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Characterization of composite materials, whose properties vary in space over microscopic scales, has be-
come a problem of broad interdisciplinary interest. In particular, estimation of the inhomogeneous transport
coefficients, e.g., the diffusion coefficient or the heat conductivity, which shape important processes in biology
and engineering, is a challenging task. The analysis of such systems is further complicated because two
alternative formulations of the inhomogeneous transport equations exist in the literature—the Smoluchowski
and Fokker-Planck equations, which are also related to the so-called Ito-Stratonovich dilemma. Using the theory
of statistical physics, we show that the two formulations, usually regarded as distinct models, are physically
equivalent. From this result we develop efficient estimates for the transverse space-dependent diffusion coeffi-
cient in fluids near a phase boundary. Our method requires only measurements of escape probabilities and mean
exit times of molecules leaving a narrow spatial region. We test our estimates in three case studies: (i) a Langevin
model of a Büttikker-Landauer ratchet; atomistic molecular-dynamics simulations of liquid-water molecules in
contact with (ii) vapor, and (iii) soap (surfactant) film which has promising applications in physical chemistry.
Our analysis reveals that near the surfactant monolayer the mobility of water molecules is slowed down almost
twice with respect to the bulk liquid. Moreover, the diffusion coefficient of water correlates with the transition
from hydrophilic to hydrophobic parts of the film.
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I. INTRODUCTION

Various physical processes in nature and engineering are
shaped by composite materials with inhomogeneous trans-
port properties, e.g., space-dependent mass diffusion and heat
conductivity [1–36]. Modeling of such systems subsists the
quantitative description of living matter and guides the design
of nanoscale devices. In this line of research, estimation of
the physical properties of inhomogeneous systems constitutes
a problem of broad interdisciplinary interest.

Curiously, inhomogeneous transport problems have cre-
ated a controversy between two theoretical approaches in
statistical mechanics, which lead back to the so-called Ito-
Stratonovich dilemma [37–58]. In particular, these approaches
propose different laws that generalize linear constitutive rela-
tions to account for space-dependent properties of a physical
system. In the problem of mass diffusion—the paradigmatic
model of transport phenomena [34]—the controversy revolves
around Fick’s law,

JD = −D · ∇ρ, (1)

which expresses a component of the matter flow JD(x) driven
by the gradient of density ρ(x) through a space-dependent
tensor of diffusion coefficients D(x), and the alternative
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Fokker-Planck law,

J̃D = −∇ · (Dρ), (2)

in which the flux is denoted by the tilde in contradistinction
from the analogous quantity in Eq. (1).

Fick’s and Fokker-Planck laws can be motivated by de-
riving a mass diffusion equation from simplified models of
microscopic dynamics [37–45,59]. In the presence of an ex-
ternal field U (x) suitable physical assumptions about a system
of interest lead either to the Smoluchowski equation,

∂ρ

∂t
= −∇ · J = ∇ ·

(
D · ∇U

kBT
ρ + D · ∇ρ

)
, (3)

in which the last term on the right-hand side entails Fick’s law
or the Fokker-Planck equation,

∂ρ

∂t
= −∇ · J̃ = ∇ ·

[
D · ∇U

kBT
ρ + ∇ · (Dρ)

]
, (4)

implying the Fokker-Planck law. In Eqs. (3)–(5), kB and T
are the Boltzmann constant and temperature, respectively,
whereas J(x) and J̃(x) are two formulations of the total
mass flux.

The choice between Eqs. (3) and (4) causes the exist-
ing debate: which law—Eq. (1) or (2)—generalizes linear
constitutive relations for inhomogeneous transport phenom-
ena? Whereas some authors favor the Fokker-Planck approach
[45–47], others suggest that the choice depends entirely on
microscopic details of a specific system of interest and, there-
fore, various systems could respond differently to the same
external potential U (x) [38–41,50].
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In contrast to the existing approaches, we argue in the
present paper that the Smoluchowski and Fokker-Planck pic-
tures are equivalent if one recognizes a distinct physical
quantity Ũ (x), further called the Fokker-Planck potential,
which must be used in Eq. (4) in place of U (x),

∂ρ

∂t
= −∇ · J = ∇ ·

[
D · ∇Ũ

kBT
ρ + ∇ · (Dρ)

]
. (5)

Here, the same system can be described using either of
the two models (3) or (5), whose potential terms are
related by

U (x) = Ũ (x) + kBT h(x), (6)

in which the (dimensionless) function h(x) depends on the
components of the tensor D(x).

However only the energy function U (x) can be interpreted
as a thermodynamic potential consistently with the classical
statistical mechanics and Fick’s law. The density ρ(x) of
an equilibrium system must obey the Maxwell-Boltzmann
distribution—a reason why the mass diffusion may be consid-
ered as a paradigmatic example of the transport phenomena
[34]. This result is reproduced only for the potential U (x) in
the Smoluchowski equation [49] and extends to nonequilib-
rium systems through Onsager’s theory [60–62].

The Smoluchowski and Fokker-Planck equations can also
describe an ensemble of Brownian particles exploring an en-
ergy landscape with a space-dependent diffusion coefficient
[49]. In such a model the energy function Ũ (x), determines
the preferred direction of the microscopic particle flow. This
interpretation is also supported by our analysis of a simplified
microscopic model of diffusion (Sec. II A).

In a recent work [25] we combined stochastic theory of
diffusion with molecular-dynamics simulations to investigate
mobility of water molecules near the amino acid surface of
a glutamine crystal, which has been implicated in numerous
neurodegenerative diseases. In that study, assuming Eq. (3),
the gradient of external potential and the mean first-passage
time of the molecules escaping a narrow spatial region were
measured and then used to infer the transverse inhomoge-
neous diffusion coefficient D(x) as a function of distance x
to the crystal’s surface.

Here, using the equivalence of the Smoluchowski and
Fokker-Planck pictures we propose a new inference method
for both, the transverse potential term Eq. (58) and the space-
dependent diffusivity Eq. (60). Notably, our method relies
only on the first-passage statistics extracted from stochastic
trajectories of the system of interest. We thoroughly test this
estimation technique in a model of the Büttiker-Landauer
ratchet [63,64] (Sec. III A).

As an application of the new inference method, we present
a study of liquid-water molecules’ diffusion in two systems
involving phase boundaries. We perform molecular-dynamics
simulations of water-vapor and water-surfactant interfaces in a
slab geometry [26–28] (Sec. III and Appendix D). Surfactants
are essentially soaplike molecules that have an amphiphilic
character and form soap films when put in liquid water. Water
dynamics in these systems has been shown experimentally to
be quite complex [65]. From our simulations we obtain tra-
jectories of the water molecules and measure their transverse

diffusion coefficient as a function of proximity to the phase
boundary. Interestingly, the molecule’s mobility at the water-
vapor interface is enhanced, whereas, over a region extending
approximately to 3 nm from the water-surfactant interface the
diffusion slows down by a factor of 2 relative to the bulk.
The inferred space-dependent diffusivity is compared with the
value obtained using the approach of Ref. [25] which requires
additional measurements of the local particle density. Both
methods agree with the diffusion coefficients inferred from
the linear regression of local mean-squared displacements
(Appendix E).

The extent to which interfaces affect the structure and dy-
namics of water molecules has been the subject of numerous
experimental and theoretical studies [66–70]. Whereas it has
been appreciated that biological materials, such as proteins
and DNA, typically decrease diffusion of water, the spatial
range of this effect has been a subject of numerous debates
[71]. Over the past decade several molecular-dynamics sim-
ulations have shown that near biological interfaces water
molecules slow down by a factor of 4–7 compared to the bulk
liquid [69]. Since these interfaces are often characterized by
highly heterogeneous chemical environments [3], the notion
of a uniform diffusion constant becomes questionable and,
therefore, provides a fertile ground to test and explore our
theory.

II. THEORY

For simplicity we first consider one-dimensional mass
transport in equilibrium systems. We return to the general case
in Sec. II C, see also Appendices A–C. As noted in Ref. [49],
Sec. V], one-dimensional systems are always “conservative”
because Eq. (3) can be converted into (5) by the substitution,

U (x) = Ũ (x) + kBT ln[D(x)/D0], (7)

in which D(x) is a one-dimensional diffusion coefficient and
D0 is an arbitrary constant. Identifying h(x) = ln[D(x)/D0]
we recognize in the above rule a special case of Eq. (6) which
is known in the literature with Ũ (x) referred to as a convec-
tion term [42,57]. Such a simple form of h(x) is, however,
not available for general diffusion tensor in three dimensions
(Appendix C).

Because in equilibrium the total flux must vanish identi-
cally J (x) ≡ 0 for Eqs. (3) and (5) we have, respectively,

J = −
(

D

kBT

∂U

∂x
ρ + D

∂ρ

∂x

)
= 0, (8)

J = −
[

D

kBT

∂Ũ

∂x
ρ + ∂ (Dρ)

∂x

]
= 0, (9)

which in view of Eq. (7) are solved simultaneously by

ρ(x) ∝ e−U (x)/kBT = 1

D(x)
e−Ũ (x)/kBT . (10)

The equilibrium density ρ(x) is thus given by a Boltzmann
factor with the effective potential U (x) as dictated by classi-
cal statistical mechanics. The same solution expressed in the
Fokker-Planck form depends on two space-dependent factors
through the functions D(x) and Ũ (x) where the latter cannot
be interpreted as the effective potential of an equilibrium
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system. In Sec. II C we extend this argument to the nonequi-
librium case.

Now we proceed with an independent analysis of a sim-
plified microscopic dynamics, which encompasses a physical
interpretation of the Fokker-Planck potential. Our analysis
also connects the theory of inhomogeneous mass trans-
port with the stochastic thermodynamics of discrete Markov
processes. Returning to the macroscopic description of the
problem in Sec. II C, we use a consistency with the classi-
cal theory of equilibrium systems as the physical principle
that entails Eq. (6) and imposes additional constraints on the
components of a diffusion tensor in two and more dimensions
(Appendix C).

A. Microscopic description

Consider a simplified model of diffusing particles, whose
states are described by a single coordinate x. Particles jump
from a position x to x + dx with a space-dependent rate k+(x)
and from x to x − dx with a space-dependent rate k−(x). In a
short interval of time dt , we may, thus, define the probabilities
of moving to the right P+(x) or to the left P−(x),

P±(x) = k±(x)dt, (11)

and a survival probability,

P0(x) = 1 − �(x)dt, (12)

in which �(x) = k+(x) + k−(x) is the escape rate [72].
In addition we introduce a directing function L(x) so that

the conditional probability of the forward or backward moves,
given that a particle in state x makes a jump in a time interval
dt , are expressed by

P±(x)

1 − P0(x)
= k±(x)

�(x)
= eL(x±dx)

Z (x)
, (13)

with a normalization factor,

Z (x) = eL(x−dx) + eL(x+dx).

Diffusion equations are routinely derived for the random-
walk problems of the kind defined above by starting from a
balance equation for the particles’ density [41,42,73–75],

ρ(x, t + dt ) = P0(x)ρ(x, t ) + P+(x − dx)ρ(x − dx, t )

+ P−(x + dx)ρ(x + dx, t ). (14)

Expanding the left-hand side in power series up to the terms
of order ∼dt and the right-hand side up to ∼dx2 we get

∂tρ � ∂x

{
−dx

dt
(P+ − P−)ρ + ∂x

[
(P+ + P−)dx2

2dt
ρ

]}

� ∂x

{
−� dx2ρ ∂xL + ∂x

[
� dx2

2
ρ

]}
, (15)

in which we used

P±(x) = �(x)
eL(x±dx)

eL(x−dx) + eL(x+dx)

= �(x)

2
[1 ± dx ∂xL(x) + O(dx2)]. (16)

Equation (15) can be interpreted as a Fokker-Planck diffu-
sion law (5),

∂tρ = ∂x

[
D

∂xŨ

kBT
ρ + ∂x(Dρ)

]
,

by identifying the Fokker-Planck potential and the diffusion
coefficient as follows:

Ũ (x) = −2kBTL(x), (17)

D(x) = �(x)
dx2

2
. (18)

Now we must show that the Fokker-Planck potential de-
fined by Eq. (17) is related to the thermodynamic potential
U (x) by (7). To do so we apply a decomposition of the
stochastic kinetics Eqs. (11)–(13) suggested by Refs. [72,76–
78]. In this formalism, the transition rates read

k±(x) = a(x, x ± dx)es(x,x±dx)/2. (19)

Here a(x, x ± dx) and s(x, x ± dx) denote, respectively, the
activity and environmental entropy flow (in kB units) associ-
ated with the transition x → x ± dx. Importantly, the activity
is a symmetric property with respect to the exchange of the
transition states a(x, x ± dx) = a(x ± dx, x), whereas, the en-
tropy flow is asymmetric s(x, x ± dx) = −s(x ± dx, x) .

Operating with infinitesimal quantities, such as dt and dx,
in the following we frequently invoke the adequality edq �
1 + dq for a small dq. For instance, it will be convenient to
introduce the survival rate,

Q(x) = P0(x)/dt, (20)

related to

�(x)dt = 1 − P0(x) = 1 − Q(x)dt � e−Q(x)dt , (21)

where we have used the fact that Q(x)dt is a small quantity.
In terms of the survival rate and the directing function the
transition rates read

k±(x) � 1

2 dt
e−Q(x)dt±∂xL(x)dx, (22)

k∓(x ± dx) � 1

2 dt
e−Q(x)dt∓∂xQ(x)dtdx∓∂xL(x)dx. (23)

Using Eqs. (11)–(23) we derive the symmetric coeffi-
cients of activity and the asymmetric entropy differences
defined as [72].

a(x, x + dx) =
√

k+(x)k−(x + dx)

� 1

2dt
exp

[
−Q(x)dt − ∂xQ(x)dt dx

2

]
, (24)

s(x, x + dx) = kB ln
k+(x)

k−(x + dx)

� kB∂x[Q(x)dt + 2L(x)]dx

= ∂xS(x)dx = dS(x), (25)

in which we recognize the Boltzmann entropy,

S(x) = kB[2L(x) + Q(x)dt], (26)

of a state x as explained shortly.
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The equilibrium density of particles must be given by the
Boltzmann ansatz [62],

ρ(x) ∝ eS(x)/kB ∝ exp

(
−U (x)

kBT

)
, (27)

which satisfies the detailed-balance condition,

ρ(x)P+(x) = ρ(x + dx)P−(x + dx). (28)

Indeed, on the left-hand side of Eq. (28) we find

ρ(x)P+(x) ∝ exp

(
−U (x)

kBT

)
k+(x)dt

� 1

2
exp

(
S(x)

kB
− Q(x)dt + ∂xL(x)dx

)

= 1

2
e2L(x)+∂xL(x)dx, (29)

which equals the right-hand side,

ρ(x + dx)P−(x + dx) ∝ exp

(
−U (x) + ∂xU (x)dx

kBT

)
k−(x)dt

= 1

2
exp

(
S(x) + ∂xS(x)dx

kB
− Q(x)dt

− ∂xQ(x)dt dx − ∂xL(x)dx

)

� 1

2
e2L(x)+∂xL(x)dx, (30)

by virtue of Eqs. (22), (23), (26), and (27).
Now Eq. (7) follows from Eqs. (17), (18), (21), (26),

and(27) as had to be demonstrated

U (x) = −T S(x) = Ũ (x) − kBT ln[D(x)/D0], (31)

with D0 = dx2/(2 dt ). An extension of the above formalism
to nonequilibrium systems (without detailed balance) is also
possible (see Appendix B).

The above analysis also encompasses a physical interpreta-
tion for the Fokker-Planck potential Ũ (x), which is related to
the directing function L(x) through Eq. (17) and determines
the preferred direction of the particles’ motion. As we show
in Sec. III, this interpretation applies also at the mesoscopic
scale to the first-passage statistics of the molecules.

Finally we remark that the derivation of the Fokker-Planck
diffusion equation stated in the beginning of this section can
be reproduced for two and more dimensions, cf. Ref. [42].
For instance, we may assume that particles move along the
coordinates x1 and x2 independently with rates �1(x1, x2) and
�2(x2, x2), respectively, whereas the direction of moves is
determined by the directing function L(x1, x2) (Appendix A).
The independent rates �1 and �2 along the two directions
represent a microscopical equivalent of a local reference
frame associated with the eigenvectors of the diffusion tensor
(Appendix C), whose diagonal components are then given by

D1(x) = �1(x)dx2/2, D2(x) = �2(x)dx2/2. (32)

Because the diffusion tensor is always given by a symmetric
positive-definite matrix in Cartesian coordinates, the diagonal

representation must always exist as well as the eigensystem
reference frame.

B. Mesoscopic description

The theory of Langevin dynamics, which describes inho-
mogeneous diffusion at the mesoscopic scales and generates
the equilibrium density (10), has been extensively studied by
Lau and Lubensky [49]. Reference [49] provides a generic
stochastic differential equation, which is consistent with the
Smoluchowski diffusion (3),

dx = −
[

D(x)

kBT
∂xU (x) − a ∂xD(x)

]
dt +

√
2D(x)dB, (33)

in which dB is the increment of the Wiener process, i.e., dB is
a Gaussian random variable with the zero mean 〈dB(t )〉 = 0
and the variance 〈dB(t )2〉 = dt . Equation (33) is interpreted
according to the a convention with the parameter a ∈ [0, 1].
More precisely for any real function f (x), we interpret the
noise term in (33) as

f (x)dB = f [ax(t ) + (1 − a)x(t + dt )]

× [B(t + dt ) − B(t )], (34)

and similarly for the drift term proportional to dt . The choice
of the parameter a constitutes the so-called Ito-Stratonovich
dilemma. Three conventions commonly used in the litera-
ture are a = 1 (Ito), a = 1/2 (Fisk-Stratonovich), and a = 0
(Hänggi-Klimontovich) [50]. The term −a ∂xD(x) in Eq. (33)
is a noise-induced drift which ensures that for every value of
a the stationary state is given by the Boltzmann distribution
[49]. Using Eq. (7) we can substitute

∂xD(x) = D(x)∂x ln
D(x)

D0
= D(x)

kBT
∂x[U (x) − Ũ (x)],

into (33) to obtain

dx = −D(x)

kBT
∂x[(1 − a)U (x) + aŨ (x)]dt +

√
2D(x)dB.

(35)

Equation (35) explicitly shows that the Ito-Stratonovich
dilemma regards merely the choice of the potential function.
In particular, the Fokker-Planck potential Ũ (x) should be
used with the Ito-Langevin dynamics, whereas the Hänggi-
Klimontovich convention relies on the effective potential
U (x). The Fisk-Stratonovich convention mixes the two pic-
tures.

In the following section we will also show that the notion
of a Fokker-Planck potential extends to nonequilibrium sys-
tems. Therefore, the equivalence of the Smoluchowski and
Fokker-Planck equations remains valid out of equilibrium as
well as the resolution of the Ito-Stratonovich dilemma through
Eq. (35).

C. Macroscopic description

To generalize Eq. (7) to Eq. (6) for multidimensional sys-
tems we consider first the equilibrium case. In the Einstein
summation notation components of a ν-dimensional mass flux
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assume then the following Fokker-Planck form:

Ji = −
[

Di j
∂ jŨ

kBT
ρ + ∂ j (Di jρ)

]
= 0. (36)

The equilibrium solution,

ρ(x) ∝ exp

(
−U (x)

kBT

)
(37)

substituted into Eq. (36) yields a set of ν equations for j =
1, 2, . . . , ν that must hold simultaneously,

kBT ∂ih = ∂i(U − Ũ ) = kBT (D−1)i j∂kD jk, (38)

in which we have identified the scalar function h(x) =
[U (x) − Ũ (x)]/(kBT ).

From Eq. (38), which entails Eq. (6), we deduce that for
the equilibrium solution Eq. (37) to exist the components of
the diffusion tensor D(x) must satisfy certain constraints. In
particular, the second derivatives of h(x) require the following
to hold for i �= j:

∂i[(D
−1) jk∂lDkl ] = ∂i∂ jh

= ∂ j∂ih = ∂ j[(D
−1)ik∂lDkl ]. (39)

Although we cannot provide a general form of h(x), in
Appendix C we derive it for a diagonal diffusion tensor and
discuss the consequences of Eqs. (38) and (39) in two and
three dimensions.

Out of equilibrium we may not rely on the Maxwell-
Boltzmann statistics. We, therefore, should adopt Onsager’s
approach in which the Boltzmann entropy S(x) supplants the
potential U (x) [60–62],

ρ(x) ∝ eS(x)/kB , (40)

cf. (27). With general nonequilibrium forces F Eq. (5) as-
sumes the form

∂tρ = −∇ · J = −∇ · [Fρ − ∇ · (Dρ)]. (41)

in which components of the flux J do not vanish. Fol-
lowing the approach of Refs. [79–81] we express the flux
using a skew-symmetric matrix d with elements satisfying
di j = −d ji:

J = ∇ · (dρ) = Fρ − ∇ · (Dρ). (42)

By substituting Eq. (40) into (42) we find

F − ∇ · D − D · ∇S

kB
− ∇ · d − d · ∇S

kB
= 0. (43)

Consider a vector of parameters ε that characterize the sys-
tem’s departure from equilibrium. In a linear nonequilibrium
regime we should observe

S = −U

T
+ ε · ∂εS + O(|ε|2), (44)

F = −D · ∇Ũ

kBT
+ ε · ∂εF + O(|ε|2), (45)

d = ε · ∂εd + O(|ε|2), (46)

in which we use the fact that d vanishes in equilibrium
|ε| = 0. The tensor ∂εF represents here the linear Onsager
coefficients for the components of the matter flow conjugate

to the parameter ε. Substitution of Eqs. (44)–(46) into (43)
yields

−
(

D · ∇Ũ

kBT
+ ∇ · D − D · ∇U

kBT

)

+ε · ∂ε

(
F − D · ∇S

kB
− ∇ · d + d · ∇U

kBT

)
= 0, (47)

with ε regarded as a small perturbation of an equilibrium state.
On the left-hand side of Eq. (47) the first of the two terms,
which must both vanish identically, ensures the consistency
with the equilibrium theory,

∇U = ∇Ũ + kBT D−1 · ∇ · D. (48)

From this condition we derive Eq. (38) in the vector form

kBT ∇h = ∇(U − Ũ ) = kBT D−1 · ∇ · D, (49)

which confirms our claim in Eq. (6). We may also identify in
Eq. (47) Fick’s law,

JD = D ·
(∇U

kBT
− ε · ∂ε

∇S

kB

)
ρ = −D · ∇ρ. (50)

III. INFERRING SPACE-DEPENDENT DIFFUSION FROM
FIRST-PASSAGE STATISTICS

Molecular-dynamics methods, which allow for estimation
of fluids’ space-dependent diffusion coefficients in presence
of an external potential, have been a topic of numerous works
[25,26,82–84]. In particular, some of the latest approaches
[25,83,84], which offer a relatively simple computational
scheme, rely on the information extracted from statistics of
first-passage times—a time elapsed until a certain condition,
typically a passage to a given spatial region, is satisfied
[85–89]. By combining the theory presented in Sec. II with the
approach formulated in Ref. [25], we develop a new method
for measuring the transverse component of a diffusion tensor.

First we provide definitions relevant for a diffusing par-
ticle in one dimension. In what follows, we consider the
first-passage time of a molecule, which escapes a symmetric
interval of length 2L centered at the initial position x0 = x(0).
See Fig. 1 for an illustration. Such a first-passage time is
formally defined as

τ (x0) = inf{t � 0: |x(t ) − x0| � L}. (51)

Note that τ (x0) is a positive random variable which takes a
different value for each trajectory x(t ). The mean first-passage
time is then given by

〈τ (x0)〉 =
∫ ∞

0
dτ τP[τ (x0) = τ ], (52)

where P[τ (x0) = τ ] is the probability that the particle exits
from the spatial region of interest [x0 − L, x0 + L] within a
time interval [τ, τ + dτ ].

In addition the first-passage events defined above can be
characterized as positive and negative when the diffusing
molecule escapes, respectively, through the positive or neg-
ative end of the interval [x0 − L, x0 + L]. Because in this
particular problem particles always exit from the region of
interest in a finite time, i.e., τ (x0) < ∞ for all trajectories, the
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FIG. 1. Illustration of first passage events in time series of four
noninteracting particles. Initially all the four particles are located
at x = 0 nm. The time series of their positions are truncated at the
respective first-passage events—when the particles’ trajectories cross
one of the boundaries at x − L = −0.1 nm or at x + L = 0.1 nm
(L = 0.1 nm) for the first time. The red-colored series end with
the negative first-passage events at x − L, whereas the blue-colored
ones—with the positive event at x + L. The first-passage time can
be read out from the vertical time axis at the final point of the
trajectories.

probabilities of these events P+(x0) < 1 and P−(x0) < 1 obey
a relation,

P+(x0) + P−(x0) = 1. (53)

No closed-form expression is known in general for the
probabilities and the mean exit time of the above first-passage
events in terms of D(x), U (x), and Ũ (x). On the other hand,
for first-passage intervals of a small length L, one can approx-
imate the dynamics of a molecule near x = x0 by a diffusion
process with a drift proportional to the local gradient ∂xU (x0)
and a constant mobility D(x0)/(kBT ). Within this approxi-
mation one can relate the local first-passage statistics to the
space-dependent potential and diffusion coefficient by using
the analytical expressions for 〈τ (x0)〉, P+(x0), and P−(x0) in a
drift-diffusion process [90].

In Ref. [25] it was shown that, assuming a Smoluchowski
diffusion equation, the effective potential U (x) can be recon-
structed from the steady-state density ρ(x) of the diffusing
particles through U (x) = −kBT ln ρ(x). The coefficient D(x)
can then be inferred from two quantities: (i) the gradient of
the inferred effective potential ∂xU (x); and (ii) the mean exit
time 〈τ (x)〉 of particles which escape from a small interval
[x − L, x + L].

In the Fokker-Planck picture, however, the numerical dif-
ferentiation of U (x) and, therefore, the estimation of the local
density are unnecessary as we show shortly. This alternative
approach significantly simplifies the computational aspects
of the inference procedure. Indeed, the probabilities of the
positive and negative first-passage events of an overdamped

Brownian particle described by Eq. (35) are determined by
the Fokker-Planck potential [90],

P+(x) =
∫ x+L

x
dy

D(y) exp
(
−U (y)

kBT

)
∫ x+L

x−L
dy

D(y) exp
(
−U (y)

kBT

)

=
∫ x+L

x dy exp
(
− Ũ (y)

kBT

)
∫ x+L

x−L dy exp
(
− Ũ (y)

kBT

) , (54)

P−(x) =
∫ x

x−L
dy

D(y) exp
(
−U (y)

kBT

)
∫ x+L

x−L
dy

D(y) exp
(
−U (y)

kBT

)

=
∫ x

x−L dy exp
(
− Ũ (y)

kBT

)
∫ x+L

x−L dy exp
(
− Ũ (y)

kBT

) , (55)

which hold due to Eq. (7). As in Ref. [25], Appendix C] we
assume that over a small interval [x − L, x + L] the diffusion
coefficient and the slope of the Fokker-Planck potential are
approximatively constant. In other words, for y ∈ [x − L, x +
L] we pose

D(y) � D(x) + O(y − x), (56)

∂xŨ (y) � ∂xŨ (x) + O(y − x), (57)

which are accurate for small gradients |∂xŨ (y)| and small L.
Dividing Eq. (55) by (54) and using Eq. (57), we get

∂xŨ (x) � kBT

L
ln

[
P−(x)

P+(x)

]
, (58)

cf. Eqs. (13) and (17). To find the diffusion coefficient we use
the formula for the mean exit time [90],

〈τ (x)〉 =
∫ x+L

x

dy

D(y)

∫ y

x−L
dz exp

(
−U (z) − U (y)

kBT

)

− P−(x)
∫ x+L

x−L

dy

D(y)

∫ y

x−L
dz exp

(
−U (z) − U (y)

kBT

)

=
∫ x+L

x
dy

∫ y

x−L

dz

D(z)
exp

(
−Ũ (z) − Ũ (y)

kBT

)

− P−(x)
∫ x+L

x−L
dy

∫ y

x−L

dz

D(z)
exp

(
−Ũ (z) − Ũ (y)

kBT

)

� kBT L

D(x)∂xŨ (x)
tanh

[
L∂xŨ (x)

2kBT

]
, (59)

in which we again used the approximations (56) and (57).
From the last expression, further simplified through Eq. (58),
D(x) can be expressed as

D(x) � L2

〈τ (x)〉
P+(x) − P−(x)

ln[P+(x)/P−(x)].
(60)

Remarkably, Eq. (60) implies that the local diffusion
coefficient can be determined from the statistics of first-
passage events alone. In the following subsection we verify
Eqs. (58) and (60) for a one-dimensional stochastic model of
diffusion. Then in Sec. III B we apply our inference method
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FIG. 2. Estimation of the diffusion coefficient in a Büttiker-like
ratchet. Space-dependent diffusion coefficient, plotted together with
the Smoluchowski and Fokker-Planck potentials, is compared with
the estimates made from our simulations using Eq. (60). Error bars
are given by three standard deviations. Simulation parameter values
are as follows: U0 = 3kBT , D0 = 3 nm2/ns, α = 0.5, φ = 0.2 nm.
Checks for first-passage events with L = 0.1 nm were performed at
each simulation time step—every 2 fs. A total of 1000 such events
was acquired for each value of the initial position x.

to molecular-dynamics simulations of two soft-matter systems
with phase boundaries.

A. Application I: Büttiker-Landauer ratchet

First we test Eqs. (58) and (60) in a one-dimensional
stochastic model of inhomogeneous transport. In partic-
ular, we consider the so-called Büttiker-Landauer ratchet
[63,64] with a periodic potential well and diffusion coefficient
(Fig. 2),

U (x) = U0

2
[1 − cos(2πx)], (61)

D(x) = D0{1 + α cos[2π (x − φ)]}, (62)

in which U0 > 0, D0 > 0, |α| < 1, and |φ| < 1 are constant
parameters. The parameter U0 controls the energy barrier of
the potential well, whereas D0 is the diffusion scale. The
amplitude of D(x) is modulated by α and its relative phase
shift with respect to U (x)—by φ. The Ito-Langevin Eq. (35)
for this model reads

dx = −D(x)

kBT

dŨ (x)

dx
dt +

√
2D(x)dB, (63)

with Ũ (x) = U (x) − kBT ln[D(x)/D0]; B(t ) denotes the stan-
dard Wiener process.

In our example we simulate the system with parameter
values, which are similar in magnitude to those of Sec. III B:
U0 = 3kBT , D0 = 3 nm2/ns, α = 0.5, φ = 0.2, L = 0.1 nm.
The equation of motion (63) was integrated using the explicit
Euler scheme with a time step 2 fs. We sampled first-passage
events for 1000 initial conditions uniformly distributed in each
region of interest [x − L, x + L]. Figures 2 and 3 show that
the first-passage statistics renders reliable estimates for the
diffusion coefficient and the gradient of the Fokker-Planck
potentials without any fitting parameters: within the statistical

FIG. 3. Estimation of the gradient of the Fokker-Planck potential
in a Büttiker-like ratchet. The slope of the Fokker-Planck potential is
compared with the approximate Eq. (58) applied to the simulation
data. Error bars and simulation parameters are the same as those
in Fig. 2.

uncertainties Eqs. (58) and (60) accurately match the simu-
lated profiles of ∂xU (x) and D(x).

B. Application II: Soft-matter interfaces

In this section, we study dynamics of water molecules
near two biologically relevant soft-matter interfaces, by us-
ing our method based on first-passage statistics. Inspired by
recent works [25,26,83,84], we model the trajectory of a
single molecule by an overdamped Langevin equation in the
presence of external potential and inhomogeneous diffusion
coefficient, which induces multiplicative noise. In one of the
systems that we consider, few thousands of water molecules
interact with a biological surface through electrostatic and
Van der Waals forces. The effective Langevin dynam-
ics accounts, therefore, for the effective potential and
space-dependent diffusivity, which emerge from microscopic
potential-energy interactions, entropic forces, and the under-
lying geometry of the surface under consideration.

In particular, here we consider an effective one-
dimensional description of two systems along the coordinate
axis x, which is perpendicular to surfaces separating liq-
uid water from vapor—in the first case [Fig. 4(a)]—and
from a surfactant layer—in the second case [Fig. 4(b)]. Both
systems were simulated using a molecular-dynamics pack-
age GROMACS in a slab geometry with periodic boundaries
(Appendix D). In the water-vapor simulations a layer of liq-
uid water, which occupies the center of an empty 300 nm ×
5; nm × 5 nm box, is surrounded from left and right by two
gas-liquid interfaces. In the water-surfactant system of the
same size, two phase boundaries are stabilized by soap films,
which consist of a surfactant monolayer—molecules of hex-
aethylene glycol monododecyl ether with a stoichiometric
formula C6H12.

First we discuss a static property—the local density
extracted from our molecular-dynamics simulations after
equilibration. Compared with the water-surfactant interface,
the liquid-vapor contact produces a sharper profile of the
water density ρ(x) along the symmetry axis x [Fig. 4(c)].
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FIG. 4. Water-vapor and water-surfactant interfaces in
molecular-dynamics simulations. Panel (a): A snapshot of the
H2O molecules in the water-vapor system with red-colored oxygen
atoms and white-colored hydrogen atoms. Panel (b): A snapshot with
the surfactant’s carbon chains (green colored) and H2O molecules
in the water-surfactant system. Panel (c): Equilibrium number
density of water molecules at the center of the simulation box for
the water-vapor (red) and water-surfactant (green) interfaces. The
red dotted vertical line indicates a position of the Gibbs-dividing
interface only in the right part of the simulation box for the
water-vapor system. Likewise the green dotted vertical line delimits
one of the two phase boundaries between water and surfactant
in the left part of the simulated system. Red circles and green
triangles indicate locations inspected in Fig. 6 for water-vapor and
water-surfactant interfaces, respectively. The equilibrium density of
molecules is reconstructed from histograms with bin size 0.2 nm
extracted from a simulation of total duration 0.5 ns with time
step 10 fs.

Such space-dependent features of the density profiles can be
accompanied by a heterogeneous diffusion of water molecules
near the phase boundaries. In fact, during a simulation run
the molecules may pass across regions in which their local
transport properties vary significantly.

Now we describe in more details our analysis of the
molecular-dynamics data. The positions of water-molecules’
oxygen atoms were acquired from simulated trajectories of
a total duration 0.5 ns, sampled with a time step �t = 10 fs.
Centers of nonoverlapping regions of interests [xi − L, xi + L]
of width 2L enumerated by an integer i, were distributed
over an equidistant grid. When we detect that after n simula-
tion steps a molecule initially located at x ∈ [xi − L, xi + L]
has traversed a distance of L = 1 Å, the first-passage time
τ (xi ) = (n − 1)�t + �t/2 = (n − 1/2)�t is recorded. The
initial coordinates x sampled from the original trajectory were
separated by 5 ps to reduce statistical correlations between
two consecutive first passage events. Up to a maximum of
about 104 of such events were, thus, obtained in the most
densely occupied regions of interest. Diffusion coefficients
were estimated only in the regions of interest with, at least,
100 observations—a threshold introduced to ensure sufficient
statistics for inference.

Figure 5 reports the first-passage statistics extracted
from our molecular-dynamics data. At distances up to
∼1.5 nm from the Gibbs dividing interfaces the escape
probabilities in the direction towards and from the phase
boundary are equal in the two simulated systems P+(x) =
P−(x) = 1/2 [Fig. 5(a)]. Closer to the interface, we ob-
serve a preferred direction of motion into the bulk liquid,
i.e., P+(x) > P−(x)[P+(x) < P−(x)] for x < 0(x > 0). Inter-
estingly, the mean exit time 〈τ (x)〉 of water molecules near the
water-vapor and water-surfactant phase boundaries present a
remarkable qualitative difference [Fig. 5(b)]: 〈τ (x)〉, which al-
ways decreases with distance from the water-vapor interface,
changes nonmonotonously near the water-surfactant interface.
In the case of water-vapor simulations the mean exit time
〈τ (x)〉 as a function of position reproduces the shape of
the density profile ρ(x) and, therefore, implies that water
molecules are faster in less crowded regions as expected.
However, near the surfactant monolayer no direct correla-
tion between the escape kinetics and the local density of
water molecules is observed, cf. Figs. 4(c) and 5(b) which
reveal an underlying hetereogeneous chemical environment
discussed below.

By using three different methods we infer the transverse
space-dependent diffusion D(x) of water molecules from our
simulation data:

(1) Method I uses Eq. (60) in terms of escape probabilities
and mean exit times.

(2) Method II extracts D(x) from the local density and the
first-passage statistics as prescribed by Eq. (3) in Ref. [25].

(3) Method III relies on a linear regression of local mean
squared displacements of water molecules, which transiently
pass through the regions of interest [xi − L, xi + L] (see
Appendix E for details).

In Methods I and II we use the results of first-passage
analysis already introduced in this section and in Ref. [25].
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FIG. 5. First-passage statistics of H2O molecules in the water-
vapor (red) and water-surfactant (green) systems. (a) Conditional
probability P+(x) for water molecules near x to first escape the
interval [x − L, x + L] from x + L. A first-passage probability
P+(x) > 1/2[P+(x) < 1/2] indicates an effective force acting on the
molecules at a given point x in the positive (negative) direction of the
axis. (b) Mean escape time 〈τ (x)〉 from the interval [x − L, x + L]
quantifies the molecules’ mobility. Larger values of 〈τ (x)〉 corre-
spond to a slower diffusive kinetics. Error bars are given by three
standard deviations. Red and green dotted lines indicate the Gibbs
dividing interfaces as described in Fig. 4. See Sec. III B for further
details on the first-passage-time analysis.

Method III works as follows: Using the same partition of the x
axis as in the first-passage approach, we collect the molecules’
displacements as a function of time and position. On the
scales of the molecules’ mean first-passage times (t < 3 ps),
we observe a linear trend of mean-squared displacements
originating from the same region of interest (Fig. 6). By
fitting these data we estimate the local diffusion coefficient
(Appendix E).

Figure 7(a) summarizes the results of the three inference
methods for D(x) applied to the molecular-dynamics sim-
ulations of water-vapor and water-surfactant interfaces. In
agreement with the theory of Sec. II the Fokker-Planck and
Smoluchowski approaches (Method I and Method II, respec-
tively) render equivalent estimates of the diffusion coefficient
in one-dimensional systems. These values match perfectly the
results obtained with Method III in the region of a flat effective
potential U (x). Closer to the phase interfaces the performance
of Method III deteriorates due to the gradient ∂xU (x) rapidly
changing with x.

FIG. 6. Fitting local mean squared displacements (MSD) of
water molecules observed in our molecular-dynamics simulations for
selected locations, which are also indicated in the density profile in
Fig. 4(c): (a) water-vapor system and (b) water-surfactant system.
The legend shows the inferred values of the diffusion coefficient at
different positions x (in nanometers) as obtained by a linear regres-
sion of the MSDs vs time within selected intervals (solid lines).

One may appreciate important qualitative differences be-
tween the phase interfaces in the two simulated systems
(Fig. 7). The water molecules, which are far away from the
surfactant layer, do not experience a gradient of chemical
potential. Inside the layer, however, their motion is restricted
by the surfactant’s hydrophilic and hydrophobic groups,
which, thus, decrease the escape rate �(x) and, consequently,
also the diffusion coefficient, cf. Eq. (18). The slow down
in the diffusion constant of water is roughly a factor of 2
relative to the bulk diffusion. Interestingly, we also observe
that there is a minimum in the diffusion constant within the
surfactant layer which correlates with the transition from the
hydrophilic to hydrophobic part of the surfactant shown in
Fig. 7(d).

In contrast, the unsaturated chemical interactions at the
liquid-vapor interface increase both the effective potential en-
ergy of water molecules and their escape rate. In this case,
the diffusion coefficient of water molecules near the phase
boundary is, therefore, larger than in the bulk in agreement
with previous studies [26,27]. These results suggest that the
effective viscosity of water at the interface with vapor is
smaller than near the surfactant film and also varies within
the surfactant layer. This type of microscopic information will
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FIG. 7. Estimating the heterogeneous diffusion coefficient of
H2O molecules in the water-vapor (red) and water-surfactant (green)
systems. Panel (a) compares estimations of the transverse diffusion
coefficient D(x) as a function of the distance x from the center of
the simulation box obtained by three inference methods: (I) The
first-passage method [Eq. (60)], (II) the method of Ref. [25], (III) the
method of local mean-squared displacements (Appendix E). Panel
(b) shows the density of hydrophilic and hydrophobic residues of
the C6H12 molecules in the water-surfactant interface. Error bars in
(a) are given by three standard deviations. Red and green dotted lines
indicate the Gibbs dividing interfaces as described in Fig. 4.

provide valuable input for continuum hydrodynamic models
of gas diffusion through phase interfaces [28].

IV. CONCLUSION

In this paper we have thoroughly studied the statis-
tical physics of heterogeneous diffusion at macroscopic,
mesoscopic, and microscopic scales both in equilibrium
and in nonequilibrium conditions. We have shown that
Smoluchowski and Fokker-Planck diffusion laws are equiv-
alent and can be used interchangeably, yet the latter is bene-
ficial for inference of space-dependent diffusion coefficients.
In particular, we have found that the Fokker-Planck potential
and the diffusion coefficient can be extracted by collecting
statistics of first-passage times from stochastic trajectories,
without measuring local densities, see Eq. (60). We have
verified extensively this technique and explored its theoreti-
cal implications with applications to soft matter as discussed
below.

As shown in Sec. II the Smoluchowski equation and
Fick’s law of diffusion incorporate the classical theory of
statistical mechanics and thermodynamics. In equilibrium,
this formulation of the transport problem reproduces the
Maxwell-Boltzmann statistics of mass density. Using On-
sager’s approach we showed that nonequilibrium systems are
also consistent with the Smoluchowski picture. Furthermore
this theory entails nontrivial relations between the compo-
nents of a diffusion tensor (Appendix C).

Although the mass transport problem can be formu-
lated in a physically equivalent form as the Fokker-Planck
equation, the associated potential term must be recognized
as a distinct quantity—not a standard thermodynamic one.
As a physical variable the Fokker-Planck potential belongs to
the microscopic and mesoscopic description of the system: It
determines a preferred direction of the particle flow. This in-
terpretation has been revealed in our analysis of the simplified
microscopic dynamics and molecules’ first-passage statistics.

In addition, we have pointed out that the Ito-Stratonovich
dilemma is resolved by providing a physical interpretation of
the potential term. Similarly to the diffusion equations (3)
and (5), the Ito and Stratonovich conventions are physically
equivalent when interpreted consistently with the theory of
thermodynamics. It prescribes to use in the Langevin dy-
namics formulated with the Ito calculus the Fokker-Planck
potential term, which must be mixed with the thermodynamic
potential in the other conventions.

Onsager’s approach is also applicable to thermodynamic
processes other than the mass transport. In fact our simplified
model of the stochastic kinetics and the ensuing formalism
of stochastic thermodynamics are quite general (Sec. II A).
Combined with the theory of random walks, these ideas lead
to a consistent interpretation of the macroscopic thermody-
namics and transport equations. The first-passage approach
can be formulated for integrated currents of heat, charge, etc.
For instance, one could measure the time that a given amount
of these quantities transferred through a given point.

As a test of our theory, we have developed a robust method
to estimate the space-dependent diffusivity of molecules on
the nanoscale solely from escape-time statistics, see Eq. (60).
Using this method, we extracted and examined the space-
dependent diffusion coefficient in a computational model of
a Büttikker-Landauer ratchet and in two realistic models of
soft-matter interfaces. We have examined the first-passage
statistics of water molecules at the water-vapor interface and
within a surfactant monolayer. Consistently with previous
studies, we find that there is a monotonic increase in the diffu-
sion constant as the molecule approach the liquid-vapor phase
boundary, whereas within the surfactant the diffusion constant
appears to be modulated by the transition from hydrophilic to
hydrophobic parts of the surfactant. It will be interesting in the
future to explore whether one can use the spatial modulation
of first-passage times to detect hydrophillic or hydrophobic
“pockets” in living matter.

The asymmetry of soft-matter interfaces with aqueous so-
lutions generate electric fields that could be harnessed for
chemical reactions [91–93] relevant in prebiotic chemistry
[94] as well as artificial photosynthesis. Both the statics and
dynamics of water at the interface play a crucial role in con-
trolling the magnitude and fluctuations of the electric field.
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Understanding the changes in water molecules’ dynamics as
probed by the space-dependent diffusion coefficient in such
systems may provide important insights for the future models.
Our method might find promising applications in examining
such complex geometries and biological environments.
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APPENDIX A: STOCHASTIC KINETICS IN TWO
DIMENSIONS

Equation (15) in two dimensions can be constructed by
considering a stochastic kinetics with independent transition
probabilities along coordinates x1 and x2,

P00(x1, x2) = P[(x1, x2), (x1, x2)]

= [1 − �1(x)dt][1 − �2(x)dt], (A1)

P0+(x1, x2) = P[(x1, x2), (x1, x2 + dx2)]

= [1 − �1(x)dt]�2(x)dt
eL(x1,x2+dx2 )

Z (x1, x2)
, (A2)

· · ·
P++(x1, x2) = P[(x1, x2), (x1 + dx1, x2 + dx2)]

= �1(x)�2(x)dt2 eL(x1+dx1,x2+dx2 )

Z (x1, x2)
, (A3)

which yield

∂tρ = −∂1[ρ(P+0 − P−0)]
dx1

dt
+ ∂11[ρ(P+0 + P−0)]

dx2
1

2dt

− ∂2[ρ(P0+ − P0−)]
dx2

dt

+ ∂22[ρ(P0+ + P0+)]
dx2

2

2dt

− ∂1[ρ(P++ + P+− − P−+ − P−−)]
dx1

dt

− ∂2[ρ(P++ + P−+ − P+− − P−−)]
dx2

dt

+ ∂12[ρ(P++ + P−− − P−+ − P+−)]
dx1dx2

dt

+∂11[ρ(P++ + P−+ + P+− + P−−)]
dx2

1

2dt

+ ∂22[ρ(P++ + P−+ + P+− + P−−)]
dx2

2

2dt

= −∂1

{
∂1L

�1dx1

dt
ρ − ∂1

[
�1

dx2
1

2dt
ρ

]}

− ∂2

{
∂2L

�2dx2

dt
ρ − ∂2

[
�2

dx2
2

2dt
ρ

]}
. (A4)

By identifying in the above equation the Fokker-Planck
potential,

Ũ = −2kBTL,

and the components of a diagonal diffusion tensor given by
Eq. (32), we obtain Eq. (5) in two dimensions.

APPENDIX B: STOCHASTIC KINETICS OUT
OF EQUILIBRIUM

The simplified microscopic dynamics, formulated for equi-
librium systems in Sec. II A can be generalized to the
nonequilibrium case. To do so we introduce into Eq. (13)
a factor, which cannot be derived from the directing
function L(x),

P±(x)

1 − P0(x)
∝ eL(x±dx)±εφ(x)/2,

in which the parameter ε controls the deviation from equilib-
rium due to the field φ(x), cf. Sec. II C. The above formula
leaves invariant the normalization factor Z (x) but modifies the
transition rates,

k±(x) ∝ e−Q(x)dt±∂xL(x)dx±εφx/2.

With the above definitions a new term appears in Eq. (15),

∂tρ = ∂x

{
−� dx2ρ

(
∂xL + ε

φ

2

)
+ ∂x

[
� dx2

2
ρ

]}
,

which leads to an extra force term ∂εF = D(x)φ(x) in the
resulting Fokker-Planck equation, cf. Eqs. (41) and (45). This
formalism may also be extended in a straightforward manner
to a vector of nonequilibrium parameters ε treated in Sec. II C.

One-dimensional nonequilibrium systems imply, however,
a strong constraint on the form of φ(x), which we can establish
through the Kirchhoff rule for the steady-state current,

0 = ρ(x)P+(x) − ρ(x + dx)P−(x + dx) + ρ(x − dx)

× P+(x − dx) − ρ(x)P−(x) � ε∂xφ(x)dx. (B1)

Hence, in one dimension we must observe φ(x) ≡ φ0 =
const. In the presence of more degrees of freedom the
Kirchhoff rule contains additional terms, which allow for
more general forms of φ(x).

As we noted in Sec. II, the one-dimensional systems are al-
ways conservative [49], in the sense that we always may find a
potential form Uφ (x) = εkBT φ0x such that φ(x) ∝ −∂xUφ (x).
However, in certain circumstances it cannot be interpreted
as the system’s thermodynamic energy. One example is the
diffusion on a ring, such as the Büttiker-Landauer ratchet con-
sidered in Sec. III A. The system’s potential energy must be
consistent with the macroscopic symmetry—the periodicity in
this example. Whereas a constant function φ(x) ≡ φ0 satisfies
this requirement, the “pseudo”-potential Uφ (x) is not periodic.
Hence, there exists no potential that would be compatible with
the system’s symmetry and generate a constant force.

The potential of the Büttiker-Landauer ratchet (Sec. III A)
is periodic and, therefore, consistent with the system’s sym-
metry. Consequently, it generates no macroscopic current in
equilibrium. However, by adding a constant force term to the
Büttiker-Landauer ratchet, one can generate a nonequilibrium
steady state with a constant current.
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Another example is diffusion on a real line with a
bounded potential U (x). The “unwrapped” Büttiker-Landauer
ratchet also fits such a description. In this interpretation the
Boltzmann factor of the form e−[U (x)−Uφ (x)]/(kBT ) has a min-
imum at infinity. Therefore, the system can never reach a
steady state. Any other function φ(x), which vanishes at in-
finity, can be incorporated into the potential energy.

Finally, we remark that the change inthe environment
entropy,

s(x, x + dx) = kB∂x[2L(x) + Q(x)dt]dx

+ ε

2
[φ(x + dx) + φ(x)], (B2)

cannot be, in general, interpreted as the change in the nonequi-
librium Boltzmann entropy,

S(x) = kB ln ρ(x),

of the steady-state density p(x), because the term,

ε

2
[φ(x + dx) + φ(x)] � ε

∫ x+dx

x
dy φ(y),

in general, is not associated with the total differential of a
macroscopic thermodynamic function.

APPENDIX C: DIFFUSION TENSOR

In principle, a nondiagonal diffusion tensor D, whose
components always must form a symmetric positive-definite
matrix, can be brought to a diagonal form D̄i j = RikR jl Dkl by
an orthonormal matrix Ri j . This matrix, which encodes a rota-
tion of the coordinate axes, is parametrized by three rotational
angles φi=1–3 in three dimensions and by one rotational angle
φ in two dimensions. Therefore, in general, Eqs. (38) and
(39) establish relations among six variables in three dimen-
sions [three diagonal components Di=1–3(x) and three angles
φi=1–3(x)] and among three variables in two dimensions [two
diagonal components Di=1,2(x) and one angle φ(x)].

For example, in two dimensions a general diffusion tensor
may have the form

D(x) =
(

cos2 φ(x)D1(x) + sin2 φ(x)D2(x) cos φ(x) sin φ(x)[D2(x) − D1(x)]
cos φ(x) sin φ(x)[D2(x) − D1(x)] cos2 φ(x)D2(x) + sin2 φ(x)D1(x)

)
.

Substituted into Eq. (38) the above expression leads to a
formidable equation for h(x1, x2). Under some geometric con-
straints these equations may, however, become tractable.

Situations in which the off-diagonal components of a dif-
fusion tensor must vanish to comply with the macroscopic
symmetry of a physical system are quite common. In fact,
the two examples considered in Sec. III B fall into this cat-
egory. Both systems studied there are invariant with respect to
rotations about the x axis, which is transverse to the phase
interfaces in the slab geometry. In this case we can find a
general form of the function h(x) that must satisfy Eqs. (38)
and (39).

Below we consider Eqs. (3) and (5) with a diagonal diffu-
sion tensor D(x) → D̄(x) in two dimensions,

D̄(x) =
(

D1(x) 0
0 D2(x)

)
,

with positive space-dependent components D1(x1, x2) and
D2(x1, x2). Equations (38) and (39) then yield

U (x) = Ũ (x) + kBT, ł, D1(x) − kBT φ1(x2)

= Ũ (x) + kBT ln D2(x) − kBT φ2(x1), (C1)

∂1∂2h(x) = ∂1∂2 ln D1(x) = ∂1∂2 ln D2(x), (C2)

in which φ1(x2) and φ2(x1) are arbitrary real functions of
the single coordinates x1 and x2. The above relations restrict
admissible forms that the spatial dependency of the diffusion
tensor may assume

D̄(x) = d (x1, x2)

(
eφ1(x2 ) 0

0 eφ2(x1 )

)
, (C3)

with the common factor function h(x) = d (x1, x2). General-
ization of Eq. (C3) for a diagonal diffusion tensor in three
dimensions is straightforward.

APPENDIX D: COMPUTATIONAL DETAILS

Classical molecular-dynamics simulations of the water-
vapor and water-surfactant systems (Sec. III B) were per-
formed using the GROMACS package [95]. For the surfactant,
we employed a force field previously validated by Shi and
co-workers, details of which can be found in Ref. [96]. United
atoms are used for the alkyl groups, whereas the ester and
hydroxyl OH groups are treated explicitly. The bonded and
nonbonded interaction potentials were modeled by a com-
bination of TRaPPE-UA [97] and Optimized Potentials for
Liquid Simulations (OPLS) [98,99] force fields. The surfac-
tant component consisted of 96 C6H12 molecules, 48 on each
side of the simulation box. Both simulated systems included
4055 water molecules described by the Single Point Charge
(SPC) potential [100], which has been shown to accurately re-
produce thermodynamic properties, such as the second virial
coefficient and the surface tension of the air-water interface
[101].

Periodic boundary conditions are applied in all directions.
In water-surfactant simulations a vacuum region of 215 Å in
width was reserved between the two monolayers of C6H12

molecules. A cutoff of 1 nm is used in the real space for
the Coulomb interactions treated by the full-particle mesh
Ewald method as well as for the Lennard-Jones interactions.
All simulation models were first equilibrated in the NV T en-
semble for 10 ns using the Nose-Hoover thermostat [102,103]
at 298 K with a relaxation constant of 2 ps. For the first
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passage analysis we produced 0.5-ns-long trajectories with the
positions of the particles saved every 10 fs.

APPENDIX E: LOCAL MEAN-SQUARED
DISPLACEMENTS

The method of mean-squared displacements, which is
commonly used to estimate the diffusion constant in ho-
mogeneous systems, relies on the Einstein formula for the
mean-squared displacement in absence of the potential U (x),

〈[x(t ) − x(0)]2〉 = 2Dt . (E1)

The above formula is not applicable to systems with an
external potential or with the diffusion coefficient, which
varies along the axis of displacements. Therefore, the standard
method of mean-squared displacements is not suitable for
measuring the transverse diffusion coefficient [25].

For a Brownian particle, however, another formula holds
regardless of the external potential, which may be present in
the system [104–106],

D[x(0)] = lim
t→0

〈[x(t ) − x(0)]2〉
2t

. (E2)

In a real physical system or a molecular-dynamics simulation
Eq. (E2) is not strictly valid: Due to the molecules’ inertia
[107] there exists a ballistic regime of diffusion at short times
t with 〈[x(t ) − x(0)]2〉 ∝ t2, cf. Chap. II in Ref. [73].

Interpreting Eq. (E2) in a physical sense [105,106], we may
choose a sufficiently small time t (larger than the momentum
relaxation time) and use an approximate expression,

D(x) ≈ 〈[x(t ) − x(0)]2〉
2t

, (E3)

conditioned on x(0) ∈ [xi − L, xi + L] in which the integer
i enumerates the regions of interest as in the first-passage
method (Sec. III). Then we choose a small interval similar in
order to the mean first-passage time τ . Over this interval the
molecules’ displacements remain on average within the scale
of L, although a small fraction of observations would probe
properties of the neighbor regions.

As follows from the above description, we obtain mean-
squared displacements for molecules exploring the local
environment in a given region of interest. These data can
be fitted by a line to extract the spatially resolved diffusion
coefficient D(x) as in the standard method of mean-squared
displacements (Fig. 6). Although in our approach we rely on
Eq. (E3) and, thus, do not account for the external field U (x),
a correction to the quadratic or higher orders in time—for
the gradient and the curvature of the potential, respectively—
could be, in principle, derived. Due to this fact, the described
method works most reliably when the diffusion coefficient is
small, and the potential U (x) is flat.
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