2 gauge
models at finite temperature, calculated from the TNR. First,
the effective central charge of the Heisenberg model seems
to have a plateau around c ∼ 2 at T = 0.14, which seems
to suggest a critical phase. However, the convergence of the
effective central charge is not as good as in a similar TNR
study of known critical points/phases in the Ising and XY

FIG. 2. The effective central charge of the Heisenberg and RP2

gauge models at finite temperature. The numerically obtained central
charge of the Heisenberg model is slightly smaller than 2, c ∼ 1.94
at T = 0.14 and the eighth RG step, implying that the correlation
is large but finite. Similarly, the central charge of the LL model is
not converged and is c ∼ 1.91 at T = 0.22 and the eighth RG step.
The cusps after the 12 RG steps are a numerical artifact due to the
finite-bond dimension used in our calculation. On the other hand, at
T = 0.27 the effective central charge quickly drops to zero, which is
a clear signature of the finite correlation length.

model [44,49]. (Compare also with Fig. 1.) In fact, a detailed
analysis shows that the central charge is smaller than c = 2,
as is indicated with a black dotted line. For example, the best
estimate at T = 0.14 for the Heisenberg model is c = 1.94(1),
obtained at the third through eighth RG steps. Moreover,
the “energy levels” which would give the scaling dimensions
of the operators in the CFT change gradually, as shown in
Fig. 3. As we will discuss in the next section, we believe that
our results are more consistent with the standard “asymptotic
freedom” picture, which predicts the single disordered phase
for T > 0.

Now let us discuss the RP2 model around the purported
Z2 vortex dissociation transition temperature T∗ = 0.25 in a
similar manner. The effective central charge of the RP2 model
also seems to have a plateau at c ∼ 2 for T = 0.22 (T < T∗),
which seems to suggest a critical phase. On the other hand,
for T = 0.27 (T > T∗) we find a quick drop of the effective
central charge to zero, indicating a “massive” phase with a
finite correlation length. This implies a phase transition or a
strong crossover around T ∼ T∗ = 0.25, in agreement with
previous studies on the same model [51,52].

On the other hand, we find that the convergence of the
effective central charge is again not good. The best estimate of
the central charge is c = 1.915(3) obtained at the fifth through
eleventh RG steps for T = 0.22 for the RP2 gauge model. It
is important to note that these values are smaller than c = 2,
which is expected for the UV fixed point, beyond numerical
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FIG. 3. (a) The finite-size scaling dimension of the lowest excitation in the Heisenberg model. The scaling dimension grows monotonically
along the RG steps, which is a consequence of the RG flow from the unstable T = 0 fixed point. (b) The finite-size scaling dimension of the
lowest excitation in the RP2 gauge model. The monotonic increase of x1(L) along the RG steps is observed in the whole range of temperature.
The vertical dotted line denotes the reported transition temperature from previous studies, T ∼ 0.25.

errors. Moreover, the energy levels that would give the scaling
dimensions of the operators in the CFT do not converge.
Below the “transition temperature” T < T∗, the change of the
energy levels is certainly slower but it is still significant, as
shown in Fig. 4. In addition, the effective central charge and
scaling dimensions of the LL model shown in Figs. 5 and 7
turn out to behave in a similar manner. Thus, we conclude that

FIG. 4. An enlargement of Fig. 3(b) for the low-temperature
regime T � T∗. The scaling dimension from the lowest excitation
does not converge even here.

both the RP2 gauge and LL models exhibit crossover rather
than a true phase transition.

VI. DISCUSSIONS

As noted in Sec. V, even though the effective central charge
exhibits a “plateau” at c ∼ 1.9 for both the Heisenberg and
RP2 models at sufficiently low temperatures, the convergence
is not as good as in the similar TNR calculation for known
critical points/phases. If we still take the position that either
of these models has a critical phase/point in those temperature
regimes, it would be described by a CFT with the central
charge c ∼ 1.9 < 2. However, it is rather difficult to conceive
such a CFT.

Considering that the model has a global SO(3) symmetry,
it is tempting to consider the SO(3) Wess-Zumino-Witten
(WZW) models. SO(3) is locally isomorphic to SU(2), and
the SU(2) WZW models are classified by the level k, which
is a natural number. The level-k SU(2) WZW model has the
central charge

c = 3k

k + 2
, (15)

and the primary fields (with zero conformal spin) which have
the scaling dimension

x j = 2
j( j + 1)

k + 2
, (16)

where j is the SU(2) spin quantum number (half-odd-integer
or integer), which satisfies 0 � j � k/2. An SO(3) WZW
model corresponds to an SU(2) WZW model at an even level
k. The first nontrivial one is k = 2 with c = 3/2, which is too
small for the observed value c ∼ 1.9 in the Heisenberg and
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FIG. 5. (a) The effective central charge of the Lebwohl-Lasher model at T = 0.3(T < T∗), 0.35(T ∼ T∗), and 0.375(T > T∗). The
numerically obtained central charge of the Heisenberg model is slightly smaller than 2, c ∼ 1.942(1) at T = 0.35 between the seventh and
ninth RG steps, implying that the correlation is large, but finite. (b) The finite-size scaling dimension of the lowest excitation in the LL model.
The monotonic increase of x1(L) along the RG steps is observed in the whole range of temperature. In particular, the RG flow becomes stronger
around T = 0.35. This phenomenon might be attributed to a repulsive fixed point in the vicinity of the trajectory of this model. The vertical
dotted line denotes the transition temperature from previous studies, T = 0.356.

the RP2 models. The next one is k = 4 with c = 2, which is
too large. One might be tempted to interpret the numerical
estimate c ∼ 1.9 (and poor convergence) as a result of some
numerical error, and postulate that the system is actually de-

scribed by the level-4 SU(2) model with c = 2. However, this
does not seem to hold.

The “energy levels” of the lowest excited states [an SU(2)
triplet] found for the Heisenberg model do not converge up

FIG. 6. The ultraviolet central charge of (a) the Heisenberg and (b) LL model at T = 0.02. The enormous finite bond dimension effect at
D = 16 decreases and the values converges at D = 44.
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to the eighth RG step, as shown in Fig. 3(a). This also
indicates that the system does not reach a RG fixed point
yet. Moreover, the observed energy level of the lowest ex-
cited state corresponds to the scaling dimension x < 0.1. This
is significantly smaller than the scaling dimension x = 2/3
of the corresponding triplet operator ( j = 1) in the level-4
SU(2) WZW model, so that the identification is difficult.
Since our system does not contain a spinor representation
of SU(2), we do not expect an SU(2) WZW model with
an odd level k to appear as an effective model for the
classical Heisenberg model. Even if we disregard this issue
and consider the level-3 SU(2) WZW model as a candi-
date CFT, it also does not match the numerical observation
both in terms of the central charge (c = 9/5 = 1.8) and
the spectrum (the lowest triplet operator j = 1 having the
scaling dimension x = 4/5). With these observations, we con-
clude instead that our numerical data support the standard
“asymptotic freedom” scenario on the Heisenberg model in
which there is a single disordered phase for T > 0. The
observed effective central charge c ∼ 1.9 may reflect the
RG flow from the c = 2 UV fixed point. This is consis-
tent with the known exact RG flow [58,59] of the O(3)
nonlinear sigma model from c = 2 to 0 (“massive” theory
with a finite correlation length), although its applicability to
the Heisenberg model on the lattice could be questioned in
principle.

We find a similar difficulty in interpreting the low-
temperature regime T � T∗ of the RP2 model as a critical
point/phase described by a CFT. The lowest excited states
in the RP2 form an SU(2) quintet, and their energy level
corresponds to the scaling dimension x � 0.2. This is again
significantly smaller than the scaling dimension x = 2 of
the corresponding quintet operator ( j = 2) in the level-4
SU(2) WZW model. In fact, the convergence of the energy
levels is much faster below T ∼ T∗ in the RP2 model com-
pared to the high-temperature regime T � T∗, as shown in
Fig. 5(b). This indicates a remarkable change in the sys-
tem around T ∼ T∗, which is consistent with the Z2 vortex
dissociation found in other studies. However, even in the low-
temperature regime T � T∗, the energy levels do not show
a true convergence, as shown in Fig. 7, in contrast to the
known critical point/phase. Given the poor convergence of
the effective central charge and the scaling dimensions, and
also the lack of an appropriate CFT, we conclude that it is
more likely that there is no true phase transition at T ∼ T∗
and that the region T � T∗ is “massive,” albeit with a large
correlation length. That is, similarly to what is widely be-
lieved for the Heisenberg model, the RP2 model at finite
temperature consists of the single disordered phase, which
could be understood as an RG flow from the c = 2 UV
fixed point. While we did observe a remarkable change in
the behavior around T ∼ T∗ where the dissociation of Z2

vortices has been reported, it would be understood as a
strong crossover rather than a true phase transition in this
scenario.

Recently, the issue of the RP2 (and more generally RPN−1)
model in two dimensions was studied in the framework of
the scale-invariant scattering theory [60]. The conclusion of
those authors that there is no quasi-long-range ordered phase
with varying exponents (RG fixed line) seems consistent

with our findings. On the other hand, their statement that
the zero-temperature fixed point for the RPN−1 model has
an enlarged O[MN = N (N + 1)/2 − 1] symmetry may not
be consistent with our finding of c = 2 on the T → 0 UV
fixed point for the RP2 model. We note that MN = 5 for the
RP2 model (N = 3), and we indeed found an emergent O(5)
symmetry for the ground states in the antiferromagnetic LL
model (see Appendix B), although we are not sure if our
finding is related to the statement in Ref. [60]. More analysis
is needed to clarify the relation between Ref. [60] and our
results. In particular, it is desirable to identify the CFT corre-
sponding to the “additional solution” for N = 3 [Eq. (32) of
Ref. [60]].

VII. CONCLUSIONS

In this paper, we studied the low-temperature regimes of
the Heisenberg and RP2 models using TNR, and we analyzed
the spectrum of the finite-size transfer matrix. When the sys-
tem is critical and can be described by a CFT, the spectrum
gives an estimate of the central charge and scaling dimensions
of operators. In the low-temperature limit T → 0, we identify
the UV fixed point of the Heisenberg and the ferromagnetic
RP2 models as a c = 2 CFT, consistently with the standard
expectation. On the other hand, the antiferromagnetic LL
model indicates a larger value of the central charge of the UV
fixed point. This is also consistent with the effective SO(5)
symmetry of the ground states, which predicts c = 4 for the
UV fixed point.

At moderately low temperatures of the Heisenberg model,
we find the effective central charge c ∼ 1.9, which looks
somewhat stable over a range of the lengthscales up to L =
128. However, the finite-size energy levels, which give the
scaling dimensions of operators in the underlying CFT, do
not show convergence. This and the lack of candidate CFTs
supports the standard picture that the Heisenberg model has
a single disordered phase with a finite correlation length for
T > 0.

The RP2 model in T � T∗ shows a similar behavior with
the effective central charge c ∼ 1.9. However, the conver-
gence is also not as good as in the spectrum of known critical
points/phases, although it is faster than that in the T � T∗
regime. We conclude that it is more likely that the RP2 model
also has a single disordered phase with a finite correlation
length for T > 0, based on the slow convergence and the
apparent lack of candidate CFTs.

The phase diagrams of the Heisenberg and RP2 mod-
els have been controversial, chiefly due to the very large
correlation length at low temperatures. It is very difficult
to distinguish directly a diverging correlation length from
a large but finite one in any numerical calculation. On the
other hand, analysis of the finite-size spectrum comparing
with CFT has proved very powerful in quantum many-body
systems in one spatial dimension; the phase diagram can be
determined precisely with an exact numerical diagonalization
of the Hamiltonian of rather small systems. This has been
successfully extended to the two-dimensional classical XY
model using the TNR [49]. The present study demonstrates
that the finite-size spectrum from the TNR provides useful
information also on the controversial problems of Heisenberg
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and RP2 models despite the difficulties associated with the
very large correlation lengths.

We do not completely rule out the possibility of the critical
point at T ∼ T∗ or the critical phase in T � T∗ suggested in
several papers. However, to pursue this viewpoint, one would
need to explain the effective central charge and the spectra
obtained in the present TNR study, which is perhaps more
difficult than simply discussing whether the correlation length
diverges or not. On the other hand, we do not have a complete
explanation of what we believe is a strong crossover around
T ∼ T∗. It is an interesting problem for the future to describe
the crossover in terms of field theory, for example with a CFT
representing an RG fixed point in the vicinity and a relevant
perturbation.

Note added. Recently, we learned that Burgelman, Van-
derstraeten, and Verstraete have also studied the Heisenberg
and LL model using the variational uniform MPS(VUMPS)
method [61]. In that paper, they computed the high-accuracy
correlation length from the transfer matrix and the effective
central charge from the entanglement scaling. Detecting the
deviation of the correlation length from the BKT scaling,
they also concluded that this model does not go through a
true phase transition. This is consistent with our diverging
x1(L), which is a sign of a finite correlation length. Moreover,
the effective central charge that they estimated is c ∼ 1.8,
which is consistent with our results of c ∼ 1.9. The slight
difference originates from the difference in the method for
estimating the central charge, where we used the scaling of the
ground-state energy. Nevertheless, this small discrepancy can
be interpreted as additional evidence of a crossover because
both methods should yield the same central charge at true
criticality. Concerning the nature of the fixed point that causes
the crossover, they mention the similarity of the entangle-
ment spectrum with the quantum bilinear-biquadratic spin-1
Heisenberg chain. As future work, it would be interesting to
compare it with the scaling dimensions found in our study.

ACKNOWLEDGMENTS

We thank Lander Burgelman, Laurens Vanderstraeten, and
Frank Verstraete for sharing their draft prior to publication,
and for useful discussion on related subjects. The work of
A.U. is supported by Materials Education program for the fu-
ture leaders in Research, Industry, and Technology (MERIT).
A part of the computation in this work has been done using
the facilities of the Supercomputer Center, the Institute for
Solid State Physics, the University of Tokyo. This work was
supported in part by MEXT/JSPS KAKENHI Grants No.
JP17H06462, No. JP19H01808, and No. JP21J20523, and
JST CREST Grant No. JPMJCR19T2

APPENDIX A: EFFECTIVE CENTRAL CHARGE

Ground-state energy and excitation energies are written in
the language of CFT as

En − E0 = 2π

L
xn, (A1)

E0 = ε0L − πc

6L
, (A2)

FIG. 7. An enlargement of Fig. 5(b) for the low-temperature
regime T � T∗. The scaling dimension from the lowest excitation
does not converge even here.

where xn and c are the scaling dimension and central charge,
respectively. With real-space renormalization, the effective
size of the renormalized tensor becomes b times larger at each
step. Thus, starting from L = 1, the effective scale ends up
being L = bn after n RG steps, and we denote the partition
function at this scale as Z (n). This partition function can be
expressed with the generator along the y-axis using Eqs. (A1)
and (A2),

Z (n) = Tr exp(−bnHp)

= Trxi exp

[
− bn

(
2π

L
xi − πc

6L
+ ε0L

)]

= Trxi exp

[
− 2π

(
xi − c

12

)
− ε0b2n

]
. (A3)

This spectrum can be computed from the eigenvalues of
the L × L transfer matrix constructed from the renormalized
tensor T (n) as depicted in Fig. 8. Assuming x0 = 0, which
corresponds to the identity operator, one is ready to recognize

FIG. 8. A schematic picture of the procedure to extract the CFT
information. It is possible to see the spectrum by making the L × L
transfer matrix a cylinder.
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the relation between λn and xn,

λn

λ0
= exp(−2πxn). (A4)

There is a pathological problem determining the central
charge because we lack one equation. To eliminate the con-
tribution from the bulk energy, or in other words to normalize,
one needs to employ the partition function from the previous
step Z (n − 1),

Z (n − 1) = Trxi exp

[
− 2π

(
xi − c

12

)
− ε0b2n−2

]
. (A5)

For the fixed point tensor, it is reasonable to assume c and ε0

are constant. Then we get the central charge as below,

c = 6

π

1

b2 − 1

(
b2 ln λ

(n−1)
0 − ln λ

(n)
0

)
. (A6)

The formula that is widely used [62] is

c = 6

π

[
b2

b2 − 1

(
ln Z (n − 1) − ln Z (n)

b2

)
+ ln

λ
(n)
0

Z (n)

]
. (A7)

Equations (A6) and (A7) are equivalent in the critical case

because λ
(n)
0

Z (n) = λ
(n−1)
0

Z (n−1) , though Eq. (A7) seems to be unstable
when the system size exceeds the correlation length. Through-
out this paper, we calculated the effective central charge with
Eq. (A7).

APPENDIX B: EMERGENT O(5) UNIVERSALITY
IN THE AF-RP2 MODEL

The emergence of the O(5) universality class seems
peculiar. However, this phenomenon is observed in three
dimensions where the SSB of continuous symmetry is not
prohibited [50]. The key idea is that the order parameter is
no longer the O(3) spin, but the nematic order parameter Q as

Qαβ = sαsβ − 1
3δαβ. (B1)

As Qαβ is a symmetric traceless rank-3 tensor, the number
of independent components is five. These five components
behave like a five-component vector in Landau-Ginzburg-
Wilson (LGW) theory, leading to the emergence of the O(5)
universality [63,64].

The ground state itself is different in the first place be-
tween J > 0 and J < 0. For ferromagnetic cases, the GS is
a fully aligned state, (si · s j ) = ±1. Except for the massive
degeneracy due to the local Z2 gauge, it resembles that of
the Heisenberg model. On the other hand, the ground state of
the AF-RP2 model is nontrivial (si · s j ) = 0. Due to this break
in the symmetry between even and odd sites (sublattice), the
order parameter might become a staggered one,

Ai = (−1)xi+yi Qi. (B2)

Given the even-odd symmetry of Ai → −Ai, LGW action for
the AF-RP2 model becomes

F (A) =
∫

dr[(∇TrA)2 + a(TrA2) + b(TrA2)2 + c(TrA4)].

(B3)

Let A be

A =

⎛
⎜⎝

a c d

c b e

d e −a − b

⎞
⎟⎠. (B4)

Then TrA2 = 2(��) and TrA2 = 2(��)2, where � = (a +
b/2,

√
3

2 b, c, d, e). This is simply the O(5) model. Unlike the
three-dimensional model, φ6 is also relevant in 2D. However,
the most stable fixed point (smallest central charge) of �2n

theory is that of �4, so our argument might be correct. Note
that this LGW approach is justifiable only at T = 0, where
SSB is allowed under continuous symmetry. The verifica-
tion of c = 4 with numerical simulation is almost impossible
due to the enormous bond dimension effect. Nonetheless,
the central charge is larger than 3, implying the shadow of
c = 4. In fact, our conjecture is consistent with the recent
study of the RP2 model based on the conformal scattering
theory, and this O(5) universality class corresponds to the
solution A+ of Ref. [60], while the remaining solution A−
corresponds to the c = 5

2 SO(5)1 WZW [65,66]. Interest-
ingly, the central charge c = 2 of the ferromagnetic RP2

model at zero temperature is none of the above, leaving
the possibility for it to become a candidate for the solution
B±3.
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