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Independent-hot-spot approach to multibeam laser-plasma instabilities
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The independent-hot-spot model is used to develop an analytic formulation for multibeam laser-plasma
instabilities in inhomogeneous plasmas. The model is applied to the absolute two-plasmon-decay instability
and shows good agreement with simulations and experiments. The success of the model indicates the emergence
of single-speckle behavior for sufficiently large speckles sizes.
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In laser-driven inertial confinement fusion (ICF), a
millimeter-scale cryogenic capsule of deuterium–tritium fuel
with a thin outer ablator is imploded either by direct laser
illumination (direct drive) or by focusing the lasers onto the
interior walls of a hohlraum to generate an x-ray bath (indirect
drive) [1]. In both cases, the many high-intensity laser beams
overlapping in underdense plasma can drive various laser-
plasma instabilities (LPIs) that can severely inhibit implosion
performance [2,3].

Analytic results for instability behavior are typically lim-
ited to the case of a single plane-wave laser driving instability
in the linear regime. ICF experiments, however, involve mul-
tiple overlapping laser beams, each using a phase plate that
generates a complex speckle pattern in the plasma [4], and
accurate predictions of instability behavior require a de-
scription that accounts for their combined interaction [5].
Multibeam interactions have historically been described us-
ing the common-wave model, where wave-vector matching
considerations are used to show that overlapping laser beams
can couple to a shared daughter wave propagating along the
drive-beam axis of symmetry [6–11]. However, recent exper-
iments and simulations of multibeam LPIs have shown that
the common-wave description often fails to predict instability
behavior [12–14].

In this Letter, we show that an independent-hot-spot model
is the correct description of the two-plasmon-decay (TPD) in-
stability in many cases where the common-wave model leads
to inconsistencies with observations. A general prescription
is developed for deriving independent-hot-spot models that is
applied to the TPD instability and shows good agreement with
multibeam simulations and experiments.

When discussing various models for instability behavior,
we use the word model in the general sense of a conceptual
model that is used to gain physical insight. A conceptual
model can be used to derive a mathematical model that can
be used to predict observables, but this is often unnecessary
when sophisticated codes are available. Our goal here is to
develop a framework for determining the correct conceptual
model for interpreting multibeam LPI experiments.

Instability behavior in speckled beams can be divided
into two categories: single-speckle and multispeckle. Single-

speckle behavior is when there is no communication between
speckles, so the interaction within each speckle can be treated
independently, and the global behavior can be treated statis-
tically. The associated models for this behavior are referred
to as independent-hot-spot models [15–22]. All instabilities
exhibit single-speckle behavior in the limit of infinitely large
speckles (the plane-wave limit), and multispeckle behavior
emerges with decreasing speckle size. This categorization is
useful because it makes it clear that the independent-hot-
spot model is, by definition, the correct conceptual model for
any instability exhibiting only single-speckle behavior. Any
other model of instability behavior falls into the multispeckle
category [23]. Consequently, the common-wave model is a
multispeckle model (regardless of its predictive capability).
We show below that TPD experiments are often in the single-
speckle regime.

The speckle size plays a critical role in determining
whether an instability is in the single- or multispeckle regime.
For a single laser beam, the approximate speckle widths
and lengths are ws = f#λ0 and ls = 2π f 2

# λ0, respectively,
where f# is the f -number and λ0 is the wavelength (valid for
f# � 1) [24–26]. Multiple overlapping beams will have co-
herent structures over a range of spatial scales, but the highest
intensities correspond to the coherent sum of all the incident
beams, resulting in speckle sizes comparable to a single-beam
aperture encompassing all of the beams [27]. Accordingly,
for the purpose of predicting the properties of the highest-
intensity speckles, a group of beams can be treated as a
single large-aperture (small f -number) beam. Figure 1 shows
the electric field of six f /6.7 beams incident at an angle of
θ = 23◦ relative to the x-axis (λ0 = 0.405 μm). The predom-
inant coherent structures are ∼0.4 μm wide and ∼3 μm long,
which is consistent with the effective f -number of the entire
cone of beams given by f# ≈ 1/(2 tan θ ) ≈ 1.2.

There is a straightforward procedure for constructing
approximate analytic or semianalytic independent-hot-spot
models by combining a model for the speckle statistics with
a model for the single-speckle behavior. Given a collection of
N speckles, the absolute instability threshold occurs when the
peak speckle intensity is equal to the single-speckle thresh-
old, IM = Ithr,speckle. Introducing the average laser intensity I0
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FIG. 1. Electric field for a six-beam cone of f /6.7 beams inci-
dent at 23◦ relative to the x axis.

and ensemble averaging over speckle realizations, this can be
written as

Ithr = 1

〈IM/I0〉 Ithr,speckle, (1)

where we have defined the expected average intensity at
threshold Ithr ≡ 〈I0〉. Accordingly, evaluation of the expected
threshold in the independent-hot-spot model is reduced to the
evaluation of 〈IM/I0〉 and Ithr,speckle.

The expected peak speckle intensity can be written in terms
of the probability that every speckle intensity is less than u
[28]:

〈IM/I0〉 =
∫ ∞

0
[1 − P(I/I0 < u)N ]du. (2)

Reference [29] derives speckle distributions that are valid for
high-intensity speckles (I 	 I0) but are badly behaved at low
intensities. Accordingly, we use exponential distributions at
low intensities to generate probability distributions that are
well behaved at all intensities:

P(I/I0 > u)2D =
{

e−u/μ2 , u < us2,

A2
[(

1
2 + π

4

)
u + 1

2

]
e−u, u > us2,

(3)

P(I/I0 > u)3D =
{

e−u/μ3 , u < us3,

A3
[
u3/2 − 3

10 u1/2
]
e−u, u > us3,

(4)

where the μi are adjustable parameters and the Ai and usi are
chosen to make the distributions well-behaved (monotonically
decreasing with continuous first derivative). Here μ2 = μ3 =
4 was chosen on the basis of comparison to simulations, which
gives A2 = 1.185, us2 = 0.944, A3 = 1.848, and us3 = 2.210
(the results are only weakly sensitive to μi because it affects
only the low-intensity part of the distribution).

Plugging Eqs. (3) and (4) into Eq. (2), using the binomial
theorem, and integrating gives

〈IM/I0〉2D =
N∑

a=1
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N

a

)
(−1)a
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FIG. 2. (a) The expected peak speckle intensities. (b) Single-
speckle absolute TPD threshold as a function of speckle width.
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where �(s, x) is the incomplete gamma function. The ex-
pected peak speckle intensities [Eqs. (5) and (6)] are shown
in Fig. 2(a). The expected peak intensity increases rapidly at
small N and grows logarithmically for large N (N � 30).

To determine N , we restrict our discussion to instabilities
that are spatially localized by plasma inhomogeneity such that
N is the number of speckles in a cross section of the laser
field (i.e., the interaction region is not significantly longer
than the speckle length). Accordingly, N is approximately
the laser power divided by the mean power in a speckle,
N = PL/〈Ps〉. The laser power is the average intensity times
the cross-sectional area (PL = I0σb). To determine the mean
power in a speckle, we first average over the probability
density of speckle intensities to obtain the mean speckle inten-
sity 〈I/I0〉 = ∫ ∞

0 uP(u)du, where P(u) = −∂P(I/I0 > u)/∂u.
Equations (3) and (4) give

〈I/I0〉2D = μ2 − (μ2 + us2)e−us2/μ2

+ A2e−us2
[
4 + π + (4 + π )us2 + (2 + π )u2

s2

]
/4,

(7)

〈I/I0〉3D = μ3 − (μ3 + us3)e−us3/μ3 + A3

[
3
√

π

5
erfc(

√
us3)

+ e−us3
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us3

(
u2

s3 + 7

10
us3 + 6

5

)]
, (8)

where erfc(x) is the complementary error function.
For speckles with a Gaussian transverse profile
[I (r) = Ie−(2

√
log 2r/ws )2

] and full width at half-maximum
(FWHM) ws, integration over r gives the mean power
in a speckle, 〈Ps〉2D = 〈I/I0〉2DI0ws

√
π/ log 2 and

〈Ps〉3D = 〈I/I0〉3DI0w
2
s π/(4 log 2). Finally, the expected

L063201-2



INDEPENDENT-HOT-SPOT APPROACH TO MULTIBEAM … PHYSICAL REVIEW E 105, L063201 (2022)

number of speckles in two and three dimensions (2D and 3D),
respectively, is

N = σb

ws〈I/I0〉2D

√
log 2

π
, (9)

N = σb

w2
s 〈I/I0〉3D

4 log 2

π
. (10)

The single-speckle threshold (Ithr,speckle) generally depends
on the speckle size, plasma conditions, and the instability
under consideration. Here we focus on the absolute TPD
instability, which can grow only in a narrow region near the
quarter-critical density [30,31]. An analytic approximation
can be developed by constructing a spatially localized solution
out of the linear eigenmodes for a plane-wave drive laser
propagating parallel to a linear density gradient along the
x-direction, which have the form ne(x, t ) = u(x, t )eikyy+ikzz +
c.c. [31]. In the simplest case in which the speckles are aligned
with the density gradient, the transverse speckle width plays
the dominant role in determining the single-speckle threshold,
and we can neglect the impact of speckle length because
the longitudinal (x-direction) mode width is typically smaller
than the speckle length. Because the transverse eigenmode
width is formally infinite, spatially localized growth requires
a superposition of the linear eigenmodes. The transverse part
of the linear eigenmodes are simply Fourier modes, so the
spectral width of the superposition is inversely proportional
to the spatial width. Accordingly, the spectral width of the
transverse eigenmodes is approximately �k⊥ ≈ 2π/ws or
�k⊥/k0 ≈ 1/ f# (k0 = 2π/λ0). An analytic approximation to
the single-speckle thresholds is obtained from the plane-wave
result by requiring absolute instability over the corresponding
range of linear eigenmodes.

A straightforward generalization of the derivation in
Ref. [31] to include eigenmodes outside the plane of polar-
ization (kz �= 0) gives the threshold condition

α

2β1/2
>

(ψ + 1 + qz/qy)2

2ψ + 1 + qz/qy

(
2ψ − 1 − qz/qy

ψ

)1/2

, (11)

where

ψ = −1 − qz

qy
− 1

2 × 31/3qyβξ
+ ξ

2 × 32/3
, (12)

ξ = [18(1 + qz/qy)/(qyβ )]1/3, α = 4k2
0v0Ln/ω0, β =

9v4
tek2

0/v
2
0ω

2
0, qi = (ki/k0)2, Ln is the density scale length,

vte is the electron thermal velocity, and v0 is the electron
oscillation velocity. v0 is converted to intensity (in cgs units)

using I = cm2
e ω

2
0v

2
0

8πe2

√
1 − ne0

nc
, where me is the electron mass,

c is the speed of light in vacuum, ne0 is the background
electron density, e is the magnitude of the electron charge,
and nc = ω2

0me/4πe2 is the critical density for light with
frequency ω0. Equation (11) was derived assuming β 	 1,
which is typically satisfied in ICF experiments.

Figure 2(b) shows the single-speckle thresholds as a func-
tion of speckle width for Ln = 400 μm, Te = 4 keV, and
λ0 = 0.405 μm. The thresholds are normalized to the analytic
plane-wave threshold [31]

Ithr,TPD = 0.658
c4m2

eω0

e2Ln

v2
te

c2
. (13)

The analytic results are compared to single-speckle cal-
culations from the LPSE code, where the time-enveloped
linearized electron-fluid equation [Eq. (2) in Ref. [32]] was
solved pseudospectrally using an applied laser field. The
thresholds were determined by running a series of simula-
tions and using the bisection method to locate the threshold
intensity (Appendix A of Ref. [32]). The important qualitative
features that are apparent in both the analytic approximation
and the LPSE results are the sharp increase in threshold at
small speckle width and the considerable difference between
the 2D and 3D thresholds. The sharp increase in the threshold
occurs because linear eigenmodes with large k⊥ have much
higher thresholds than the small k⊥ modes. Similarly, the
large difference between the 2D and 3D thresholds results
from the increased thresholds for the out-of-plane eigenmodes
(kz �= 0).

Despite the qualitative success of the analytic model for
the single-speckle threshold, it is not sufficiently accurate
for quantitative threshold calculations. Accordingly, in the
comparisons to full speckled-beam calculations that follow,
a “semianalytic” version of Eq. (1) was used, where Ithr,speckle

is taken from nonlinear fits to the single-speckle LPSE results.
This limits the generality of the results because it requires
a series of single-speckle simulations for each Ln and Te.
One additional correction that was not accounted for in the
single-speckle threshold calculations was that the wavelength
in a speckle is slightly longer than the laser wavelength be-
cause it corresponds to the projection of the component laser
wave vectors along the speckle direction. The TPD threshold
at fixed laser frequency is proportional to the wavelength,
so this introduces a 1/ cos θ correction to the single-speckle
threshold. Finally, because of the sharp increase in threshold
at small speckle widths, there are situations in which including
only a subset of the beams (or, equivalently, a subregion of
the beam aperture) will result in reduced thresholds. This is
readily included in the model but does not impact any of the
results that follow.

Figure 3 shows comparisons of Eq. (1) to various speckled-
beam LPSE calculations. Figure 3(a) shows 2D calculations
using a single beam with varying f -number at Ln = 200 μm,
Te = 2 keV and Ln = 400 μm, Te = 4 keV, which are sim-
ilar to the conditions in direct-drive ICF experiments on
the OMEGA [33] and National Ignition Facility [13] lasers,
respectively. The thresholds are higher in the longer-scale-
length calculations because, for a given speckle width, the
single-speckle threshold increases with increasing tempera-
ture and scale length.

Figures 3(b) and 3(c) show 3D instability thresholds for
Ln = 200 μm, Te = 2 keV and Ln = 400 μm, Te = 4 keV, re-
spectively, for three different beam configurations: (i) a single
beam with varying f -number; (ii) six f /6.7 beams uniformly
distributed on a cone relative to the x-axis with polar angle θ

and azimuthal angle for the mth beam φm = 2πm/6; and (iii)
eight f /6.7 beams organized into two four-beam cones with
polar angles θ and θ/2 and azimuthal angles φm = 2πm/4 and
φm = 2πm/4 + π/4, respectively. For the multibeam cases,
the horizontal axis corresponds to an effective f -number given
by the cone angle, f# = 1/(2 tan θ ), and the beam polariza-
tions were aligned. All three beam configurations give the
same threshold to within statistical variations and are in good
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FIG. 3. Absolute TPD instability thresholds for speckled beams. (a) 2D results. (b),(c) 3D results for Ln = 200 μm, Te = 2 keV and
Ln = 400 μm, Te = 4 keV, respectively. The dashed curves show the corresponding semianalytic results. The error bars correspond to the
standard deviation from an ensemble of 20 (5) speckle realizations in 2D (3D).

agreement with the semianalytic model. This shows that the
instability behavior is predominantly determined by the small-
est (and highest-intensity) speckles and justifies the treatment
of the cones of beams as a single beam with a small effective
f -number.

The good agreement between the LPSE simulations and
the semianalytic model is suggestive that the instability is in
the single-speckle regime, but it is not definitive evidence.
Here we can simply inspect the fields in the LPSE simulations
and find that the instability growth is localized to a single-
speckle in all cases but when f# = 1, Ln = 400 μm, and Te =
4 keV, which is consistent with the fact that the semianalytic
model diverges significantly from the LPSE results in that
region.

The thresholds in Fig. 3 cannot be compared directly to
experiments because they correspond to the average inten-
sity required for absolute growth in a single speckle, which
has an implicit volume dependence. Assuming single-speckle
behavior, the formalism developed here can readily be ap-
plied to convert the threshold definition used in Fig. 3 to
approximate an effective threshold for the average intensity
Ithr, f such that some fraction f of the speckles are above
threshold:

Ithr, f = 〈IM/I0〉Ithr

u f
, (14)

where u f is obtained by numerically solving P(I/I0 > u f ) =
f using the distributions in Eq. (3) or (4).

A direct comparison of these results can be made with
the experimental results given in Ref. [7], where hot-electron
production from a four-beam configuration with parallel po-
larizations (incident at 23◦ relative to the target normal) was
compared to the single-beam case ( f# = 6.7). The plasma
conditions were similar to those in Fig. 3(b), and the au-
thors state that the ratio of scale length to temperature
was approximately constant (Ln/Te ≈ 160 μm/keV) over
the range of intensities considered with ∼50% of the inci-
dent laser energy reaching the quarter-critical surface. This
corresponds to a vacuum plane-wave threshold intensity of
Ithr,TPD = 2.5 × 1014 W/cm2. To make a threshold compar-
ison, we assume that when somewhere between 1% and
10% of the speckles were above threshold [ f = 0.01–0.1

in Eq. (14)], the measured hot-electron fraction was in the
range 10−4–10−3. Accordingly, the semianalytic model gives
Ithr/Ithr,TPD = 0.3 ± 0.1 and 1.0 ± 0.2 or vacuum threshold
intensities of 0.8 ± 0.3 × 1014 and 2.5 ± 0.5 × 1014 W/cm2

for the single- and four-beam cases, respectively. The corre-
sponding experimental thresholds were 1.3 ± 0.2 × 1014 and
2.3 ± 0.3 × 1014 W/cm2. LPSE predicts that both config-
urations should be in the single-speckle regime, which is
corroborated by the good agreement between the prediction
and the experiment in the four-beam case. Despite the sig-
nificant (38%) underprediction of the single-beam threshold,
we can be confident that those results were also in the single-
speckle regime because of the large speckle size. Additionally,
this discrepancy is not very surprising because the semiana-
lytic model also underpredicts the LPSE results by ∼24% for
f# = 6.7, and all of the calculations presented here neglected
electron-ion collisional damping, which would increase the
predicted thresholds by ∼10%. LPSE calculations using the
actual plasma conditions and beam geometry from the paper
(and collisions) predict thresholds of 1.2 ± 0.2 × 1014 (one-
beam) and 2.9 ± 0.5 × 1014 W/cm2 (four-beam).

Reference [7] also included two-beam subsets of the four-
beam configuration, which results in speckles that are narrow
in the dimension parallel to the direction of separation but
wide in the other dimension. For the case in which the po-
larization is aligned with the direction of separation, this is
similar to the 2D geometry because the speckles are wide
in the out-of-plane dimension. To within error, this gives the
same predicted threshold as the single-beam 3D case, which
was also true in the experiments.

Reference [12] has experiments that used two different
beam configurations with the same effective f -number but
different predicted common-wave thresholds. Although the
use of polarization smoothing precludes a quantitative com-
parison, the measured thresholds were not sensitive to the
configuration, which is consistent with the model developed
here because configurations with the same effective f -number
have the same predicted threshold.

These results have several important implications for ex-
perimental design: (i) The only way to increase thresholds
by modifying beam geometry is to reduce the effective f -
number. (ii) Thresholds can be increased by reducing the
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peak speckle intensity (e.g., with polarization smoothing).
(iii) Schemes that use reduced laser focal spot size to miti-
gate cross-beam energy transfer [34] will result in decreased
TPD thresholds because concentrating the laser energy in
near-normal-incidence beams results in a larger effective f -
number. (iv) Speckle motion is more likely to have an impact
on instability thresholds in the single-speckle regime.

We have shown that multibeam TPD often exhibits single-
speckle behavior than can be understood in the context of
an independent-hot-spot model. A procedure for deriving a
semianalytic independent-hot-spot model was developed and
applied to the absolute TPD instability, which shows good
agreement with LPSE calculations. The approach can read-
ily be applied to other instabilities and to include additional
effects like polarization [27] and temporal smoothing [21,25].
Although there is no general procedure for determining the
point of transition from single- to multispeckle behavior, it
is clear that it will occur at smaller speckle sizes for more
spatially localized instabilities such as absolute instabilities or
weakly damped convective instabilities.
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