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Statistical properties of large data sets with linear latent features
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Analytical understanding of how low-dimensional latent features reveal themselves in large-dimensional data
is still lacking. We study this by defining a probabilistic linear latent features model with additive noise and
by analytically and numerically computing the statistical distributions of pairwise correlations and eigenvalues
of the data correlation matrix. This allows us to resolve the latent feature structure across a wide range of data
regimes set by the number of recorded variables, observations, latent features, and the signal-to-noise ratio. We
find a characteristic imprint of latent features in the distribution of correlations and eigenvalues and provide an
analytic estimate for the boundary between signal and noise, even in the absence of a spectral gap.
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I. INTRODUCTION

Massively parallel experiments are now standard in sci-
ence. They record the state of the system through N � 1
variables xi, i = 1 · · · N . These variables could be positions
of particles, agents, or tracers in dusty plasmas [1], soft matter
[2], insect swarming [3], and dynamical systems [4]. They can
be field values at different spatial points in fluids [5], climate
data [6], or activity of “nodes” in gene expression networks
[7], neural recordings [8], postures [9,10], biodiversity [11],
ecology [12], etc. Crucially, the number of recorded variables
is often larger than the number of true (latent) degrees of
freedom in the system [13–15]. This allows to use correlations
among the measured variables to detect the latent ones and to
use the latter in models of the system [13,16–18].

Physical systems are nonstationary, which limits the num-
ber of times T that they can be realistically measured, and one
often has T ∼ N . Hence, statistical fluctuations are large, and
in the limit T � N the data correlation matrix even becomes
degenerate. Once latent features are extracted from such un-
dersampled data (typically by using the Principal Components
Analysis method [19]), one uses the Random Matrix Theory
[20], and, in particular, the Marčenko-Pastur (MP) eigenvalue
density of a pure noise correlation matrix [21] to identify those
features which can be trusted. Specifically, one calculates the
upper and the lower bounds of eigenvalues expected by pure
chance from T measurements of N independent variables, and
only eigenvalues outside this interval (and their eigenvectors)
are deemed statistically significant.

This approach assumes that signal-induced correlations
among the variables do not influence the spectrum of noise-
induced correlations. This has never been proven and, as
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we will show, is, in fact, incorrect. More generally, we are
not aware of results to produce the eigenvalue density of
the correlation matrix when the correlations come from the
sampling noise and from true low-dimensional latent signals
with the latter having a known distribution (although see
work on spiked covariance matrix models [22–25]). Even
statistics of the entries of the correlation matrix (rather than
of its eigenvalues) have not been reported in this case. In
this paper, we close these gaps and calculate—numerically
and analytically, using the Random Matrix Theory methods—
statistical properties of correlation matrices for data sets with
low-dimensional latent features structure. We show that the
distribution of pairwise correlations and the spectra of their
eigenvalues carry signatures of the number of latent features,
allowing one not only to choose rigorously, which of the
principal components are above the noise floor, but also to see
if the overall model of latent features plus noise is accurate for
a data set.

We analyze two commonly occurring limits. First is the
classical statistics limit, where the number of latent features
m can be of similar size as N , whereas both N and m are
much smaller than the number of observations T . Second is
the intensive limit, where the ratio of number of variables
to observations N/T is finite, whereas m is much smaller
than both N and T . We leave the extensive limit where m
grows with N for later work. We believe that our results are
an important step in the development of analytical tools for
understanding large data sets.

II. THE MODEL AND ITS LIMITS

We consider observations produced by a probabilistic
matrix model combining stochastic latent signals and uncor-
related noise,

X = UV + σR. (1)
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The component matrices U and V have dimensions T × m
and m × N , respectively. Thus, m latent features get randomly
sampled T times (matrix U), and each of the N measured
variables is a random linear combination of the latent features
(matrix V). We assume m � T, N throughout this paper such
that the rank of the signal matrix UV is equal to m, and the
features can be estimated from the data. Such factor models
are commonly used to model latent structures in real data
[26,27].

We choose that the entries of U and V are Gaussian random
variables with zero mean and variances σ 2

U and σ 2
V , respec-

tively,

Utμ ∼ N
(
0, σ 2

U

)
, Vμn ∼ N

(
0, σ 2

V

)
, (2)

t = 1, . . . , T, μ = 1, . . . , m, n = 1, . . . , N. (3)

We make this choice for analytic tractability. However, we
note that many random matrix results are universal and hold
to a certain degree independent of the specific distribution of
data [20]. Whereas we do not know for sure, we expect most
results that we present here to hold similarly for non-Gaussian
(but finite variance) distributions of U and V. Note also that in
applications to real data the means and variances of the entries
may need to be matched to those of the measured variables.
Finally, the elements of the noise matrix R are independent
and identically distributed (i.i.d.) unit variance Gaussian ran-
dom variables, so that the noise in every observation has
variance σ 2.

From Eqs. (1) and (2), the elements of the signal matrix
UV are a sum of m products of two Gaussian variables with
variances σ 2

U and σ 2
V . In Appendix A, we derive the probability

density of these entries and show that their variance is

σ 2
UV = mσ 2

U σ 2
V . (4)

As expected from addition of independent random variables,
each latent component adds σ 2

U σ 2
V to the variance of the ob-

servations.
Furthermore, for m � 1, the probability density of X ap-

proaches a Gaussian with zero mean, see Fig. 4. This allows
us to define a Gaussian signal-to-noise (SNR) ratio SNR ≡
σ 2

UV /σ 2 = mσ 2
U σ 2

V /σ 2. Since our goal is to calculate prop-
erties of the data matrix independent of the units of each
variable, we normalize the data matrix,

X̃ ≡ X/σX , σ 2
X ≡ σ 2

UV + σ 2 = σ 2(1 + SNR). (5)

This normalization by an expected standard deviation is dif-
ferent from subtracting empirical means and standardizing
by an empirical standard deviation. However, we expect the
difference to be ∼T −1/2 and, thus, negligible in what follows.

We now focus on the normalized empirical covariance
matrix (NECM),

C = 1

T
X̃T X̃ = 1

T
(ŨV)T (ŨV) + σ̃ 2RT R

+ σ̃ (ŨV)T R + σ̃RT ŨV, (6)

as well as the matrix of correlation coefficients,

cpq = Cpq√
Cpp

√
Cqq

. (7)

To explore different regimes of the problem, we define

q ≡ N/T, qU ≡ m/T, and qV T ≡ m/N. (8)

Only two of these parameters are independent. These parame-
ters emerge naturally in our theoretical analysis Appendix C 1.
Then the classical statistics and the intensive limits introduced
above become

Classical stats.: q → 0, qU → 0, qV T = const, (9)

Intensive: q = const, qU → 0, qV T → 0, (10)

together with SNR = const in both limits. Notably, q−1
U gives

the number of observations available per latent feature to be
learned. Since the parameter qU is small in both limits, the
latent features are sampled well, even if the measured vari-
ables (controlled by q) may not be. Note that many modern
neuroscience (and other empirical) data sets and their models
fall into one of these limits [13–15,28].

III. DENSITY OF PAIRWISE CORRELATIONS

The first observable statistics we calculate is the density
of correlations cpq of the standardized variables X̃. Our goal
is to analyze the dependence of the density of the matrix
entries cpq on m, T , and the noise strength. The numerator
in the correlation matrix in Eq. (7) has three contributions:
(UV)T (UV) from the pure latent features signal, RT R from
the pure noise, and two cross terms between the signal and
the noise, e.g., (UV)T R. Each term is analyzed separately in
Appendix B and reduced to correlations between independent
Gaussian vectors. Such correlations are distributed according
to the symmetric Beta distribution [29],

pdf(r) = Beta(r; α, α; � = −1; s = 2), (11)

where (pdf) is the probability density function, the location
� and scale s of the Beta distribution are set such that corre-
lations fall on the interval [−1, 1]. The shape parameter α is
determined individually for the signal-signal, noise-noise, and
signal-noise contributions,

αs = m − 1

2
, αn = T − 1

2
, αsn = m1/2T 1/2 − 1

2
. (12)

The sum of Beta distributions is well approximated by a
single Beta distribution [30]. This allows us to approximate
the distribution of entries of the full correlation matrix by a
single Beta distribution of the form Eq. (11). In Appendix B,
we show that, in the limit when contributions of O(T −1/2) and
O(m−1/2) can be neglected, the parameter of the approximat-
ing distribution is

α ≈ [
√

m(1 + 1/SNR)
−1 + √

T (1 + SNR)
−1

]−2 − 1

2
. (13)

Notably, the shape of the distribution depends on m through α.
Thus, the number of latent dimensions can be estimated from
the empirical distribution of the correlation coefficients.

Numerical validation of this result in the pure signal limit
SNR → ∞ is shown in Fig. 1. For small m, the distribu-
tion distinctly changes shape as m varies. When m becomes
comparable to N , i.e., qV T → 1, the distribution approaches
a Gaussian, making it difficult to infer the precise value of
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FIG. 1. Distribution of pairwise correlations in the pure signal limit SNR → ∞, for m = 2, 4, and 30 latent features. Orange: analytical
form (a symmetric Beta distribution). Gray: simulated data. Each simulation has N = 80 variables and T = 2048 observations and constitutes
1000 independent model realizations.

m from its shape. The quality of the analytic approximation
increases with smaller qU , i.e., when more observations per
latent feature are available. The analytic approximation is also
exact in the large noise limit SNR → 0. However, deviations
appear for finite SNR when m is small, see Fig. 5.

IV. EIGENVALUE DENSITY

We compute the eigenvalue density of NECM C, cf. Eq. (6)
from its Stieltjes transform gN (z) = N−1Tr(zI − C)−1, where
z is a complex number. We denote the large-N limit of gN

by gC [20]. The eigenvalue density is obtained from the
Sokhotski-Plemelj formula,

ρ(λ) = 1

π
lim

η→0+
Im gC(z = λ − iη), (14)

where Im denotes the imaginary part.
Full details of the computations are in Appendix C. Briefly,

we consider the eigenvalue density in the classical and inten-
sive limits, Eqs. (9) and (10). This allows us to simplify the
calculations, neglecting cross terms between the signal UV
and the noise R, cf. Appendix C 3. Then, in the classical
statistics limit, the Stieltjes transform satisfies the third order
polynomial equation,

ag3
C + bg2

C + cgC + d = 0, (15)

with

a = qz

1 + SNR
, (16)

b = −qqV T z

SNR
+ (qV T − 1)q + 1

1 + SNR
− z, (17)

c = (q − 1)qV T

SNR
+ qV T z(1 + SNR−1) − qV T + 1, (18)

d = −qV T (1 + SNR−1). (19)

Whereas one can solve this cubic equation analytically, the
results are unwieldy, allowing for little insight. Instead we
rely on analytic approximations in the two noise limits as well
as on numerics. Taking the zero noise limit, SNR → ∞, the
equation reduces to a quadratic polynomial, which we solve
and evaluate Eq. (14) to find the eigenvalue density,

ρ∞(λ) =
√

(λ − λ∞− )(λ∞+ − λ)

2πλσ̄−2
X q−1

V T

+ (1 − qV T )δ(λ), (20)

where σ̄ 2
X ≡ σ 2

X /m = σ 2
U σ 2

V . The Dirac-δ function represents
the N − m eigenvalues of the NECM that are trivially zero.
The m nontrivial eigenvalues lie in a finite interval with
bounds,

λ∞
± = σ̄−2

X (1 ± √
qV T

−1)2. (21)

The density vanishes everywhere else. For finite SNR we
solve Eq. (15) numerically. A comparison of eigenvalue den-
sities in the different noise regimes, including the MP density
[21] representing the pure noise limit SNR → 0 is shown in
Fig. 2(a), top.

In Appendix C 4 a, we derive an analytic approximation for
the eigenvalue bounds λSNR

± at finite SNR, given by a weighted
average of the zero noise bounds λ∞

± and those of the MP
density λMP

± = (1 ± √
q)2 [31],

λSNR
± ≈ (1 + SNR−1)−1λ∞

± + (1 + SNR)−1λMP
± . (22)

In Fig. 2(a), bottom, we compare this approximation and the
true numerically computed bounds at different values of the
SNR. The approximation is good everywhere with the largest
deviation at SNR ∼ 10−1. The part of the eigenvalue spectrum
associated with the pure latent feature signal lies outside of
the interval (1 + SNR)−1[λMP

− , λMP
+ ]. Eigenvalues within this

interval, shown as a striped band, correspond to noise. When
the SNR is increased the noise range is shifted to the left com-
pared to the MP range due to the presence of the latent features
signal renormalizing the NECM. Thus, using the naïve MP
bounds to reject eigenvalues as noise—a common procedure
in data analysis—is incorrect.

A different picture emerges in the intensive limit. The
equation for gC is a lengthy sixth order polynomial, cf.
Eq. (C102). For the SNR → ∞ limit, we find the following
analytic expression for the density:

ρ∞(λ) =
√

(λ − λ∞− )(λ∞+ − λ)

2πλσ̄−2
X (1 + q)q−1

V T

+ (1 − qV T )δ(λ), (23)

with the eigenvalue bounds,

λ∞
± = σ̄−2

X (
√

1 + q ± √
qV T

−1)2. (24)

The eigenvalue density at different levels of noise is shown in
Fig. 2(b), top. For large SNR, there is a gap in the density
between the eigenvalues corresponding to noise and those
corresponding to signal. The gap closes at lower SNR, and the
combined density converges to the MP density for SNR → 0.
In the intensive limit, the approximate expression Eq. (22)
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FIG. 2. Eigenvalue density and bounds as a function of SNR in the classical statistics and the intensive limit. (a) Classical statistics
limit (q = 0.01, qV T = 0.9) at three levels of SNR. Top plot: zero noise analytic density, Eq. (20), (yellow); large noise limit given by the
Marčenko-Pastur distribution (black); and intermediate noise semianalytic density (blue) with the numerical simulation (gray) for comparison.
Vertical dashed blue line is the approximate boundary between noise (left) and signal (right). Bottom: eigenvalue bounds λSNR

± as a function
of the SNR. True bounds obtained as numerical solution of Eq. (15) (orange) and approximate bounds given by the analytic expression in
Eq. (22) (green). The approximate noise region is striped. Horizontal dotted line indicates the SNR value of the blue density curve, and the
dashed line connecting the plots indicates the signal-noise boundary. (b) Intensive limit (q = 0.01, qV T = 0.09) with plots analogous to (a).
Top: zero noise density, Eq. (23) (yellow); for intermediate noise (blue), the left bump corresponds to noise, and the right bump corresponds
to the latent signal. Bottom: for SNR � SNRsplit (horizontal solid black line), the density splits into two bumps. Simulations constitute 360
independent realisations with N = 300 and σ 2

U = σ 2
V = 1.

for the bounds of the signal part of the density at finite SNR
is good, showing the largest deviation for SNR ∼ 10−1, cf.
Fig. 2(b), bottom. In Appendix C 4 b, we estimate that the
eigenvalue density splits at SNRsplit ≈ (λMP

+ − λMP
− )/λ∞

− . The
gap appears because having more observed variables (and,
hence, more data to characterize the latent components) makes
it easier to distinguish the signal from the noise. Thus, even
if individual variables cannot be sampled well when T < N ,
high-throughput data sets still have value if N � m.

V. DISCUSSION

We calculated statistical properties of data with latent lin-
ear features, including the density of pairwise correlations
and the density of eigenvalues of the NECM. We identify
two important insights. First, by looking at the distribution
of the correlations and their eigenvalues, one can understand
whether the latent features model is a reasonable model for the
data at hand. Second, whereas this is not the main focus of our
paper, our results also allow to estimate the number of latent
features from the statistics of the data (in the future, it might
be interesting to relate them to other related mathematical
results and practical algorithms [32,33]). Importantly, even if
the eigenvalue density does not have a prominent gap, one can
understand that the underlying model has a latent structure,

which manifests as a distortion of the MP sea of eigenvalues.
This is because our signal matrix in Eq. (1) is stochastic,
in contrast to spiked covariance models, where deterministic
perturbations appear as δ functions in the spectrum and are
detectable as true outliers [22–25]. Second, since the spectrum
of noise correlations in our model is shifted compared to the
MP model, one should not use a simple cutoff at the right
edge of the MP density to distinguish statistically significant
principal components.

A lot of ink has been expended discussing relative ad-
vantages and disadvantages of measuring a few variables
well many times (biophysical approach) over measuring many
variables infrequently and with high noise (high-throughout
biology) [34,35]. We find that in the intensive limit the many
measured variables lead to separation of the noise and the
signal eigenvalues, resulting in a potentially more accurate
inference. However, the number of observations and their
quality contribute to the SNR, a high value of which is also
required for the opening of the signal-noise gap. Thus, the
quality and the quantity of measurements all contribute to the
value of data in very specific ways, which we now understand.

Our analysis involved approximations. The first was in
neglecting the signal-noise contributions in the computation
of the eigenvalue density. Including these contributions would
make the polynomial equation for the Stieltjes transform
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substantially more complicated. However, we do not expect
this leading to significant qualitative changes to the struc-
ture of the eigenvalue density in the limits considered. An
additional limitation is that the approximation for the bounds
of the eigenvalue density Eq. (22) is strictly only valid in
the extreme limits SNR → 0 and SNR → ∞. In deriving
the analytic density of correlations, we assumed qU → 0 in
accordance with Eqs. (9) and (10) and worked to the leading
order in T . We expect the fits to improve if these assumptions
are removed, in particular, in the regime of finite SNR, cf.
Fig. 5.

Finally, to connect our results with real data, additional
steps are required. For example, methods to estimate the SNR
from the data and to determine whether the Gaussian assump-
tion for the distribution of the noise and the latent components
is valid will need to be developed. Furthermore, for our
model and its extensions, it is also important to calculate the
expected overlap of empirical eigenvectors with their true
values.
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APPENDIX A: DATA DISTRIBUTION FOR THE
LATENT FEATURE MODEL WITH NO NOISE, ITS

VARIANCE, AND LARGE-m LIMIT

Each entry Xi j of the latent features data matrix UV is
given by the sum of m products of two i.i.d. Gaussian random
variables u ∼ N (0, σ 2

U ) and v ∼ N (0, σ 2
V ),

Xi j ∼
m∑

μ=1

uv. (A1)

The product x = uv is distributed according to the normal
product distribution [36],

x ∼ K0
( |x|

σU σV

)
πσU σV

, (A2)

where Kν is the modified Bessel function of the second kind,

Kν (x) = �
(
ν + 1

2

)
(2x)ν√

π

∫ ∞

0
dq

cos(q)

(x2 + q2)ν+1/2
. (A3)

To derive the probability density of the latent feature model
entries Xi j , we first compute the characteristic function ϕx

by taking the Fourier transform of the normal product distri-
bution. We then use the fact that the characteristic function
ϕX of the sum of m products x is given by ϕX = (ϕx )m. The
inverse Fourier transform of ϕX then yields the sought after
probability density.

Specifically, the characteristic function ϕx of the normal
product distribution is

ϕx(t ) = E(eitx ) =
∫ ∞

−∞
dx

K0
( |x|

σU σV

)
πσU σV

eitx

=
∫ ∞

−∞
dx

K0(|x|)
π

eitσU σV x

= 1

π

∫ ∞

−∞
dx

∫ ∞

0
dq

cos(q)√
|x|2 + q2

eitσU σV x

= 1

π

∫ ∞

−∞
dx

∫ ∞

0
dq

cos(xq)√
1 + q2

eitσU σV x

= 1

π

∫ ∞

0
dq

1√
1 + q2

×
∫ ∞

−∞

dx

2π
(eix(q+σU σV t ) + eix(σU σV t−q) )

=
∫ ∞

0
dq

1√
1 + q2

[δ(σU σV t + q) + δ(σU σV t − q)]

= 1√
1 + σ 2

U σ 2
V t2

(A4)

for t ∈ R \ {0}, and δ(·) is the Dirac-δ function.
The characteristic function ϕX of the sum of m products x

is given by

ϕX = (ϕx )m = (
1 + σ 2

U σ 2
V t2

)−(m/2)
. (A5)

Finally, performing the inverse transformation we obtain the
probability density function of the sum,

pdf(X ) =
∫ ∞

−∞

dt

2π
e−itX 1(

1 + σ 2
U σ 2

V t2
)m/2

=
∫ ∞

−∞

dt

2π
e−itX

×
∫ ∞

0
dq

δ(σU σV t + q) + δ(σU σV t − q)

(1 + q2)m/2

= 1

σU σV

∫ ∞

0
dq

×
∫ ∞

−∞

dt

2π
e−(itX/σU σV ) δ(t + q) + δ(t − q)

(1 + q2)m/2

= 1

πσU σV

∫ ∞

0
dq

cos
( q|X |

σU σV

)
(1 + q2)m/2

=
[ |X |
σU σV

]m−1 1

πσU σV

∫ ∞

0
dq

cos(q)( |X |2
σ 2

U σ 2
V

+ q2
)m/2

=
[ |X |

2

](m−1)/2 K(m−1)/2
( |X |

σU σV

)
(σU σV )(m+1)/2

√
π�

(
m
2

) . (A6)

Since the probability density function of X is symmetric
around zero, the mean of the distribution vanishes

μUV =
∫ ∞

−∞
dX X pdf(X ) = 0. (A7)
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The variance is

σ 2
UV =

∫ ∞

−∞
dX X 2pdf(X )

= 1

2(m−1)/2
√

π�
(

m
2

)
×

∫ ∞

−∞

dX

σU σV

[ |X |
σU σV

](m−1)/2

|X |2K(m−1)/2

( |X |
σU σV

)
= 2σ 2

U σ 2
V

2(m−1)/2
√

π�
(

m
2

) ∫ ∞

0
dX |X |(m+3)/2K(m−1)/2(|X |).

(A8)

The integral above can be evaluated in terms of generalized
hypergeometric functions [37]. We present the calculation for
when m is even in detail,∫ ∞

0
dX X α−1Kν (X ) = [(ν, α; Z ) + (−ν, α; Z )]∞0 , (A9)

where

(ν, α; Z ) ≡ −2ν−1πZα−νcsc(πν)

(ν − α)�(1 − ν)

× 1F2

(
α − ν

2
; 1 − ν,

α − ν

2
+ 1;

Z2

4

)
,

(A10)

with parameters,

α ≡ m + 5

2
and ν ≡ m − 1

2
, (A11)

and 1F2 is the generalized hypergeometric function,

1F2(a1; b1, b2; z) =
∞∑

k=0

(a1)zk

(b1)k (b2)kk!
. (A12)

In the expression above, (·)k is the Pochhammer symbol, and
csc(·) is the cosecant. Since m is even, we also have ν /∈ Z.
Putting everything together, we obtain the following expres-
sion for the variance:

σ 2
UV = [(ν, α; Z ) + (−ν, α; Z )]∞0

2(m−3)/2
√

π�
(

m
2

)
σ−2

U σ−2
V

= lim
Z→∞

(ν, α; Z ) + (−ν, α; Z )

2(m−3)/2
√

π�
(

m
2

)
σ−2

U σ−2
V

, (A13)

where we have used the fact that the numerator after the first
equality vanishes at Z = 0. We can evaluate the limit Z → ∞,
on the right-hand side numerically as shown in Fig. 3 and find
that the variance of the latent feature data values is

σ 2
UV = mσ 2

U σ 2
V . (A14)

This is in agreement with the intuition that every latent dimen-
sion contributes its own variance to the variance of the data.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
limit value Z

0

1

2

3

4

5

6

7

8

σ
2 U

V

m =4

m =6

m =8

simulation

FIG. 3. Comparison between the variances computed from sim-
ulated data of the latent feature model for m = 4, 5, 6, 7, 8 (dashed
gray lines) and the numerically evaluated limit expression for σ 2

UV in
Eq. (A13) as a function of the limit value Z for even m values. We
have chosen σ 2

U = σ 2
V = 1.

We note that, for large values of the number of latent fea-
tures m, the distribution (A6) becomes normal, in agreement
with the law of large numbers,

pdf(Xi j ) = 1√
2πσ 2

UV

e−(X 2/2σ 2
UV ). (A15)

Crucially, the variance of Xi j remains dependent on m.
Figure 4 compares exact analytical expression of the probabil-
ity distribution and its Gaussian approximation to numerical
simulations.

As a final note, if we were interested in the distribution
of data with noise, we would need to convolve the density in
Eq. (A6) with the Gaussian density of the noise.

APPENDIX B: PROBABILITY DENSITY
OF THE CORRELATION COEFFICIENTS

For our latent features model with noise, here we calculate
the probability distribution of entries in the empirical data
correlation matrix. Before doing this, a few notes are in order.
First, the correlations depend on the basis in which variables
are measured, becoming a diagonal matrix in the special
case when the measured variables are the principal axes of
the data cloud. Thus, to make statements independent of the
basis, we consider the distribution of typical correlations, or
correlations in the basis random with respect to the principal
axes of the data. For a given realization, the N-dimensional
data cloud is typically anisotropic, with m < N long directions
dominated by the latent feature signal and N − m short direc-
tions dominated by noise. When N � m, principal axes of the
data cloud do not align with the measured variables for the
vast majority of random rotations, and correlations between
any random pair of variables have contributions from all latent
dimensions. Thus, we expect the number of latent dimensions
to be imprinted in the distribution of the elements of the
correlation matrix so that the statistics of the elements carries
information about the underlying structure of the model.
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FIG. 4. Comparison of simulated data (gray) and the analytical distribution (orange). In the limit of large m, the distribution approaches a
Gaussian form (blue). Simulated data constitute a single realization of the model with σ 2

U = σ 2
V = 1.

1. Preliminaries: Density of the correlation coefficient of two
random Gaussian variables

The correlation coefficient of two independent zero-mean
variables x and y sampled T times is

r = 1

T

∑
t

xt yt

σxσy
, (B1)

where the vectors’ components are mutually independent,
i.i.d. random variables. The correlation coefficient is dis-
tributed according to [29]

pdf(r) = �
(

T
2

)
�

(
1
2

)
�

(
T −1

2

) (1 − r2)(T −3)/2. (B2)

This can be rewritten in terms of a Beta distribution,

Beta(x; α, β ) = 1

B(α, β )
xα−1(1 − x)β−1, (B3)

where x ∈ [0, 1] and B(α, β ) is the Beta function. Specifi-
cally, the density of correlations is given by the symmetric
Beta distribution,

pdf(r) = Beta(r; α, α; � = −1, s = 2), (B4)

where the location � and scale s are set such that the density
is defined on the interval of correlation values [−1, 1], and

α = T − 1

2
. (B5)

We also note that the variance of a symmetric Beta distribution
with the scale s = 2 is

var = s2

4(2α + 1)
= 1

2α + 1
. (B6)

2. Density of correlations in the latent feature model

There are multiple contributions to the correlations among
the measured variables. We compute them individually and
then combine the contributions. We find that each contribution
is distributed according to a symmetric Beta distribution. To
obtain the overall density, we approximate the sum of Beta
distributions by a single Beta distribution, the parameter of
which is obtained by matching the variance to the sum of
the variances of the individual components. To perform these
analyses, we only keep terms to the leading order in the
SNR → 0 or the SNR → ∞ limit. Furthermore, we assume
that qU is small in accordance with the classical and intensive
regimes limits.

We start with the pure noise contribution to the correla-
tions,

(cR)pq = 1

T

∑
t

RT
pt Rtq

σ n
p σ n

q

, (B7)

(
σ n

q

)2 = 1

T

∑
t

RT
qt Rtq. (B8)

The expression on the right-hand side is the correlation
coefficient between two random Gaussian variables. Using
Eq. (B4), we arrive at

pdf[(cR)pq] = Beta[(cR)pq; αn, αn; −1, 2], p 
= q, (B9)

with

αn = T − 1

2
, (B10)

and the variance of this density is

varn = T −1. (B11)
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Next we compute the density of the pure signal contribu-
tion,

(cUV )pq = 1

T σ s
pσ

s
q

∑
t

(∑
μ

VpμUμt

)(∑
ν

UtνVνq

)
,

(B12)

(
σ s

p

)2 = 1

T

∑
t

(∑
μ

VpμUμt

)(∑
ν

UtνVνp

)
, (B13)

and similarly for σq. Rearranging, we find

(cUV )pq = 1

σ s
pσ

s
q

∑
μν

VpμVνq

(
1

T

∑
t

UμtUtν

)
, (B14)

(
σ s

p

)2 =
∑
μν

VpμVνp

(
1

T

∑
t

UμtUtν

)
. (B15)

The expression in parentheses of both of the equations above
is a (co)-variance of Gaussian random numbers. For μ = ν, it
follows the scaled χ2 distribution with T degrees of freedom.
For μ 
= ν, it is given by a rescaled version of the distribution
in Eq. (A6) with T instead of m. Crucially, the variance of
either is 1/T . Thus, in the limit q → 0, the terms in parenthe-
ses are σ 2

U δμν + O(T −1/2) where the correction O(T −1/2) is
probabilistic but will be neglected in what follows. We get

(cUV )pq = σ 2
U

∑
μν

VpμVνqδμν

σ s
pσ

s
q

= mσ 2
U

(
1

m

∑
μ

VpμVμq

σ s
pσ

s
q

)
,

(B16)

(
σ s

p

)2 = mσ 2
U

(
1

m

∑
μ

V 2
pμ

)
, (B17)

We see that the sought after correlation is a correlation coeffi-
cient between Gaussian variables but with m samples instead
of T . Using again Eq. (B4), we write

pdf[(cUV )pq] = Beta[(cUV )pq; αs, αs; −1, 2], p 
= q,

(B18)

with parameter,

αs = m − 1

2
. (B19)

We remind the reader that Eq. (B18) holds to O(T −1/2). The
variance of this density is

vars = m−1. (B20)

This expression agrees with numerical simulations very well,
cf. Fig. 1.

Finally, for the signal-noise cross terms in the correlation,
we have

(c(UV )T R)pq = 1

T σ s
pσ

n
q

∑
t

∑
μ

VpμUμt Rtq

= 1

σ s
pσ

n
q

∑
μ

Vpμ

(
1

T

∑
t

Uμt Rtq

)
. (B21)

For the quantity in parentheses in Eq. (B21), we define

rμp ≡ 1

T

∑
t

Uμt Rtq. (B22)

This is a covariance between two independent Gaussian ran-
dom numbers and again follows a rescaled form of the
distribution in Eq. (A6) with variance σ 2

U σ n
q

2T −1. Since T is
large, the distribution approaches a Gaussian, and we further
define rμq ≡ σU σ n

q T −1/2r′
μq such that r′

μq is a unit Gaussian
random variable. Thus, we obtain

(c(UV )T R)pq = σU mσ n
q T −1/2

σ s
pσ

n
q

(
1

m

∑
μ

Vpμr′
μq

)

= m1/2T −1/2

(
1

m

∑
μ

Vpμr′
μq

1
m

∑
μ V 2

pμ

)
, (B23)

where we have extracted the factor of m to highlight that the
expression in parentheses is the correlation between Gaussian
random numbers. From this, using Eq. (B4), we conclude that

pdf[(c(UV )T R)pq] = Beta[(c(UV )T R)pq; αsn, αsn; −1, 2],

p 
= q, (B24)

with parameter,

αsn = m1/2T 1/2 − 1

2
. (B25)

The variance of this density is

varsn = m−1/2T −1/2 = √
varsvarn. (B26)

An analogous expression holds for the RT UV contribution.
The empirical correlation matrix is given by

cpq = 1

T

∑
t

Xpt Xtq

σ sn
p σ sn

q

, (B27)

where (
σ sn

p

)2 = (
σ s

p

)2 + (
σ n

p

)2
. (B28)

Using Eqs (B7), (B12), and (B21), the correlation matrix can
be written as a weighted sum of the three types of contribu-
tions,

cpq = σ s
pσ

s
q

σ sn
p σ sn

q

(cUV )pq + σ s
pσ

n
q

σ sn
p σ sn

q

(c(UV )T R)pq

+ σ n
p σ s

q

σ sn
p σ sn

q

(cRT UV )pq + σ n
p σ n

q

σ sn
p σ sn

q

(cR)pq. (B29)

Each term on the right-hand side of this equation follows
a Beta distribution as computed above. However, the α pa-
rameter of each distribution is modified by the corresponding
weight in the above sum. Consequently, the variance of each
distribution is rescaled by the weight,

var′
s = σ s

pσ
s
q

σ sn
p σ sn

q

vars, (B30)

var′
n = σ n

p σ n
q

σ sn
p σ sn

q

varn, (B31)
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FIG. 5. Distribution of pairwise correlations in the regimes of finite and small signal-to-noise ratio with m = 2, 4 and 30 latent features.
Analytic form (orange) and simulated data (gray). (a) SNR = 20 and (b) SNR = 10−5 (large noise limit). Each simulation is run with N = 80
variables and T = 2048 observations and constitutes 1000 independent model realizations.

var′
sn = σ s

pσ
n
q

σ sn
p σ sn

q

varsn. (B32)

To determine an expression for the combined distribution of
signal and noise correlations, we make use of the observation
that the sum of Beta distributions can be well approximated by
a single Beta distribution [38]. We determine the parameters
of the Beta distribution by adding the means and variances
of the distributions in the sum and analytically match the
parameter of the single Beta distribution.

The means of the Beta distributions in Eqs. (B9), (B18),
and (B24) are zero and, thus, the mean of the density of
the combined contributions is also zero. Taking the sum of
variances we obtain

var = var′
s + var′

n + var′
sn + var′

ns. (B33)

In the limit when T and m are large enough such that contri-
butions of O(T −1/2) and O(m−1/2) can be neglected, we have
the following convergence of the empirical quantities,(

σ s
p

)2 → mσ 2
U σ 2

V , (B34)(
σ n

p

)2 → σ 2, (B35)(
σ sn

p

)2
,
(
σ ns

p

)2 → mσ 2
U σ 2

V + σ 2. (B36)

Consequently, the variances of the contributions take the form

var′
s → m−1

1 + SNR−1 , (B37)

var′
n → T −1

1 + SNR
, (B38)

var′
sn, var′

ns → m−1/2T −1/2

√
1 + SNR

√
1 + SNR−1

, (B39)

Thus, in this limit, the variance of the Beta distribution,
Eq. (B33), is of the form

var ≈
(

m−1/2√
1 + SNR−1

+ T −1/2

√
1 + SNR

)2

. (B40)

Finally, from the relation in Eq. (B6), we obtain the parameter
α of the sought after Beta distribution,

α = var−1 − 1

2
. (B41)

A comparison between the analytic form of the density and
simulated data is shown in Fig. 1 for SNR → ∞ and in Fig. 5
for finite SNR and SNR → 0. In the extreme noise limits,
the analytic form closely matches the simulation. In the large
noise limit of SNR → 0, shown in Fig. 5(b), the density is
close to a Gaussian because the number of observations T is
large. In the regime of finite SNR, shown in Fig. 5(a), devi-
ations between the analytic form and the simulation appear
for small values of m. We expect that these deviations will
disappear by removing the various approximations made in
the above analytic derivation.

APPENDIX C: SPECTRUM OF THE NORMALIZED
EMPIRICAL COVARIANCE MATRIX

To compute the eigenvalue density of the NECM, C, we
use methods of Random Matrix Theory [39]. The standard
approach is to compute the finite size Stieltjes transform,

gN
C(z) = 1

N
Tr(zI − C)−1, (C1)

where I is the identity matrix, z ∈ C, and gN
C is a complex

function. In the limit of large matrices—large N or thermody-
namic limit—the finite size Stieltjes transform becomes gC(z).
Then the eigenvalue density is obtained as the imaginary part
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of the limit of the Stieltjes transform,

ρ(λ) = 1

π
lim

η→0+
Im g(z = λ − iη), (C2)

where Im denotes the imaginary part.
We start with writing again the definition of the NECM,

which differs from the correlation matrix only by O(T −1/2),

C = 1

T
X̃T X̃ = 1

T
( ˜UV + σR)T ( ˜UV + σR)

= 1

T
[(ŨV)T (ŨV) + σ̃ 2RT R

+ σ̃ (ŨV)T R + σ̃RT ŨV]. (C3)

The NECM contains three different contributions: the
(UV)T (UV) from the pure latent feature signal, RT R from
pure noise, and two terms of the type (UV)T R, which are
cross terms between the latent signal and the noise. Each con-
tribution is an N × N random matrix. Critical to computing
the eigenvalue density of random matrices is the concept of
matrix freeness [40], which is the generalization of statistical
independence to matrices. The eigenvalue spectrum of sums
and products of free matrices can be computed from spectra
of summands and factors using the R and the S-transforms,
which are related to the Stieltjes transform g and are addi-
tive and multiplicative, respectively. The signal-signal and the
noise-noise contributions in the NECM definition are certainly
free with respect to each other. We will argue in Appendix C 3
that, in our regimes of interest [the zero-noise limit (SNR →
∞), the classical statistics limit from Eq. (9), and intensive
limit from Eq. (10)], the cross-term contributions are negli-
gible so that we can drop them and approximate the NECM
as

C ≈ (UV)T (UV) + σ 2RT R
σ 2

X T
:= CŨV + Cσ̃R, (C4)

so that free matrix theory applies.

1. Parametrizing the random matrix problem
and the large matrix limit

To calculate the spectrum of the signal-signal contribution
to the NECM,

CŨV = 1

σ 2
X T

(UV)T (UV), (C5)

we note that, assuming m < T, N , this N × N matrix is of
rank m. Thus, we can work in the basis, where

CŨV =
(

HŨV 0
0 0

)
, (C6)

and

HŨV = 1

σ 2
X T

(UT U)(VVT ). (C7)

There are m nontrivial eigenvalues associated with H, whereas
the remaining N − m eigenvalues are zero. The finite size
Stieltjes transform, gN

C = N−1Tr(zI − CŨV)−1 is then of the

form

gN
CŨV

(z) = 1

N

(
m

1

m

m∑
μ=1

1

z − λμ

+ N − m

z

)

= 1

N

(
mhm

HŨV
(z) + N − m

z

)
, (C8)

where λμ’s are the m eigenvalues of HŨV and hm
HŨV

(z) is its
finite size Stieltjes transform.

Now we note that HŨV in Eq. (C7) is the product of two
white Wishart matrices,

HŨV = N

σ 2
X

WUWVT , (C9)

where

WY = 1

T
YT Y, (C10)

is the Wishart matrix, and Y is a T × N matrix with i.i.d.
standard normal entries. The key parameter characterizing
such standard WY is the ratio of the number of columns to
that of rows,

q ≡ N

T
. (C11)

Since U and VT are T × m and N × m matrices, respectively,
a natural characterisation of HŨV is then,

q ≡ N

T
, qU ≡ m

T
, qV T ≡ m

N
, (C12)

with q qV T = qU so that there are only two independent pa-
rameters.

It is now convenient to define

σ 2
X = m

(
σ 2

U σ 2
V + σ 2

m

)
≡ mσ̄ 2

X , (C13)

where we used Eq. (A14) so that Eq. (C9) becomes

HŨV = 1

qV T σ̄ 2
X

WUWVT . (C14)

In the following, we only consider the limit of large matri-
ces. Here T , N , m, and σ 2 go to infinity in such a way that
q, qV T , and SNR are all constant. Then, in the thermodynamic
limit the finite size Stieltjes transform in Eq. (C8) becomes

gCŨV
= qV T h + 1 − qV T

z
, (C15)

where gCŨV
and h are the large matrices limits of the Stieltjes

transforms of gN
CŨV

and hm
HŨV

, respectively.

2. The spectrum of C
˜UV

We now compute the eigenvalue density of CŨV. The first
step is to compute the Stieltjes transform h. From Eq. (C14),
it is clear that this reduces to the problem of computing the
eigenvalue spectrum of a product of two Wishart matrices.
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The spectrum of a product of two free matrices can be
computed with the help of the S-transform, which is defined
for a random matrix A as

SA(t ) = t + 1

tT −1
A (t )

, (C16)

where T −1
A (t ) is the functional inverse of the T -transform

TA(z). In turn, the T -transform is related to the Stieltjes trans-
form of A through the relation,

TA(z) = zgA(z) − 1. (C17)

Crucially, for free matrices A and B, the S-transform is mul-
tiplicative,

SAB(t ) = SA(t )SB(t ), (C18)

and, furthermore, for a scalar a,

SaA(t ) = a−1SA(t ). (C19)

For the white Wishart matrix, Eq. (C10), the S-transform
is known to be [39]

SWY (t ) = 1

1 + qt
. (C20)

Thus, we only need to use the multiplicative property of the
S-transform to compute the signal-signal contributions to the
NECM. Specifically,

SHŨV
(t ) = qV T σ̄ 2

XSWUSWVT = qV T σ̄ 2
X

(1 + qU t )(1 + qV T t )
. (C21)

Equation (C16) then yields

T −1
HŨV

(t ) = t + 1

t SHŨV
(t )

= t + 1

t

(1 + qU t )(1 + qV T t )

qV T σ̄ 2
X

. (C22)

We now solve the equation for the functional inverse
T −1[T (z)] = z, using the definition of the T -transform
Eq. (C17) and dividing by a common factor of z. We obtain
a cubic equation for the Stieltjes transform h,

h3z2qU qV T + h2z[qV T (1 − qU ) + qU (1 − qV T )]

+ h
[
(1 − qU )(1 − qV T ) − zqV T σ̄ 2

X

] + qV T σ̄ 2
X = 0. (C23)

Finally, we divide by qV T σ̄ 2
X to obtain

h3 z2qU

σ̄ 2
X

+ h2 z

σ̄ 2
X

(1 + q − 2qU )

+ h

(
q−1

V T − q − 1 + qU

σ̄ 2
X

− z

)
+ 1 = 0. (C24)

Similar equations for the Stieltjes transform of the product
of two random matrices have been stated in Refs. [41–43].
Their polynomials differ from Eq. (C24) in detail because
we consider the Stieltjes transform of the covariance matrix
including a theoretical normalisation factor.

The next step is to solve Eq. (C24) analytically in the
classical statistics limit and the intensive limit. We remind the
reader that for the pure signal contribution we work in the
zero-noise limit SNR → ∞ such that

σ̄ 2
X ≡ σ 2

X

m
= σ 2

U σ 2
V (1 + SNR−1) = σ 2

U σ 2
V . (C25)

a. Classical statistics limit

In the classical statistics limit Eq. (9), the polynomial
equation for the Stieltjes transform, Eq. (C24) becomes

h2 z

σ̄ 2
X

+ h

(
q−1

V T − 1

σ̄ 2
X

− z

)
+ 1 = 0. (C26)

The discriminant is

� = z2 − 2
1 + q−1

V T

σ̄ 2
X

z +
(

q−1
V T − 1

σ̄ 2
X

)2

, (C27)

and the roots of the discriminant are

λ∞
± = σ̄−2

X (1 ± √
qV T

−1)2. (C28)

We, thus, obtain

h± =
− q−1

V T −1

σ̄ 2
X

+ z ± √
(z − λ∞− )(z − λ∞+ )

2zσ̄−2
X

. (C29)

To obtain gCŨV
, we now need to add the contribution of the

zero eigenvalues,

gCŨV
= qV T h± + 1 − qV T

z

= 1 − qV T

2z
+ qV T

2σ̄−2
X

±
√

(z − λ∞− )(z − λ∞+ )

2zq−1
V T σ̄−2

X

. (C30)

We are now ready to obtain the eigenvalue density as in
Eq. (C2). Whereas this is a standard calculation [44], we
summarize it here for the reader’s benefit. The second term
on the right-hand side of Eq. (C30) is real, does not contribute
to the imaginary part, and we ignore it. For the first and the
third terms, we multiply the numerators and the denominators
by z∗ = λ + iη. The imaginary part of the first term is then,

Im

(
1 − qV T

2z

)
= (1 − qV T )η

2(η2 + λ2)
= (1 − qV T )π

2
δη(λ), (C31)

where we have used the definition of the Lorentz curve
δη(λ) = π−1η/(η2 + λ2). For the third term, the crucial step
is to rewrite the square root using the relation,

√
a + ib = P + iQ, (C32)

where a and b are real, b 
= 0 and

P = 1√
2

√√
a2 + b2 + a,

Q = sgn(b)√
2

√√
a2 + b2 − a, (C33)

where sgn(x) = 1 for x > 0 and −1 for x < 0 [45]. For the
argument of the square root in the third term of Eq. (C30), we
find

a = λ2 − η2 + λ∞
+ λ∞

− − (λ∞
+ + λ∞

− )λ,

b = (−2λ + λ∞
+ + λ∞

− )η. (C34)
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The imaginary part of the third term takes the form

Im

(
±

√
(z − λ∞− )(z − λ∞+ )

2zq−1
V T σ̄−2

X

)
= ± Im(z∗[P + iQ])

2q−1
V T σ̄−2

X |z|2 = ± 1

2q−1
V T σ̄−2

X

(
η

η2 + λ2
P + λ

η2 + λ2
Q

)
= ± 1

2q−1
V T σ̄−2

X

(
πδη(λ)P + λ

η2 + λ2
Q

)
. (C35)

The final step to evaluate Eq. (C2) and to obtain the eigen-
value density is to take the limit η → 0+. In this limit, the
Lorentz curve in Eq. (C31) converges to the Dirac-δ function.
Combining Eqs. (C31) and (C35) yields

ρ∞(λ) = 1

π
lim

η→0+
Im gCŨV

= ± limη→0+ P

2q−1
V T σ̄−2

X

δ(λ) ± limη→0+ Q

2πλσ̄−2
X q−1

V T

+ 1 − qV T

2
δ(λ),

(C36)

with

lim
η→0+

P = √
λ∞+ λ∞− = σ̄−2

X

(
1 − q−1

V T

)
, (C37)

where we have used the expression for the zero noise eigen-
value bounds in Eq. (C28), and

lim
η→0+

Q = sgn(b)√
2

√
2|(λ − λ∞− )(λ∞+ − λ)|

= sgn(b)
√

(λ − λ∞− )(λ∞+ − λ), (C38)

when λ ∈ [λ∞
− , λ∞

+ ], and the expression vanishes elsewhere.
The ± signs in Eq. (C36) are chosen such as to obtain a
physically meaningful eigenvalue density. Finally, we find the
following form of the eigenvalue density:

ρ∞(λ) =
√

(λ − λ∞− )(λ∞+ − λ)

2πλσ̄−2
X q−1

V T

+ (1 − qV T )δ(λ), (C39)

with σ̄ 2
X ≡ σ 2

X /m = σ 2
U σ 2

V . We note that in Ref. [46] an ex-
pression for an eigenvalue density was given in the special
case when T = N = m and not including our theoretical nor-
malization factor.

b. Intensive limit

For the intensive limit Eq. (10), the polynomial equation for
the Stieltjes transform Eq. (C24) becomes

h2 z

σ̄ 2
X

(1 + q) + h

(
q−1

V T − q − 1

σ̄ 2
X

− z

)
+ 1 = 0. (C40)

The discriminant is

� = z2 − 2
q−1

V T + q + 1

σ̄ 2
X

z +
(

q−1
V T − q − 1

σ̄ 2
X

)2

. (C41)

The roots of the discriminant are

λ∞
± = σ̄−2

X (
√

1 + q ± √
qV T

−1)2. (C42)

Then the solution of the quadratic equation is

h± =
− q−1

V T −q−1

σ̄ 2
X

+ z ± √
(z − λ∞− )(z − λ∞+ )

2zσ̄−2
X (1 + q)

. (C43)

Following a calculation analogous to the classical limit, we
now add the contribution of the zero eigenvalues and then
determine the density of the eigenvalues. We find

ρ∞(λ) =
√

(λ − λ∞− )(λ∞+ − λ)

2πλσ̄−2
X (1 + q)q−1

V T

+ (1 − qV T )δ(λ), (C44)

with σ̄ 2
X ≡ σ 2

X /m = σ 2
U σ 2

V .

3. Approximation to neglect the signal-noise cross terms

Now we explore when the contribution of the signal-noise
cross terms to the NECM can be neglected. Specifically, we
will show that it can be performed if qU → 0 (that is, the
number of measurements is much larger than the number of
latent features), which we always assume. To show this, we
compute the eigenvalue bounds λ

signal noise
± of the signal-noise

contribution and compare their scaling with T to the scaling
of the pure signal and the pure noise eigenvalue bounds.

For the pure signal contribution, the previous section shows
that the eigenvalue bounds λ∞

± are σ̄−2
X ∼ O(T 0). The pure

noise eigenvalue bounds, given by the Marčenko-Pastur
bounds, scale as

λMP
± ∼ 1 ± T −1/2, (C45)

where 1 is due to self-correlations. On the other hand, the
signal-noise cross terms do not have self-correlations, and,
thus, we expect their bounds to scale as

λ
signal-noise
± ∼ T −1/2, (C46)

becoming negligible for T → ∞. In, Appendix C 3 a we show
this analytically in the classical statistics limit. We have not
been able to achieve similar results more generally. However,
since qU → 0 also in the intensive limit, we expect similar
results to hold there too. To show this, we resort to numerical
simulations.

Specifically, we numerically estimate the Jensen-Shannon
divergence between the numerically evaluated eigenvalue
densities of the NECM, computed with and without the signal-
noise cross terms. To obtain a perceptually intuitive measure
of the difference between these distributions, we convert the
Jensen-Shannon divergence to the effective sensitivity index
d ′—the distance between the means of two unit variance
normal distribution with the same Jensen-Shannon divergence
as the two analyzed eigenvalue spectra. We investigate the
dependence of d ′ on various choices of our model parame-
ters. The comparison between the spectra of the full and the
approximate NECM is shown in Fig. 6. We observe that the
sensitivity index reaches a maximum for SNR ∼ 10−1 and
falls off in the limits of small or large SNR where the noise
or the signal dominate, respectively. Crucially, the maximum
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FIG. 6. Difference between the eigenvalue density of the NECM spectrum with and without the signal-noise cross terms quantified by
d ′. (a) Classical limit (orange), intensive limit (green), and neither of the two limits (blue). (b) Magnified view of d ′ in the limits of interest:
classical limit (blue, orange, and green) and intensive limit (red and purple). Eigenvalue densities are computed from 120 realizations of the
random matrix model.

value of d ′ is small for qU → 0. Thus, neglecting the cross-
term contributions to the NECM spectrum in our limits of
interest is warranted.

a. Scaling behavior of the signal-noise eigenvalue bounds
in the classical limit

We now derive the scaling of the signal-noise eigenvalue
spectrum bounds in Eq. (C46) in the classical statistics limit.
From the NECM in Eq. (C3), the signal-noise cross terms are
of the form

M ≡ σ̃

T
(ŨV)T R. (C47)

To compute the spectrum of this matrix, we use the following
trick. The singular values of M are equal to the square roots
of the nonzero eigenvalues of its square,

M2 = MMT = σ̃ 2

T 2
(ŨV)T RRT ŨV. (C48)

In turn, the nonzero eigenvalues of this N × N matrix, are
equal to the eigenvalues of the T × T matrix,

M̂2 ≡ q2σ̃ 2 RRT

N

(ŨV)(ŨV)T

N
. (C49)

We note that the right-hand side of the above equation is
a product of the T × T dual correlation matrices Cσ̃RT and
C(ŨV)T . To compute the spectrum of the product, we employ
the S-transform formalism as explained above. The first step
is to obtain the S-transforms of the dual correlation matrices,
which we compute from the Stieltjes transform [39]. For the
noise part, we have

gCRT (z) = q2gCR (qz) + 1 − q

z
. (C50)

For the signal part, we have

gC(ŨV)T
(z) = q2gCŨV

(qz) + 1 − q

z
. (C51)

For the noise Wishart matrix, the Stieltjes transform is [cf.
Eq. (C20)],

SCRT = 1

1 + q−1t
. (C52)

Including the renormalized noise strength σ̃ and the additional
factor of q from Eq. (C49), by using the scaling relation
Eq. (C19), the S-transform is

SCqσ̃RT = q−2σ̃−2

1 + q−1t
. (C53)

Next, we write the S-transform of the pure signal part. Evalu-
ating Eq. (C51) using Eq. (C30), we find

gC(ŨV)T
=

2−q−qqV T

σ̄ 2
X

+ q2qV T z ± qqV T

√
(qz − λ∞+ )(qz − λ∞− )

2zσ̄−2
X

,

(C54)

from which we obtain the following equation for the Stieltjes
transform:(

2zσ̄−2
X gC(ŨV)T

− 2 − q − qqV T

σ̄ 2
X

− q2qV T z

)2

− q2q2
V T (qz − λ∞

+ )(qz − λ∞
− ) = 0. (C55)

Using the relation, T = zg − 1, we find the equation for the
T -transform,

T 2
C(ŨV)T

+ TC(ŨV)T

( − zq2qV T σ̄ 2
X + qqV T + q

) + q2qV T = 0.

(C56)
Interpreted as an equation for the functional inverse transform
T −1, this becomes

t2 + t
(−T −1

C(ŨV)T
q2qV T σ̄ 2

X + qqV T + q
) + q2qV T = 0. (C57)

Now solving for the functional inverse transform, we find

T −1
C(ŨV)T

= (t + q)(t + qU )

tqqU σ̄ 2
X

, (C58)
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from which we determine the S-transform,

SC(ŨV)T
= t + 1

tT −1
C(ŨV)T

= qqU σ̄ 2
X (t + 1)

(t + q)(t + qU )
. (C59)

The S-transform of the product now reads

SM̂2 = SC(ŨV)T
SCqσ̃RT

= t + 1

t

tqqU σ̄ 2
X

(t + q)(t + qU )

q−2σ̃−2

1 + q−1t
. (C60)

From this we read off the inverse transform,

T −1
M̂2 = (t + q)(t + qU )(1 + q−1t )

tq−1qU σ̄ 2
X σ̃−2

= (t + q)(t + qU )(1 + q−1t )

tq−1qU SNR−1 . (C61)

The equation for the T -transform is now

(TM̂2 + q)(TM̂2 + qU )(1 + q−1TM̂2 ) = zqUTM̂2

qSNR
. (C62)

Using T = zg − 1 we write down the cubic polynomial equa-
tion for g,

ag3
M̂2 + bg2

M̂2 + cgM̂2 + d = 0, (C63)

with coefficients,

a = z3, (C64)

b = 2qz2 + qU z2 − 3z2, (C65)

c = q2z + 2qqU z − 4qz − 2qU z + 3z − qU z2

SNR
, (C66)

d = q2qU − q2 − 2qqU + 2q + qU − 1 + qU z

SNR
. (C67)

The eigenvalue density is nonzero for complex solutions of
the equation. The equation admits complex solutions when the
discriminant � is negative,

� = 4P3 + 27Q2, (C68)

where

P = 3ac − b2

3a2
, (C69)

Q = 2b2 − 9abc + 27a2d

27a3
. (C70)

Written out explicitly, the determinant takes the form

� = 4(3ac − b2)3 + (2b3 − 9abc + 27a2d )2

27a6
. (C71)

The equation � = 0 yields a quadratic equation in z, giving
the bounds on the eigenvalue density of M̂2,

z± = 8q2 + 20qqU − q2
U ±

√
qU (8q + qU )3

8qU SNR−1 . (C72)

From the definitions of q = N/T and qU = m/T , we see that
these bounds scale as

z± ∼ T −1. (C73)

Since the singular values of M are equal to the square root of
the eigenvalues of M̂2, the eigenvalue bounds of the signal-
noise cross terms, thus, scale as

λ
signal-noise
± ∼ T −1/2. (C74)

Thus, the contribution of the cross terms can be neglected in
the classical statistics limit.

4. Adding the noise contribution Cσ̃R

In Appendix C 2 we computed the spectrum of the pure
signal contribution CŨV to the NECM in the classical statistics
and the intensive limits. Now we will add the pure noise
contribution Cσ̃R to obtain the spectrum of the approximate
NECM. Since the noise and the signal contributions are free
matrices with respect to each other, the spectrum of their sum
can be computed using the R-transform. The R-transform of
a random matrix A is

RA(z) = BA(z) − 1/z, (C75)

where the B transform is the functional inverse of the Stieltjes
transform,

BA[gA] = z. (C76)

The R-transform is additive for free matrices,

RA+B(z) = RA(z) + RB(z). (C77)

It scales according to

RaA(z) = aRA(az), (C78)

where a is a real number. For a white Wishart matrix
Eq. (C10), the R-transform is known to be [39]

RWY (z) = 1

1 − qz
. (C79)

For the pure noise contribution to the NECM, Cσ̃R ≡
σ̃ 2RT R/T , this results in

RCσ̃R (z) = σ̃ 2

1 − qzσ̃ 2
. (C80)

Our goal is to first obtain the R-transform of the sum of the
signal and the noise contributions,

RC(z) = RCŨV
(z) + RCσ̃R (z), (C81)

and from this to compute the Stieltjes transform to extract
the eigenvalue density. Computing the R-transform of the
pure signal contribution CŨV in the classical statistics and the
intensive limit requires additional steps.

a. Classical statistics limit

First, we compute the R-transform of gCŨV
.

This is performed by solving the functional inverse
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equation gCŨV
[BCŨV

] = z, which gives us the B transform
from which we compute the R-transform. From Eq. (C30),
we see that B transform satisfies

BCŨV

[
BCŨV

z
(−qV T σ̄ 2

X + z
) + qV T σ̄ 2

X + qV T z − z
] = 0.

(C82)

A nontrivial solution of this equation is

BCŨV
= qV T σ̄ 2

X + qV T z − z

z
(
qV T σ̄ 2

X − z
) . (C83)

Using Eq. (C75), this gives us the R-transform RCŨV
. To it we

add the R-transform of the noise Eq. (C80) and subtract −1/z
to get the B transform of the approximate NECM,

BC = σ̃ 2z
(
qV T σ̄ 2

X − z
) + (−qσ̃ 2z + 1)

(
qV T σ̄ 2

X + qV T z − z
)

z
(
qV T σ̄ 2

X − z
)( − qσ̃ 2z + 1

) .

(C84)
The final step is to write down and solve the inverse function
equation BC[gC] = z. This is now equivalent to solving the
third order polynomial equation,

ag3
C + bg2

C + cgC + d = 0, (C85)

with

a = qzσ̃ 2, (C86)

b = −qqV T zσ̄ 2
X σ̃ 2 + [(qV T − 1)q + 1]σ̃ 2 − z, (C87)

c = (q − 1)qV T σ̄ 2
X σ̃ 2 + qV T zσ̄ 2

X − qV T + 1, (C88)

d = −qV T σ̄ 2
X . (C89)

Written in terms of the SNR the coefficients take the form

a = qz

1 + SNR
, (C90)

b = −qqV T z

SNR
+ (qV T − 1)q + 1

1 + SNR
− z, (C91)

c = (q − 1)qV T

SNR
+ qV T z(1 + SNR−1) − qV T + 1, (C92)

d = −qV T (1 + SNR−1). (C93)

It is possible to solve this cubic equation analytically. How-
ever, the expressions become lengthy and provide little
insight. Therefore, we rely on the numerical solution of the
equation as shown in Fig. 2 as well as on the following
analyses in the limits of small and large noise.

First, in the limit of the pure signal SNR → ∞, we recover
Eq. (20). Similarly, by truncating the polynomial coefficients
in the pure noise limit SNR → 0 at order O(SNR−1), the MP
density is recovered.

We also derive an approximate analytic expression for the
bounds of the eigenvalue density λSNR

± , which is valid around
both noise limits SNR → 0 and SNR → ∞. For this, we
approximate the coefficients of the polynomial, noting that
the smallest contribution to the coefficients common to both
limits comes from terms of order O[q/(1 + SNR)] (recall that
q → 0 in the classical limit). Neglecting these terms leads to
a quadratic polynomial equation for the Stieltjes transform,

rg2
C + sgC + t ≈ 0, (C94)

with

r = −qqV T z

SNR
+ 1

1 + SNR
− z, (C95)

s = (q − 1)qV T

SNR
+ qV T z(1 + SNR−1) − qV T + 1, (C96)

t = −qV T (1 + SNR−1). (C97)

The approximate bounds of the eigenvalue density then are
given by the roots of the discriminant �gC ≈ s2 − 4rt , which
gives the following bounds for the nonzero range of the eigen-
value density:

λSNR
± ≈ 1 + q−1

V T

1 + SNR−1 + 1 + q

1 + SNR
± 2

√√√√ q−1
V T

(1 + SNR−1)2
+ q

(1 + SNR)2
+ q

(
√

SNR + √
SNR

−1
)2

≈ 1 + q−1
V T

1 + SNR−1 + 1 + q

1 + SNR
± 2

√
q−1

V T

(1 + SNR−1)2
+ q

(1 + SNR)2

= 1 + q−1
V T

1 + SNR−1 + 1 + q

1 + SNR
± 2

√√√√√⎡⎣√√√√ q−1
V T(

1 + SNR−1
)2 +

√
q

(1 + SNR)2

⎤⎦2

−
2
√

qq−1
V T

(1 + SNR−1)(1 + SNR)

≈ 1 + q−1
V T

1 + SNR−1 + 1 + q

1 + SNR
± 2

⎡⎣√
q−1

V T

(1 + SNR−1)2
+

√
q

(1 + SNR)2

⎤⎦
= 1

1 + SNR−1 λ∞
± + 1

1 + SNR
λMP

± . (C98)

In the second line, we have dropped the third term under the square root since it is small in either of the two noise limits. In the
third line, we have used (

√
a + √

b)2 = a + b + 2
√

ab, and in the fourth line, we dropped the last term under the square root
since it is also small in either of the two noise limits. In the final line we recognize that the terms form the weighted average of
λ∞

± Eq. (21) and the Marčenko-Pastur bounds λMP
± .
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b. Intensive limit

First we compute the R-transform of gCŨV
. This is obtained by solving the functional inverse equation gCŨV

[BCŨV
] = z, which

gives us the B transform, from which we compute the R-transform. To do this, we employed the symbolic algebra Python library
SymPy v1.6.2. The B transform satisfies the quadratic equation,

B2
CŨV

z
(
q2z − qqV T σ̄ 2

X + 2qz − qV T σ̄ 2
X + z

)
+ BCŨV

(
q2qV T z − 2q2z + qqV T σ̄ 2

X + 2qqV T z − 3qz + qV T σ̄ 2
X + qV T z − z

)
− q2qV T + q2 − qqV T + q = 0, (C99)

for which we find the solution,

BCŨV
= ( − qqV T z + 2qz − qV T σ̄ 2

X − qV T z + z

−
√

q2q2
V T z2 − 2qq2

V T σ̄ 2
X z + 2qq2

V T z2 − 2qqV T z2 + q2
V T σ̄ 4

X + 2q2
V T σ̄ 2

X z + q2
V T z2 − 2qV T σ̄ 2

X z − 2qV T z2 + z2
)
/[

2z(qz − qV T σ̄ 2
X + z

]
. (C100)

Using Eq. (C75), this gives us RCŨV
to which we add the R-transform of the noise Eq. (C80) to obtain the R-transform RC of

the NECM. Subtracting −1/z, gives us the corresponding form of the B transform,

BC = [
2σ̃ 2z

(
qz − qV T σ̄ 2

X + z
) + (−qσ̃ 2z + 1)

(−qqV T z + 2qz − qV T σ̄ 2
X − qV T z + z

−
√

q2q2
V T z2 − 2qq2

V T σ̄ 2
X z + 2qq2

V T z2 − 2qqV T z2 + q2
V T σ̄ 4

X + 2q2
V T σ̄ 2

X z + q2
V T z2 − 2qV T σ̄ 2

X z − 2qV T z2 + z2
)]

/[
2z(−qσ̃ 2z + 1)

(
qz − qV T σ̄ 2

X + z
)]

. (C101)

The final step is to write down and solve the inverse functional equation BC[gC] = z. The sixth order polynomial equation that
we need to solve is of the form

ag6
C + bg5

C + cg4
C + dg3

C + eg2
C + f gC + g = 0, (C102)

with coefficients,

a = q5σ̃ 6z2 + 2q4σ̃ 6z2 + q3σ̃ 6z2, (C103)

b = q5qV T σ̃ 6z − 2q5σ̃ 6z − 2q4qV T σ̄ 2
X σ̃ 6z2 + 2q4qV T σ̃ 6z − q4σ̃ 6z − 3q4σ̃ 4z2

− 2q3qV T σ̄ 2
X σ̃ 6z2 + q3qV T σ̃ 6z + 3q3σ̃ 6z − 6q3σ̃ 4z2 + 2q2σ̃ 6z − 3q2σ̃ 4z2, (C104)

c = −q5qV T σ̃ 6 + q5σ̃ 6 − q4q2
V T σ̄ 2

X σ̃ 6z + 3q4qV T σ̄ 2
X σ̃ 6z − 3q4qV T σ̃ 4z

− q4σ̃ 6 + 6q4σ̃ 4z + q3q2
V T σ̄ 4

X σ̃ 6z2

− q3q2
V T σ̄ 2

X σ̃ 6z − 2q3qV T σ̄ 2
X σ̃ 6z + 6q3qV T σ̄ 2

X σ̃ 4z2 + 2q3qV T σ̃ 6 − 6q3qV T σ̃ 4z

− 2q3σ̃ 6 + 5q3σ̃ 4z + 3q3σ̃ 2z2

− 4q2qV T σ̄ 2
X σ̃ 6z + 6q2qV T σ̄ 2

X σ̃ 4z2 + q2qV T σ̃ 6 − 3q2qV T σ̃ 4z + q2σ̃ 6

− 5q2σ̃ 4z + 6q2σ̃ 2z2 + qσ̃ 6 − 4qσ̃ 4z + 3qσ̃ 2z2, (C105)

d = q4q2
V T σ̄ 2

X σ̃ 6 − q4qV T σ̄ 2
X σ̃ 6 + 3q4qV T σ̃ 4 − 3q4σ̃ 4 − q3q2

V T σ̄ 4
X σ̃ 6z − q3q2

V T σ̄ 2
X σ̃ 6

+ 3q3q2
V T σ̄ 2

X σ̃ 4z + 3q3qV T σ̄ 2
X σ̃ 6 − 9q3qV T σ̄ 2

X σ̃ 4z + q3qV T σ̃ 4 + 3q3qV T σ̃ 2z + q3σ̃ 4

− 6q3σ̃ 2z + 2q2q2
V T σ̄ 4

X σ̃ 6z − 3q2q2
V T σ̄ 4

X σ̃ 4z2 − q2q2
V T σ̄ 2

X σ̃ 6 + 3q2q2
V T σ̄ 2

X σ̃ 4z

+ 2q2qV T σ̄ 2
X σ̃ 4z − 6q2qV T σ̄ 2

X σ̃ 2z2 − 4q2qV T σ̃ 4

+ 6q2qV T σ̃ 2z + 5q2σ̃ 4 − 7q2σ̃ 2z − q2z2 − 2qqV T σ̄ 2
X σ̃ 6 + 8qqV T σ̄ 2

X σ̃ 4z

− 6qqV T σ̄ 2
X σ̃ 2z2 − 2qqV T σ̃ 4

+ 3qqV T σ̃ 2z + qσ̃ 2z − 2qz2 − σ̃ 4 + 2σ̃ 2z − z2, (C106)

e = −3q3q2
V T σ̄ 2

X σ̃ 4 + 3q3qV T σ̄ 2
X σ̃ 4 − 3q3qV T σ̃ 2 + 3q3σ̃ 2 − q2q2

V T σ̄ 4
X σ̃ 6 + 3q2q2

V T σ̄ 4
X σ̃ 4z

+ 2q2q2
V T σ̄ 2

X σ̃ 4 − 3q2q2
V T σ̄ 2

X σ̃ 2z − 6q2qV T σ̄ 2
X σ̃ 4 + 9q2qV T σ̄ 2

X σ̃ 2z
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− 2q2qV T σ̃ 2 − q2qV T z + q2σ̃ 2 + 2q2z + qq2
V T σ̄ 4

X σ̃ 6

− 4qq2
V T σ̄ 4

X σ̃ 4z + 3qq2
V T σ̄ 4

X σ̃ 2z2 + 2qq2
V T σ̄ 2

X σ̃ 4 − 3qq2
V T σ̄ 2

X σ̃ 2z − 2qqV T σ̄ 2
X σ̃ 4 + 2qqV T σ̄ 2

X σ̃ 2z

+ 2qqV T σ̄ 2
X z2 + 2qqV T σ̃ 2 − 2qqV T z − 3qσ̃ 2 + 3qz + 2qV T σ̄ 2

X σ̃ 4 − 4qV T σ̄ 2
X σ̃ 2z

+ 2qV T σ̄ 2
X z2 + qV T σ̃ 2 − qV T z − σ̃ 2 + z, (C107)

f = 3q2q2
V T σ̄ 2

X σ̃ 2 − 3q2qV T σ̄ 2
X σ̃ 2 + q2qV T − q2 + 2qq2

V T σ̄ 4
X σ̃ 4 − 3qq2

V T σ̄ 4
X σ̃ 2z − qq2

V T σ̄ 2
X σ̃ 2 + qq2

V T σ̄ 2
X z

+ 3qqV T σ̄ 2
X σ̃ 2 − 3qqV T σ̄ 2

X z + qqV T − q − q2
V T σ̄ 4

X σ̃ 4 + 2q2
V T σ̄ 4

X σ̃ 2z − q2
V T σ̄ 4

X z2

− q2
V T σ̄ 2

X σ̃ 2 + q2
V T σ̄ 2

X z + 2qV T σ̄ 2
X σ̃ 2 − 2qV T σ̄ 2

X z, (C108)

g = −qq2
V T σ̄ 2

X + qqV T σ̄ 2
X − q2

V T σ̄ 4
X σ̃ 2 + q2

V T σ̄ 4
X z. (C109)

We solve this polynomial equation numerically, looking for
complex roots which yield nonzero values of the eigenvalue
density. For large signal-to-noise ratio, we encounter nu-
merical instabilities when trying to determine the eigenvalue
density bounds. We run into these instabilities in the determi-
nation of the true density bounds in Fig. 2(b) bottom plot. To
fix this, we start at the peak of the density and determine the
values of λ for which the density hits zero for the first time
to either side of the peak. All other zero density crossings are
assumed to be due to numerical instabilities.

The ranges of nonzero density are shown in Fig. 2(b) bot-
tom plot. We see that as the signal-to-noise ratio increases,
there is a bifurcation point where the density splits into two
bumps. The left bump is associated with the noise, and the

right bump is associated with the pure latent feature signal.
From our approximate expression for the eigenvalue bounds
Eq. (22), we can estimate the value of the SNR at which
the splitting occurs. The defining equation for this is given
by the intersection between the right boundary of the noise
region and the left boundary of the signal part of the density
in Eq. (22), resulting in the condition,

(1 + SNR−1)λMP
+ = λSNR

− . (C110)

Solving for SNR, we obtain the following estimation for the
splitting point:

SNRsplit ≈ λMP
+ − λMP

−
λ∞−

. (C111)
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