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Equation of state of hard lenses: A combined virial series and simulation approach
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We provide highly accurate equation-of-state data for the isotropic phase of hard lenses obtained by means of
cluster Monte Carlo simulations. This data is analyzed using a virial approach considering coefficients up to the
order eight and Carnahan-Starling type closure relations for the virial series. The comparison with previously
investigated systems consisting of hard, oblate ellipsoids of revolution allows insights into the detailed influence
of the particle geometry. We propose a generalized Carnahan-Starling approach as a heuristic equation of state
for the isotropic phase of hard lenses that in first approximation shows the same dependence on the excess part
of the excluded volume as identified for oblate, hard lenses of revolution.
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I. INTRODUCTION

Hard-body many-particle systems have served for more
than a century as model systems for the self-organization of
molecular matter [1] with impacts on colloidal soft matter
[2–5] or granular systems [6] on the meso- or macroscale.
Anisometric particles are of particular interest for the un-
derstanding of liquid crystals which attracted large scientific
interest, both from the viewpoint of fundamental research and,
due to manyfold technical applications, from the viewpoint of
applied science [7,8].

While the aspect ratio ν, i.e., the ratio of the shortest to
longest extent, is the property that essentially influences the
phase behavior and equation of state of such systems, numer-
ous studies are dedicated to the influence of the specific shape
beyond the aspect ratio [9–11].

A comprehensive description for differently shaped hard
particle systems’ equations of state depending on their aspect
ratio has often been in the focus of scientific work [12–15]
with relevance for classical density functional theory [16].
In their seminal work, Isihara and Hadwiger independently
showed that the second virial coefficient of convex hard bodies
can be described analytically using fundamental geometric
measures of the respective geometry [17–19].

Based on the knowledge of second virial coefficients B2,
we have previously reported that reduced higher-order virial
coefficients B̃i = Bi/Bi−1

2 , where Bi is the virial coefficient
of order i of hard, oblate, ellipsoids of revolution and hard
lenses, show in first approximation a universal dependence on
the excess part of the mutual excluded volume [20,21].

The aim of this contribution is to calculate equation-of-
state data for hard lenses as a geometry similar to hard, oblate
ellipsoids of revolution, however, exhibiting an equatorial
singularity of surface curvature in contrast to ellipsoids. The
comparison of hard, oblate ellipsoids of revolution and hard
lenses is a suitable choice, since the phase behavior of both
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geometries is known and contains the same phases [22–24].
In the case of hard lenses metastable glassy phases have also
been reported [25,26].

As previously shown for ellipsoids, cluster Monte Carlo
simulations as a biased variant of the original Metropolis
scheme are the method of choice for the computation of pre-
cise equation-of-state data of hard, anisotropic particles in the
(N, p, T ) ensemble at constant number of particles N , con-
stant pressure p and constant temperature T . Since in the case
of hard-body interaction, the potential energy is either infinite
for overlaps or zero otherwise, deviations from the ideal-gas
behavior are for such systems independent on the temperature
and therewith the thermal energy β−1 = kBT . Hence, the rel-
evant quantity with impact on the real gas behavior is solely
the particle number density � and the related volume fraction
ϕ = VP�, where VP denotes the particle volume.

II. THEORETICAL BACKGROUND

In this paper, equation-of-state data of hard lenses is de-
termined in the isobaric-isothermal (N, p, T ) ensemble. As
previously shown, employing a cluster Monte Carlo (MC) al-
gorithm [27–29] gives access to precise equation-of-state data
with comparatively small computational effort. In comparison
to classical (N, p, T ) MC, the cluster MC approach allows
larger volume fluctuations leading to a better exploration of
the configuration space.

The theoretical background of this biased MC technique is
explicitly described in [29]. To adapt the cluster-MC approach
to systems consisting of hard lenses, the closest surface dis-
tance for this geometry needs to be determined reliably with a
fast method.

A. Closest surface distance of lenses

A lens is the section of two spheres with radius R0 whose
centers are less than 2R0 apart from each other. The generating
spheres’ radius R0, depending on the equatorial radius req and
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FIG. 1. Closest surface distance between undercritically inclined
lenses. In this case (i) the closest surface distance is between the
spherical caps of both lenses.

the aspect ratio ν, reads as

R0 = 1 + ν2

2ν
req. (1)

In principle, the presented algorithm to determine the closest
surface distance σi j of lenses is an extension of the overlap
algorithm of lenses in [21]. It assumes an overlap-free con-
stellation of two lenses i and j with centers of mass ri and r j

as well as orientations ûi and û j . The closest surface distance
between two lenses can occur (i) between two spherical caps,
(ii) between a spherical cap of one and the equatorial circle
of the other lens, or (iii) between the equatorial circles of two
lenses.

Let Ki and K j be the centers of the most distant generat-
ing spheres and ûs = (K j − Ki )/‖K j − Ki‖ the direction of
their distance vector. Let us further define ϑc = arccos[(1 −
ν2)/(1 + ν2)] as aperture of the critical cone. If the angles
enclosed between the distance vector ûs and both directors
ûi and û j are smaller than the critical angle ϑc, both lenses
are undercritically inclined. In this case the closest surface
distance is between two spherical caps and is given by

σi j = ‖K j − Ki‖ − 2 R0 (2)

as visualized in Fig. 1.
Otherwise at least one equatorial circle limits the closest

surface distance. The point on the equator of lens j closest to
Ki is

P j = r j + req
û j × [(Ki − r j ) × û j]

‖û j × [(Ki − r j ) × û j]‖ , (3)

leading to the closest surface distance σi j

σi j = ‖P j − Ki‖ − R0 (4)

under the condition
P j − Ki

‖P j − Ki‖ · ûi > cos ϑc, (5)

corresponding to case (ii). By interchanging the indices i and
j in Eq. (3), Eq. (4) and the constraint Eq. (5), the closest
surface distance between the equator of lens i and lens j is
obtained (Fig. 2).

σij

Ki

ϑc

Pj

FIG. 2. Closest surface distance of critically inclined lenses case
ii) fulfilling the constraint in Eq. (5). The closest surface distance
occurs between the equator of one lens and the spherical cap of the
other.

The remaining case (iii), i.e., the closest surface distance
between both equators is illustrated in Fig. 3, where the con-
straint Eq. (5) is not fulfilled. The remaining problem is the
closest distance between possibly incongruent circles in the
three-dimensional space, which can be reliably determined
using the algorithm of Vranek [30].

The described approach was validated by a numerical brute
force routine using a parametrized surface and comparison to
data computed by means of a standard (N, p, T ) algorithm for
different densities and aspect ratios.

B. Simulation details

Equation-of-state data for isotropic and nematic phases
is calculated from compression simulations of systems typ-
ically with 1000 particles initialized from a cubic lattice
with randomly aligned directors at a volume fraction of
ϕ = 0.05. These are equilibrated for 106 steps and subse-
quently compressed to the pressure of interest. After an
additional equilibration phase, a production run with 5 × 107

steps is performed. A step is hereby defined as N random
particle displacement or rotation attempts and a single volume
fluctuation attempt.

To determine the limits of the isotropic phase for aspect
ratios that transition into a solid phase additional expansion
simulations from dense monoclinic SM2 crystals containing
between 972 and 1040 particles are performed. Here, addi-

σij

ϑc
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FIG. 3. Closest surface distance of critically inclined lenses case
iii) which do not fulfill the constraint in Eq. (5). Here the closest
surface distance lies between both equators and can be related to
the closest distance between two possibly incongruent circles in the
three-dimensional space.
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FIG. 4. Order parameters S2 (closed squares) and S4 (open cir-
cles) depending on the volume fraction ϕ for lenses of selected aspect
ratios ν separated by arbitrary offsets. The vertical, dashed red lines
represent the critical volume fractions ϕc determined by the roots
of the linear increasing order parameters S4(ϕ) within the nematic
phase.

tional shape fluctuations of the simulation box as described in
[29] at constant volume are introduced whereby independent
subsequent runs with at least 2 × 108 steps are performed.

The characteristic length δ steering the cluster formation
probability is tuned during the second equilibration phase to
obtain Nb/N ≈ 1/4 where Nb is the number of created bonds.
This guarantees percolation rejections to be less than 1 %,
even for highly anisotropic particles.

III. RESULTS AND DISCUSSION

A. Phase boundaries in the hard-lens system

The aim of this work is the calculation of equation-of-state
data in the isotropic phase of hard lenses. In the first step,
the phase boundaries of the isotropic phase are determined.
In analogy to oblate, hard ellipsoids of revolution, we expect
transitions from the isotropic to nematic, plastic crystalline,
and monoclinic crystalline phases. In the following, we map
the phase diagram by evaluating characteristic observables.

The orientational correlation in nematic phases can be
quantified by the nematic order parameters

S2 = 〈
1
2

(
3x2

i − 1
)〉

xi
(6)

and

S4 = 〈
1
8

(
35x4

i − 30x2
i + 3

)〉
xi
. (7)

To just identify the existence of nematic order, we use as
previously described [29] the inner product xi = û j .ûk of the
particle orientations û j and ûk . To fulfill the minimum image
convention, we again restrict the averages to the periodic
boundary conditions. In Fig. 4, the order parameters S2 and
S4 are displayed in dependence on the volume fraction ϕ.
Since the increase of S4 is more pronounced than that of S2,

TABLE I. Phase boundaries for the isotropic phase of hard lenses.

ν Phase Transition ϕc βpcr3
eq

1/10 I → N 0.142(2) 2.15(4)
1/8 I → N 0.173(2) 2.25(4)
1/6 I → N 0.224(2) 2.48(4)
1/5 I → N 0.258(2) 2.65(5)
1/4 I → N 0.313(2) 3.07(5)
1/3 I → N 0.400(2) 4.09(7)
1/2 I → SM2 0.555(3) 8.10(19)
2/3 I → PS 0.606(6) 7.9(4)
4/5 I → PS 0.505(6) 2.33(10)
10/11 I → PS 0.480(5) 1.54(7)

we extrapolate S4 to its root to determine the critical volume
fraction ϕc for the isotropic-nematic phase transition. The
critical volume fractions ϕc and reduced coexistence pressures
βpcr3

eq are compiled in Table I.
In analogy to the phase behavior of oblate, hard ellip-

soids of revolution, for aspect ratios ν � 1/2 transitions into
solid phases exist. To map the phase boundaries between the
isotropic phase and the monoclinic crystalline SM2 phase,
expansion simulations starting from dense SM2 crystals are
performed. While for aspect ratio ν = 1/2 a direct transition
from the crystalline SM2 phase to the isotropic phase is ob-
served, for ν � 2/3, first a transition to a plastic solid phase
occurs, followed finally at lower densities by the transition to
the isotropic fluid phase. The reduced coexistence pressures
and respective uncertainties are displayed in Fig. 5 depending
on the volume fraction ϕ for different aspect ratios ν. The

FIG. 5. Reduced pressure βpr3
eq depending on the volume frac-

tion ϕ for hard lenses of selected aspect ratios ν. The closed circles
represent data from compression simulations of the fluid phase,
while open squares result from expansion simulations of solid mon-
oclinic crystals. The horizontal solid lines represent the determined
coexistence pressures with their uncertainties indicated by dashed
horizontal lines.
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FIG. 6. Reduced pressure βpr3
eq depending on the volume frac-

tion ϕ for hard lenses of selected aspect ratios ν. Closed circles
represent equation-of-state data within the isotropic phase, while
open circles display data beyond the phase transition. The solid lines
represent the virial series using virial coefficients up to order eight
from [21].

reduced coexistence pressures and critical volume fractions
are additionally compiled in Table I.

B. Equation of state

Due to the absence of attractive interactions in the hard-
lens system, the isotropic phase is supercritical and thus can
be described using the virial approach

Z = p

�kBT
= 1 +

∞∑

i=2

B∗
i ϕi−1 (8)

in terms of the real gas factor Z . In this expansion in the
volume fraction ϕ, the reduced virial coefficients B∗

i account
for deviations from the ideal-gas equation of state. Here, the
reduced virial coefficient B∗

i of order i accounts for real-gas
effects induced by the formation of i-particle clusters.

As a first approach, we compare the simulation data, com-
piled in the Supplemental Material [31], with a virial approach
using recently published hard-lens virial coefficients up to
order i = 8 [21]. As displayed in Fig. 6, the initial depar-
ture from the ideal-gas behavior is excellently described for
all aspect ratios in the low-density limit. Approaching the
high-density limit of the isotropic phase, however, significant
deviations can be observed when truncating the virial expan-
sion for orders i � 9. This truncation even leads to unphysical,
negative real gas factors for highly anisotropic particles.

Different approaches taking the contribution of so-far
unknown, higher-order virial coefficients into account are dis-
cussed. Most of them are based on the Carnahan-Starling
series [32] approximating the reduced virial coefficients of
hard spheres as B∗

i ≈ i2 + i − 2. The reason why this ap-
proximation works surprisingly well for hard spheres is
still not understood [33]. Inserting the Carnahan-Starling

FIG. 7. Reduced pressure βpr3
eq depending on the volume frac-

tion ϕ for hard lenses of selected aspect ratios ν. Closed circles
represent equation-of-state data within the isotropic phase, while
open circles display data beyond the phase transition. The solid
lines represent the virial series up to order eight with a generalized
Parsons-type truncation correction according to Eq. (11).

approximation in Eq. (8) leads to the closed expression

Z = 1 + ϕ + ϕ2 − ϕ3

(1 − ϕ)3
(9)

for the real gas factor under the obvious constraint ϕ < 1. A
common approach to correct for truncation effects is the use
of all known virial coefficients up to order imax for a given
geometry and to approximate the contribution of the unknown
ones by the complement of the Carnahan-Starling equation,
where the factor B∗

2/B∗,HS
2 takes the specific shape into ac-

count. Here, B∗
2 is the reduced, second virial coefficient of

the respective geometry and B∗,HS
2 = 4 is the reduced second

virial coefficient of hard spheres [34,35]. This leads to the
relation

Z = 1 +
imax∑

i=2

B∗
i ϕ

i−1 + B∗
2

B∗, HS
2

∞∑

i=imax+1

B∗, HS
i ϕi−1 (10)

for the real gas factor. In our case, using imax = 8,

Z = 1 +
8∑

i=2

B∗
i ϕ

i−1 + B∗
2

4

2ϕ8(35ϕ2 − 78ϕ + 44)

(1 − ϕ)3 (11)

is obtained [29]. The solid lines in Fig. 7 represent the
truncation-corrected equation of state Eq. (11). For mod-
erately anisotropic lenses with aspect ratio ν � 1/5 the
simulation data are within the stability region of the isotropic
phase indicated by closed symbols in good agreement to the
suggested truncation correction. For higher anisotropic lenses,
however, this correction fails. This is in accordance to the find-
ings for oblate hard ellipsoids of revolution, where identically
this correction works reasonably up to the same anisotropy
parameter ν � 1/5 as recently reported. This indicates that
not the specific shape, but the extent of the short and long
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FIG. 8. Reduced pressure βpr3
eq depending on the volume frac-

tion ϕ for selected aspect ratios of hard lenses. The solid lines
represent least-squares fits of the proposed, generalized Carnahan-
Starling equation of state [Eq. (12)] to the simulation data. Closed
symbols represent equation-of-state data of the isotropic phase, while
open symbols display data beyond the phase transition.

axes causes this effect and confirms our assumption that long-
range orientational correlations not reflected by clusters of
limited size, but intrinsically taken into account in simulations
using several hundred particles are a plausible physical rea-
son. The spatial extent of orientational correlations drastically
increases for highly anisotropic particles and cannot be taken
into account by the second virial coefficient B∗

2 as a single
shape-dependent correction factor: the second virial coeffi-
cient only reflects short-range orientational correlations in
two-particle clusters. Here, the maximum interaction length,
where the orientation plays a role, equals in the case of
hard-body interaction the maximum contact distance, i.e., the
particles largest extent.

To provide a simple, heuristic equation for the isotropic
phase of hard lenses, we provide in analogy to hard, oblate
ellipsoids of revolution, a generalized Carnahan-Starling ap-
proach, where the real gas factor Z reads as

Z = 1 + γ0ϕ + γ1ϕ
2 − γ2ϕ

3

(1 − ϕ)3
. (12)

Choosing the parameter γ0 = B∗
2 − 3, the virial expansion is

asymptotically recovered in the low-density limit. Since the
second virial coefficient B∗

2 is analytically known for convex
shapes, just two parameters γ1 and γ2 need to be determined
from least-squares fits of simulation data in the isotropic phase
employing Eq. (12). As visible in Fig. 8, the simulation data
can be described excellently using this simple approach. The
optimum parameters γ1 and γ2 are compiled in Table II de-
pending on the aspect ratio ν.

C. Comparison with oblate ellipsoids

The dimensionless real gas factor Z is a quantity that
describes the equation of state independent of topological

TABLE II. Optimium parameters γ1 and γ2 obtained from
least-squares fits of the simulation data using the generalized
Carnahan-Starling approach [Eq. (12)] depending on the aspect ra-
tio ν. Additionally, the density limits of the data considered are
indicated.

Coefficients

ν Limits γ1 γ2

1/10 0.020 < ϕ < 0.142 111.14681(13) 764.7883(13)
1/8 0.039 < ϕ < 0.173 67.73726(20) 382.6916(16)
1/6 0.059 < ϕ < 0.224 34.83358(16) 151.8094(10)
1/5 0.049 < ϕ < 0.258 21.57179(10) 77.6509(6)
1/4 0.050 < ϕ < 0.313 12.60231(9) 36.5776(4)
1/3 0.050 < ϕ < 0.400 6.17223(7) 13.15453(20)
1/2 0.050 < ϕ < 0.555 2.31013(13) 3.2334(4)
2/3 0.050 < ϕ < 0.606 1.45092(7) 1.75807(14)
4/5 0.050 < ϕ < 0.505 1.17826(10) 1.28442(25)
10/11 0.050 < ϕ < 0.480 1.07893(12) 1.1153(4)

parameters of the respective shape depending on the volume
fraction ϕ. The comparison with our previously published
data [29] shows that systematically at any volume fraction the
real gas factor of lenses exceeds that of ellipsoids with the
same aspect ratio (Fig. 9). Despite the shape of both oblate
solids of revolution is quite similar, the detailed geometry
has a significant impact on the equation of state already for
moderately anisotropic particles. While at small anisotropies
with ν � 4/5 the real gas factors approximately coincide,
already at ν = 1/2 significant differences are observed. Even
larger differences appear for aspect ratios where an isotropic-
nematic phase transition occurs.

FIG. 9. Comparison of real gas factors Z for hard lenses and
hard, oblate ellipsoids of revolution depending on the volume frac-
tion ϕ for selected aspect ratios ν. The dashed lines with squares
indicate data of ellipsoids, while that of lenses is displayed as circles
with solid lines. Data for objects with the same aspect ratio are
displayed with the same color. The data for ellipsoids are from [29].
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FIG. 10. Heuristic parameters γ1 and γ2 of the suggested,
Carnahan-Starling type equation of state [Eq. (12)] depending on
the excess part of the mutual excluded volume α [Eq. (13)]. Data
of ellipsoids are displayed by dashed lines and squares, that of lenses
by circles and solid lines.

This is in accordance to the orientationally averaged ex-
cluded volume equal to the second virial coefficient: The
reduced second virial coefficient B∗

2 = B2/VP, i.e., the second
virial coefficient normalized to the respective particle volume
VP, of lenses exceeds that of ellipsoids of revolution at the
same aspect ratio ν. This is caused by the lenses’ strongly
increasing contribution of the equatorial singularity to the
mean radius of curvature with rising anisometry [36]. As a
further effect, a shift of the isotropic-nematic phase transition
of lenses to lower critical volume fractions ϕc compared to
oblate ellipsoids of revolution at the same aspect ratio ν is
observed.

We have previously shown that reduced virial coefficients
B̃i = Bi/Bi−1

2 in first approximation show a universal behav-
ior with respect to the rescaled excess part of the excluded
volume, also known as nonsphericity parameter. The latter
quantity is defined as

α = B2 − VP

3VP
(13)

with B2 denoting the second virial coefficient and VP the
volume of the respective geometry. For both oblate shapes,
the suggested generalized Carnahan-Starling relations with
only two heuristic parameters γ1 and γ2 describe the equation-
of-state data within the isotropic phase of both geometries
surprisingly well.

Analyzing the dependence of both heuristic parameters on
the rescaled excess part of the excluded volume α identically
shows in first approximation a universal behavior, nearly in-
dependent on the specific particle shape (Fig. 10). This again
indicates that the excess part of the mutual excluded volume is
the essential quantity that determines the equation of state for
oblate, hard solids of revolution. The solid and dashed lines as

a guide to the eye are second-order polynomials in the case of
γ1 and fourth-order polynomials in the case of γ2.

IV. SUMMARY AND OUTLOOK

As previously shown, cluster MC is an efficient method to
calculate equation-of-state data of hard-body systems within
the (N, p, T ) ensemble with high accuracy and comparatively
small numerical effort. The benefit of cluster MC increases
especially in the case of anisotropic particles with the com-
plexity of the overlap problem for the particle shape of
interest. In addition to the contact problem, for cluster MC,
however, at least an estimation for the closest surface distance
is required.

We describe a method to exactly determine the closest
surface distance for hard lenses based on our previously
published contact algorithm [21]. Herewith, after tracing the
phase boundaries of the isotropic phase of the hard-lens fluid,
we calculated novel, precise equation-of-state data in the sta-
bility region of this phase. With access to equation-of-state
data of both, hard, oblate ellipsoids of revolution and hard
lenses, the influence of the detailed particle shape beyond the
aspect ratio is analyzed.

The equation-of-state data for hard lenses is compared to a
virial approach using recently published virial coefficients up
to order eight and truncation effects, caused by so far unknown
higher-order virial coefficients, are analyzed. For moderately
anisotropic lenses with aspect ratio ν � 1/5, a Parson-type
correction is capable of reasonably describing the equation of
state in the isotropic phase. Although this approach replaces
unknown, higher virial coefficients by rescaled hard-sphere
coefficients with a scaling factor taking only the second virial
coefficient and thus two-particle interactions into account, the
Parson correction is an excellent closure relation for mod-
erately anisotropic particles within the isotropic phase. This
correction, however, fails for highly anisotropic lenses as
previously observed in the case of oblate, hard ellipsoids of
revolution. As a heuristic approach, we suggest a generalized
Carnahan-Starling ansatz with in addition to the analytically
known second virial coeffiecient two adjustable parameters
γ1 and γ2. This heuristic approach describes the equation of
state within the isotropic phase surprisingly well despite its
simplicity.

A significant shape dependence is observed for the real gas
factor Z as a function of the volume fraction ϕ at identical
aspect ratio ν. The parameters γ1 and γ2, however, show in
first approximation for both oblate geometries a universal
dependence on the rescaled excess part of the mutual excluded
volume α. Hereby, a reliable interpolation for equation-of-
state data for unknown aspect ratios is possible.

To gain further insights, if this seemingly universal behav-
ior holds for different, possibly prolate geometries, additional
equation-of-state data for such systems needs to be analyzed.
Possible candidates could be prolate ellipsoids of revolution
and spherocylinders, where the contact problem is already
solved and differences in the phase behavior are known.
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