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Overrelaxation in a diffusive integer lattice gas
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One of the most striking drawbacks of standard lattice gas methods over lattice Boltzmann methods is a much
more limited range of transport parameters that can be achieved. It is common for lattice Boltzmann methods
to use over-relaxation to achieve arbitrarily small transport parameters in the hydrodynamic equations. Here, we
show that it is possible to implement over-relaxation for integer lattice gases. For simplicity, we focus here on
lattice gases for the diffusion equation. We demonstrate that adding a flipping operation to lattice gases results
in a multirelaxation time lattice Boltzmann scheme with over-relaxation in the Boltzmann limit.
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Introduction. Lattice Boltzmann methods have emerged as a
highly successful numerical method for many areas of fluid
flow and beyond. However, particularly for fluctuating sys-
tems, the discrete nature of earlier lattice gas methods seems
much more appropriate, since fluctuations in nature are di-
rectly related to the discreteness of matter. Original lattice gas
approaches were inferior to lattice Boltzmann methods in sev-
eral respects. However, recent developments in integer lattice
gases (ILGs) by Blommel and Wagner [1] showed that many
of the artifacts of traditional Boolean lattice gas methods [2,3]
could be overcome by allowing for integer occupation num-
bers. One of the remaining shortcomings of the ILG methods
is that the resulting transport coefficients have a more limited
range than the transport coefficients that can be a achieved
using lattice Boltzmann methods. Lattice Boltzmann methods
routinely use a collision operator that over relaxes the local
distributions which allows them to achieve arbitrarily small
transport coefficients. This motivated us to further investigate
the possibility of achieving over-relaxation in ILG methods.

ILG, as developed by Blommel and Wagner [1], provided a
template for extending traditional lattice gas cellular automa-
ton methods [2,3]. Traditionally, lattice gases only allowed a
single particle per lattice node, however, Chopard and Droz
presented a scheme for multiparticle ILG [4]. In recent years,
we have seen a reemergence of research in practical applica-
tions of lattice gas methods [5,6]. Blommel presented a way of
allowing any integer number of particles to occupy any node
and be consistently redistributed through binary collisions that
conserved both mass and momentum. This implementation
mitigated issues such as Galilean invariance, which plagued
lattice gas methods, so they would become equivalent to the
corresponding lattice Boltzmann methods. However, it was
computationally expensive, thus limiting the practical appli-
cation of such a model. Seekins and Wagner [7], inspired
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by Boghosian and Chopard et al. [4,8,9], presented a modi-
fication to the collision operator which, instead of following
the defined collision rules step by step, sampled a probability
distribution to arrive at the same results as presented in Blom-
mel’s original model.

The success of the Seekins and Wagner’s sampling col-
lision operator in terms of computational practicality sheds
light on what could be achieved using ILG methods. One key
drawback of lattice gas methods is that they do not appear to
allow for over-relaxation of the collision operator. Such over-
relaxation is routinely used in lattice Boltzmann methods to
achieve lower transport coefficients. This is particularly help-
ful for hydrodynamic simulations at high Reynolds numbers,
which are helped significantly if low viscosities are possible.
The idea of over-relaxation is that instead of local collisions
moving a local distribution closer to local equilibrium, the
effect is to overshoot this approach and land beyond the equi-
librium distribution. Such over-relaxation has been shown by
Bösch and Karlin to be disconnected from the standard kinetic
theory domain from which lattice Boltzmann methods are
typically derived [10]. More recently, Pachalieva and Wagner
were able to show that over-relaxation can also be obtained by
a simple coarse graining of molecular dynamics simulations
[11], giving a more direct link between over-relaxation and
a physical system. This inspired us to question the generally
held idea that over-relaxation is not possible in lattice gas
methods and, in particular, are revisiting this question for ILG
methods.

In this Letter, we present a simple and effective method
which successfully performs over-relaxation in a diffusive
ILG. We extend the sampling collision operator presented by
Seekins and Wagner to incorporate over-relaxation through
a simple permutation of particles during the collision. In
Sec. II, we introduce the basics of the ILG method. Sec-
tion III provides the necessary extensions for implementing
over-relaxation in ILG methods. We derive the Boltzmann
average for the system in Sec. IV, showing its correspondence
with lattice Boltzmann methods, and we show that we can
derive the diffusion equation from the equation of motion for
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the over-relaxed ILG. In Sec. V, we verify the validity of our
refined collision operator incorporating over-relaxation.
Integer lattice gas. We briefly review here the integer lattice
Boltzmann method of Seekins and Wagner [7]. It consists of
an underlying regular lattice where neighboring lattice points
are connected through lattice velocities {vi�t}. With each
of these lattice velocities at each lattice point, we associate
integer occupation numbers ni(x, t ) that evolve through the
lattice gas evolution equation

ni(x + vi�t, t + �t ) = ni(x, t ) + �i({ni}). (1)

Here �i is a collision operator that redistributes the particles at
each lattice site. This collision operator is stochastic by nature
and must obey all local conservation laws. In our case, only
mass is conserved, so we require∑

i

�i = 0. (2)

Seekins and Wagner [7] introduced a collision operator that
picked a fraction ω of particles at random and redistributed
them to occupation number ni with a probability wi, where
wi are the familiar weight functions used in the definition of
lattice Boltzmann equilibrium distributions [12]. The details
of the algorithm that allows this to be done efficiently will
not be discussed here, but are detailed in the publication cited
above [7].

For this lattice gas, we can derive a lattice Boltzmann
average through

fi(x, t ) = 〈ni(x, t )〉, (3)

where the average 〈· · · 〉 implies a nonequilibrium average
over all possible realizations of the stochastic lattice gas. The
same average is applied to the lattice gas collision operator to
obtain the lattice Boltzmann collision operator:

�i = 〈�i〉. (4)

This lattice Boltzmann collision operator was shown to be of
the form

�i = ω
(

f 0
i − fi

)
, (5)

where the local equilibrium distribution is given by

f 0
i (x, t ) = ρ(x, t )wi, (6)

with the local density:

ρ(x, t ) =
∑

i

fi(x, t ). (7)

The resulting lattice Boltzmann equation

fi(x + vi�t, t + �t ) = fi(x, t ) + ω
[

f 0
i (x, t ) − fi(x, t )

]
,

(8)
can then be shown to have the diffusion equation as its hydro-
dynamic limit:

∂tρ(x, t ) = ∇D∇ρ(x, t ), (9)

where the diffusion constant is given by

D =
(

1

ω
− 1

2

)
θ, (10)

with

θ =
∑

i

wiv
2
i . (11)

In lattice Boltzmann simulations that are used as numerical
methods in their own right, values of ω ∈ {0, 2} are routinely
used, but in lattice gas implementations the definition of ω

as a probability limits its range to ω ∈ {0, 1}. This limits the
usefulness of lattice gas methods compared to their lattice
Boltzmann counterparts.
Over-relaxation in a lattice gas. The contribution of this paper
is to show that it is indeed possible to construct lattice gas
methods that can access the ω ∈ {1, 2} range often used in
lattice Boltzmann approaches. This is of interest not only for
the diffusive systems considered here but also for hydrody-
namic systems, which are the main forte of lattice Boltzmann
methods. In those systems, the transport coefficient of interest
is the viscosity, and obtaining low values for the viscosity
is essential for simulations of systems with high Reynolds
numbers. In this Letter, we present a proof of principle that we
hope to extend to those even more important hydrodynamic
lattice Boltzmann models in the near future.

The range of ω ∈ {1, 2} is referred to as over-relaxation be-
cause the lattice Boltzmann collision operator will overshoot
the local equilibrium distribution in the relaxation process.
ω = 1 corresponds to full relaxation, where the distributions
reach local equilibrium in each step, and ω < 1 implies under-
relaxation. That there is a difficulty of deriving over-relaxation
from, say, a continuous Boltzmann equation was shown by
Bösch and Karlin [10]. But aside from its obvious practical
utility it has now been shown by Pachalieva and Wagner
[11] that over-relaxation in a lattice Boltzmann can also be
obtained by coarse graining molecular dynamics simulations.

As indicated by Bösch and Karlin, over-relaxation cannot
be obtained through a continuous extension of the collision
process. We propose here to augment the collision process
with a flipping operation such that

Fi(ni ) = n−i, (12)

where we interpret negative indices such that v−i → −vi. This
leads to the lattice gas evolution equation:

ni(x + vi�t, t + �t ) = Fi(ni ) + �i({Fi(ni )}). (13)

Heuristically, such a flipping operation will send particles
back along the direction they just came from, and it is rea-
sonable to expect that this operation will completely suppress
diffusion. It is therefore reasonable to expect that this oper-
ation on its own will lead to something resembling ω = 2,
i.e., full over-relaxation. A closer examination of the collision
operator Eq. (5) shows that this is not the full story, as we will
examine below.

This flipping operation is then augmented with an addi-
tional collision with a collision fraction ω∗ ∈ {0, 1}. In the
limiting case of ω∗ = 0, we only apply the flipping operation,
leading to the case of full over-relaxation, and the limiting
case of ω∗ = 1 means that all particles are redistributed, mak-
ing the flipping operation moot and leading to full relaxation.
In the next section, we will derive the Boltzmann limit of this
augmented lattice gas and show that it indeed corresponds to
a lattice Boltzmann method with over-relaxation.
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Boltzmann approximation. We will now derive the Boltz-
mann average of the lattice gas including the flip operator of
Eq. (13). This is most easily accomplished by separating the
LB operation into a collision and a streaming step and then
transform the collision term into a moment space where the
flip operation has a very simple interpretation. We obtain

fi(x + vi�t, t + �t )= Fi[ fi(x, t )] + ω
{

f 0
i (x, t ) − Fi[ fi(x, t )]

}
.

(14)
Following the procedure presented by Wagner and Strand
[13], we transform the distribution functions into moment
space by defining a transformation matrix ma

i with which we
obtain occupation numbers in moment space:

Ma =
∑

i

ma
i fi. (15)

The transformation matrix is orthogonal with respect to the
Hermite norm defined through∑

i

ma
i wim

b
i = δab, (16)

∑
a

ma
i w jm

a
j = δi j . (17)

This allows us to obtain the fi from the Ma through

fi =
∑

a

wim
a
i Ma. (18)

When designing a transformation matrix, it is customary that
the first moments should correspond to the conserved quanti-
ties, the following moments to the hydrodynamic quantities,
and the remainder will represent so-called ghost modes, i.e.,
quantities that do not enter the hydrodynamic limit.

For a simple one-dimensional model with three velocities
{vi} = {−1, 0, 1} (D1Q3), this transformation matrix is writ-
ten as [13]

ma
i =

⎛
⎜⎜⎝

1 1 1

−
√

1
θ

0
√

1
θ√

1−θ
θ

−
√

θ
1−θ

√
1−θ
θ

⎞
⎟⎟⎠, (19)

where θ was defined in Eq. (11). It is useful to give the
moments Ma separate names related to their physical signifi-
cance,

Ma =
⎛
⎝ρ

j



⎞
⎠, (20)

where ρ is the particle density, j is the current density, and

 is related to the energy density moments. A particularly
nice property of this transformation matrix is that (in general)
the value of the nonconserved quantities of the equilibrium
distribution in moment space are zero [14]:

Ma,0 =
∑

i

ma
i f 0

i =
⎛
⎝ρ

0
0

⎞
⎠. (21)

We can now separate out the effect of the flipping operator and
the collision process. The flipping operator has a very simple

representation in moment space,

F (Ma) =
⎛
⎝ ρ

− j



⎞
⎠, (22)

and, in general, all even velocity moments are unaffected by
the flipping operation and all odd velocity moments acquire
a negative sign. The effect of the collision is likewise simple:
Conserved quantities are unaffected and nonconserved quan-
tities are multiplied by the fraction ω. So, we can write the
effect of the collision operator in moment space as

Ma = Ma + �a =
⎛
⎝ 0

−(1 − ω) j
(1 − ω)


⎞
⎠. (23)

This is equivalent to defining a new

ω j = 2 − ω, (24)

so we get the more usual

Ma,∗ =
⎛
⎝ 0

(1 − ω j ) j
(1 − ω)


⎞
⎠. (25)

With this, we can write the lattice Boltzmann equation corre-
sponding to the ILG with the flipping operation as

fi(x + vi�t, t + �t ) =
∑

a

wim
a
i (1 − ωa)ma

j

(
f 0

j − f j
)
,

(26)
where we introduced the ωa notation to refer to (ωρ, ω j, ω)
and ωρ is arbitrary. The key result is that this has the form of a
standard multi-relaxation time lattice Boltzmann equation. In
the case where ω j ∈ [1, 2], over-relaxation is observed, which
achieves the primary goal of the flipping operation, F (Ma).

According to the derivation of the hydrodynamic limit of
the lattice Boltzmann equation in Eq. (26) (see, e.g., Kaehler
and Wagner [14]), we obtain the diffusion equation

∂tρ = −D∇2ρ, (27)

in which we defined a diffusion constant

D = θ

(
1

ω j
− 1

2

)
. (28)

As shown by Sorenson et al. [15], the evolution of the
densities follows the diffusion equations for features with
wavelength λ � 10π/ω. In the following, we choose λ = 320
which is well in this regime.
Results.In order to verify that this diffusive implementation
does replicate Eq. (27) in the hydrodynamic limit, we analyze
a system with a known analytic solution [1,7]. We impose the
system with a sine wave as the density profile which takes the
form

ρ(x, 0) = Nave

[
1 + sin

(
2πx

L

)]
. (29)

Here, Nave is the average number of particles which ex-
ist at each node on the lattice and L is the size of the
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FIG. 1. Decay of the amplitude of an initial sine wave with
varying ω j values. ω j > 1 is in the over-relaxed regime. We see
good agreement between the measured simulation data (symbols)
and the theoretical prediction (solid lines) from Eq. (32) both inside
and outside the over-relaxation regime. This data was a result of the
average of 500 individual simulations on a D1Q3 lattice with size
L = 320 and N ave = 100.

one-dimensional lattice. The time evolution of this system has
the analytical solution

ρ(x, t ) = Nave

[
1 + sin

(
2πx

Lx

)
exp

(
− 4π2Dt

L2

)]
(30)

= Nave + Ath(t ) sin

(
2πx

L

)
, (31)

where we have a definition for the decay of the amplitude

Ath(t ) = Nave exp

(
− 4π2Dt

L2

)
. (32)

An issue arises due to the fact that Eqs. (29)–(32) are con-
tinuous, the ILG methods are discrete by nature, and ni ∈ Z.
To remedy this, we can impose our initial density profile
which is from a sinusoidal probability distribution

P(ρ) = Nave

[
1 + sin

(
2πx

L

)]
. (33)

This can be performed by choosing Poisson distributed ran-
dom numbers for the occupation numbers with an expectation
value wiP(ρ) based on the weighting of the system [7]. This
method allows us to model continuous functions as fully in-
teger valued which properly aligns with the discrete nature of
the ILG methods. In the same manner as Blommel, we are
able to acquire the amplitude of the profile at any point by

ALG(t ) =
∑

x sin
(

2πx
L

)
N (x, t )∑

x sin2
(

2πx
L

) . (34)

This measured amplitude can then be compared to the theo-
retical prediction in Eq. (32). We illustrate this comparison
in Fig. 1, where we see excellent agreement between the
measured amplitudes and the theoretical prediction for the
decay of the sinusoidal profile. For the values 1 < ω j < 2 in
the over-relaxation regime, we find very good agreement be-
tween the measured simulation and the theoretical prediction.
The values without the flipping operation had previously been
verified by Seekins and Wagner for ω � 1 and are shown for
completeness. It is interesting to point out the behavior which
occurs when ω j = 2. In this case, our collision probability is
ω = 0. Here, the flipping operation is guaranteed to permute
all particles back to their original position through the col-
lision with a probability of 1. This, in combination with the
streaming step, will cause all the particles in the system to
continually permute which will not evolve the system at all.
This data was acquired using a D1Q3 lattice with a size of
L = 320 with Nave = 100 particles per lattice node averaged
over 500 individual simulations.
Conclusions. We have presented a method for successfully
performing over-relaxation in diffusive ILG models, which
had previously been thought to be impossible. This method
introduces a simple permutation of the occupation numbers
within the system to overshoot local equilibrium. This is made
possible by defining an effective collision probability which
nullifies the mathematically impossibility of utilizing proba-
bilities greater than 1. This works in tandem with the sampling
collision operator presented by Seekins and Wagner, but it is
also generally possible to implement on any collision operator.
The ability to utilize over-relaxation in integer lattices gases
will increase the usefulness and practicality of the method.
The example of diffusion has provided a pathway in which we
intend to develop a fully realized over-relaxed hydrodynamic
ILG.
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