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Dynamic scaling in rotating turbulence: A shell model study
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We investigate the scaling form of appropriate timescales extracted from time-dependent correlation functions
in rotating turbulent flows. In particular, we obtain precise estimates of the dynamic exponents zp, associated with
the timescales, and their relation with the more commonly measured equal-time exponents ζp. These theoretical
predictions, obtained by using the multifractal formalism, are validated through extensive numerical simulations
of a shell model for such rotating flows.
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Many aspects of turbulence are understood through pth-
order correlation functions of velocity increments across
suitably defined length scales r which lie in the so-called
inertial ranges of the flow [1–3]. In simple terms, the inertial
range is well separated from and lies between the system-
dependent energy injection scale L and dissipation scale η

of the turbulent flow. We now know that there exist power
laws [3–5] in these correlators, typically called structure func-
tions, and a universality of the associated scaling exponents
ζp which are perhaps universal for a given class of turbulent
flows but may well vary for different forms of turbulence.
Thus, the evidence favoring the universality of such expo-
nents in fully developed, homogeneous and isotropic [3,6,7],
passive-scalar [6,8–10], magnetohydrodynamic [11–13], two-
dimensional [14–17], and indeed rotating turbulence [18–21],
to name a few, is overwhelming. Nevertheless, the values of
ζp are known to be different and specific to each of these
turbulent flows.

The algebraic nature of these structure functions and in-
deed the universality of the exponents also are reminiscent of
the behavior of correlation functions near a critical point [22],
for example, in spin systems. However, for the turbulent flows
that we are familiar with this analogy is limited [23]. This is
because in fully developed turbulence an infinite set of expo-
nents is required to fully characterize different-order structure
functions in the inertial range as opposed to the simple scaling
one is familiar with in critical phenomena. Such a complexity,
which can be rationalized through a multifractal description of
turbulent flows, has also meant that, unlike in critical phenom-
ena where studies of static and dynamic correlators [24] have
been closely associated, the study of time-dependent structure
functions is more recent in turbulence.

Nevertheless, over the past decades there has been a con-
certed effort to generalize the dynamic-scaling ansatz in the
critical phenomenon, namely, the dynamic scaling exponent z
associated with the relaxation time τ near a critical point, and
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obtain estimates of the multiscale nature of time-dependent
structure functions in turbulence. These investigations have
however been limited to homogeneous, isotropic turbulence
in two and three dimensions or for the case of passive-scalar
turbulence [16,25–29]. In particular, these studies demon-
strate that just like the case of equal-time exponents ζp, there
exists an infinite set of (universal) exponents zp whose values
depend on the kind of relaxation time taken from the order-p
time-dependent structure functions. Perhaps the most impor-
tant success of these studies was the generalization of the
Frisch-Parisi multifractal formalism [30] for the velocity field
u to derive (linear) bridge relations [26,31,32] connecting the
dynamic zp and equal-time ζp exponents and to establish the
notion of dynamic multiscaling.

The complex nature of time correlations in these systems
is intrinsic. However, what happens when there is an exter-
nal global timescale governing the statistical nature of the
turbulent flow itself? Indeed, for such systems it is difficult
to separate the hierarchy of dynamics intrinsic to the system
and the time correlations set by the imposed timescale making
the study of the nature of dynamic (multi)scaling, when such
effects are at play, nontrivial.

One of the more natural and ubiquitous examples of tur-
bulence with an imposed global timescale is that of rotating
turbulence [33–36], observed in geophysical phenomena [37]
including oceanic and atmospheric flows [38], astrophysical
phenomena [39], and many engineering applications. When
the Coriolis force dominates over the nonlinear term, strongly
rotating, but mildly turbulent, three-dimensional flows tend
to become two dimensional, consistent with the Taylor-
Proudman theorem [35,40]. However, when the flow becomes
turbulent, the nonlinear effects can no longer be ignored
[20,41–46]. In fact, the nonlinear interactions among the
inertial waves play an important role in developing the quasi-
two-dimensional behavior of rotating turbulence [47–53].

In such rotating turbulent flows, the addition of a global
rotation rate � through the Coriolis force sets a unique
timescale 1/�. At the level of statics, we know [54] that this
timescale leads to a characteristic length scale in the problem:
the Zeman scale �� =

√
ε/�3, where ε is the mean kinetic

energy dissipation. The role of this global rotation, via the
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Zeman scale, in determining the equal-time statistics of three-
dimensional rotating turbulence has been extensively studied.
In particular, we know that, unlike homogeneous and isotropic
turbulence, in the limit of large Reynolds numbers, when
L � �� � η, the equal-time (longitudinal) structure func-
tions of the (projected) velocity increments δu(r) = [u(x +
r) − u(x)] · r̂ in the inertial range L � r � η show a dual
scaling; r̂ is the unit vector along the separation vector r.

More precisely, defining the pth-order equal-time struc-
ture function Sp(r) = 〈|δu(r)|p〉, the equal-time exponents
are extracted via the power law Sp(r) = rζp in the inertial
range. The rotation-induced Zeman scale results in two dif-
ferent classes of exponents: Theoretical estimates suggest that
for the rotation-dominated larger scales L � r � ��, the ex-
ponents ζp = p/2; however, at smaller scales �� � r � η,
which are less sensitive to the Coriolis effects, ζp = p/3, as
is the case for fully developed three-dimensional turbulence
[18–21]. A consequence of this is that kinetic energy spec-
trum E (k) also displays dual scaling [54–57]: E (k) = k−2 and
E (k) = k−5/3 for wave numbers smaller and larger, respec-
tively, than the Zeman wave number k� = 1/��. This dual
scaling of the energy spectra is seen remarkably well in shell
models, such as the one we use here, as shown in Fig. 1
of Ref. [21]. Of course, measurements suggest strong inter-
mittency corrections to this simple dimensional form. Thus,
in rotating turbulence, just like in homogeneous, isotropic
turbulence, there exists multiscaling at the level of equal-time
statistics.

However, is there a similar multiscaling for the dynamic
correlators in such systems? This remains a somewhat open
question because while different aspects of Lagrangian turbu-
lence of rotating flows have been studied [49,58–61], studies
of dynamic correlators are sparse [62,63]. Furthermore, these
studies [62,63] use an Eulerian approach to measure the
second-order dynamic correlation function which, as we know
from insights developed in nonrotating turbulence [26], can
lead to an oversimplification and mask an underlying multi-
scaling as we illustrate below.

In the much simpler nonrotating, homogeneous, isotropic
turbulent flow, a naive calculation of dynamic scaling within
the Eulerian framework, in a manner similar to what is done
for equal-time structure functions, yields a trivial dynamic
exponent of unity because the sweeping effect dominates and
thus linearly couples the temporal and spatial scales. Indeed,
this sweeping effect leads to the simpler dynamic exponents
for the Eulerian time-dependent correlation functions in rotat-
ing turbulence as well, as reported by Favier et al. [62].

Thus, unlike for equal-time structure functions, special
care must be taken which eliminates this sweeping effect
in order to obtain nontrivial dynamic (multi)scaling expo-
nents. This can be done through the Lagrangian or the
quasi-Lagrangian framework [25–28,32,64–66]. While the
former allows us to measure the structure functions of tem-
poral velocity increments δu(τ ) = u(t + τ ) − u(t ), the latter
is especially useful as it allows us to obtain time-dependent
structure functions for velocity increments and hence, in the
limiting case, recovers the (Eulerian) equal-time structure
functions [32,67], as we now show. The quasi-Lagrangian
velocity field

v(r0, t0|x, t0 + t ) ≡ u(x + RL(r0, t0|t0 + t ), t0 + t ) (1)

is measured along the Lagrangian trajectory RL(r0, t0|t0 +
t ) of a fluid particle starting at (r0, t0). This allows
us to define the (quasi-Lagrangian) velocity increments
δv(r, t )=[v(r0, t0|x+r, t0+t )−v(r0, t0|x, t0+t )]·r̂ and thence
the time-dependent structure function Fp(r, t1, . . . , tp) ≡
〈δv(r, t1)δv(r, t2) · · · δv(r, tp)〉. By setting t1 = t2 = · · · =
tp = t , the quasi-Lagrangian time-dependent structure func-
tion is written simply as Fp(r, t ), with the obvious identity
Fp(r, t = 0) ≡ Sp(r).

The quasi-Lagrangian structure function also lends itself
to an adaptation of the Frisch-Parisi multifractal formalism
[3,30] for the equal-time structure function. Assuming a mul-
tifractal description of rotating turbulence, the velocity field
ought to possess a range of (universal) scaling exponents
h ∈ I ≡ (hmin, hmax), each of which corresponds to a fractal
set 	h of dimension D(h). This allows us to write down
the velocity increments δu(x, r)/uL ∝ (r/L)h, where uL is the
velocity associated with the large length scale of the flow.
Given the multifractal description, for individual increments
it is important to keep track of the point x at which the
increments are taken because the increment picks up different
scaling exponents h for every x ∈ 	h.

Such a prescription allows us to define the equal-time
structure function in terms of the scaling exponents h and the
measure dμ(h), which gives the weight of the contributing
fractal sets:

Sp(r) ∝ up
L

∫
I

dμ(h)
( r

L

)ph+3−D(h)
. (2)

Formally, the measured scaling exponents ζp are then ex-
tracted through a saddle-point calculation.

We now extend the equal-time formalism for time-
dependent structure functions

Fp(r, t ) ∝ up
L

∫
I

dμ(h)
( r

L

)ph+3−D(h)
G p,h

(
t

τp,h,�(r)

)
, (3)

where τp,h,�(r) is the characteristic scale-dependent timescale
of the flow. The scaling function G p,h is unity at t = 0 and its
integral is assumed to exist to allow us to define the integral
timescale:

T I
p (r) =

[
1

Sp(r)

∫ ∞

0
Fp(r, t )dt

]
∼ rzp . (4)

In order to proceed further and calculate the dynamic expo-
nent zp, we make reasonable assumptions about the timescale
τp,h,�. The phenomenology of rotating turbulence suggests
that in the rotation-dominated regime L � r � ��, to leading
order, the timescale is set by the rotation rate � and hence
τp,h,� ∝ 1/�. On the other side of the Zeman scale �� � r �
η however, we expect τp,h,� ≡ τp,h ∝ r1−h, consistent with the
ideas of homogeneous and isotropic turbulence.

By using standard tools to evaluate the integral in Eq. (4),
we eventually obtain (see, e.g., Refs. [26,32])

zp ∼
{

1 + (ζp−1 − ζp), �� � r � η

0, L � r � ��.
(5)

Furthermore, the same analysis suggests that for L � r � ��,
the integral timescale T I

p (r) ∝ 1/�. Indeed, this form is per-
haps not entirely surprising given the scale-independent form
of τp,h,�.
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FIG. 1. Representative plots for the evolution of the normalized time-dependent fourth-order structure function F4(kn, t ) versus time, which
is normalized by the Kolmogorov timescale τη for (a) Ro = 0.161 and (b) Ro = 0.043. The black, red, blue, and magenta lines correspond to
n = 11, 12, 14, and 16, respectively. (c) Plot of the relative spectral energy density E4(kn, ω) of F4(kn, t ) for Ro = 0.043 versus kn for different
harmonics ω; the vertical dashed line represents the Zeman wave number.

Our predictions suggest that in rotating turbulence, the
time-dependent structure functions also show dual scaling
consistent with what we know from equal-time measure-
ments. Indeed, the bridge relation connecting the integral-
timescale-based dynamic exponent zp for scales where
turbulent fluctuations swamp the effect of rotation is identical
to what happens in three-dimensional turbulent flows [26].
On the other hand, the dynamic structure functions are scale
independent (zp = 0) as soon as rotation is dominant. (It is
perhaps useful to keep in mind that although to leading order
our analysis shows that the integral timescale in the rotation-
dominated regime is scale independent, the structure functions
themselves are not, as we show below.)

Are our results surprising? The surprise and apparent con-
tradiction arises when we examine the dynamics in terms of
local turnover timescales of the flow T local(r) ∼ r/δu(r). For
scales smaller than the Zeman scale by using δu(r) ∼ r1/3, we
obtain the local p-independent dynamic exponent zlocal = 2/3.
This exponent is exactly the same as what we obtain from
Eq. (5) in the absence of intermittency correction, i.e., ζp =
p/3. However, for scales larger than ��, a similar analysis
yields zlocal = 1/2 since E (k) ∼ k−2. This result is in sharp
contradiction with the exponent zp = 0 as obtained above
(5) but also crucially suggests that in the rotation-dominant
regime, the dynamic structure function is scale dependent.

This begs the question of which of these two approaches
is correct and how is this contradiction resolved. Indeed, how
valid are our theoretical predictions (5) when confronted with
data from simulations?

While formally quasi-Lagrangian structures are well de-
fined, measurements from direct numerical simulations of
the three-dimensional Navier-Stokes equation are still a chal-
lenge [16,29]. Fortunately, this problem of circumventing
sweeping through a quasi-Lagrangian description was solved
[26] by adopting a shell model approach. Indeed, by con-
struction, shell models are dynamical systems for (complex)
variables which resemble velocity increments and sweep-
ing is eliminated by restricting the coupling between modes
which are only nearest or next-nearest neighbors. Remarkably,
such a dynamical system approach to turbulence [3,6,68–70]
does capture the essential multifractal and cascade processes
of fully developed turbulence as recognized since the pio-
neering works of Obukhov [71], Desnyansky and Novikov

[72], Gledzer [73], and Ohkitani and Yamada [74] and then
generalised to several other single and multiphase flows
[9,13,16,27,75–87]. Moreover, shell models, although struc-
turally isotropic, reproduce and predict many properties of
the rotating turbulence, e.g., two-dimensionalization, the dual
scaling of energy spectrum, and the scaling of equal-time
structure functions [21,56,88].

Thus, given the question at hand, it is natural for us to
approach this problem with a shell model for rotating tur-
bulence. Such models are constructed on a logarithmically
spaced lattice of wave numbers kn = k0λ

n; we use the conven-
tional choices of k0 = 1

16 and λ = 2 in our study. Associated
with each shell n is a complex variable un which mimics
velocity increments over a scale kn ∼ 1/r in the Navier-Stokes
equation. By retaining only the nearest- and next-nearest-
neighbor couplings in the nonlinear (convolution) term of the
Navier-Stokes equation, the shell model equations are coupled
ordinary differential equations

dun

dt
= −νk2

nun + fn − i�un + i[akn+1un+2un+1

+ bknun+1un−1 + ckn−1un−1un−2]∗, (6)

with shell numbers running from 1 to N . The asterisk in the
equation denotes a complex conjugation, i ≡ √−1, and, as
noted before, the nonlinear couplings are limited, ensuring the
absence of direct coupling of large and small scales effectively
eliminating sweeping effects. The shell model, in the absence
of viscosity (ν = 0) and external forcing fn = 0, conserves
energy, helicity, and phase space through a proper choice of
the (real) coefficients a, b, and c; we use, as is common, a = 1,
b = − 1

2 , and c = − 1
2 [89,90].

We characterize rotating turbulent flows not only by the
(large-scale) Reynolds number Re ≡ Urms/k0ν, where the
root-mean-square velocity Urms = (

∑
n |un|2)1/2 [69], but also

by the Rossby number Ro ≡ Urmsk0/�, which is a measure of
the relative strength of the nonlinearity to the Coriolis force
and the Zeman wave number k� =

√
�3/ε. We use in our

simulations Reynolds number Re ∼ 109 and Ro = ∞ (� =
0; k� = 0), 0.809 (� = 0.1; k� = 0.3), 0.232 (� = 0.5; k� =
3.5), 0.161 (� = 1.0; k� = 10.0), and 0.043 (� = 5.0;
k� = 111.8).
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FIG. 2. A log-log (base 10) plot of the integral time T I
p (kn) versus

kn for p = 2 (red circles) and p = 4 (blue squares) for Ro = 0.043.
The dashed horizontal lines are best fits (zp = 0) for wave numbers
lower than the Zeman wave number and the thick black lines are
the best fits in the inertial range not dominated by rotation (zp �= 0;
see Table I). The lower inset shows a plot of T I

p (p = 2–6, from the
uppermost to the lowermost plot), for kn � k�, vs 1/� (except for
� = 0.1, where the plateau extends for just a few shells) for different
values of p. The dashed lines are linear fits which show T I

p ∝ 1/�,
consistent with the theoretical prediction. The upper inset shows a
plot of the fourth-order vs second-order integral timescales, which
shows a convincing scaling with slope z4/z2 ≈ 1.09, consistent with
the exponent ratio obtained from the bridge relation.

From the statistically steady velocity field of the rotating
turbulent flow [89], it is simple to define the shell model
analog of the order-p, scale-dependent, quasi-Lagrangian
normalized time-dependent structure function as

Fp(kn, t ) = Re
〈[un(t0)u∗

n(t0 + t )]p/2〉
〈|un(t0)|p〉 , (7)

where Re denotes the real part of the function and the angular
brackets denote an average over different time origins t0. We
choose integer values of p between 1 and 6 in this study.

In Fig. 1(a) we show representative plots of the fourth-
order time-dependent structure function F4(kn, t ) for Ro =
0.161 and different shell numbers which are all greater than
the Zeman scale and hence much less influenced by the effects

of rotation. As one would expect, the correlations decay much
faster for higher wave numbers than for lower wave numbers.

To present the effect of rotation clearly, we go to a lower
value of the Rossby number (hence a higher value of the
Zeman wave number). Figure 1(b) shows such a plot for Ro =
0.043 for the same wave numbers as in Fig. 1(a). However,
for such a low value of Ro, shell numbers n = 11 and 12,
corresponding to wave numbers close to the Zeman scale, are
clearly affected by the Coriolis force. This is clearly seen in
the conspicuous oscillatory profile of the structure function.

These oscillations arise, as already shown through the
direct numerical simulations of Eulerian time-dependent cor-
relators in Refs. [62,63], at rotation-dominated scales k � k�

because of the presence of the Coriolis term. Indeed, the
formal solution of Eq. (6) ought to have a dominant harmonic
∼ exp(−i�t ), in addition to the contributions of viscosity
and the nonlinearity; this oscillatory factor of course becomes
vanishingly small when kn � k�. Consequently, for kn � k�

[Fig. 1(b), n = 11 and 12], the time-dependent structure func-
tions Fp(kn, t ) have an oscillatory profile with a dominant
harmonic of angular frequency ∼p�t/2. For wave numbers
kn � k�, the nonlinearity of the dynamical systems ensures a
mixing of the harmonics of different scales results in several
sub- and superharmonics in the system eventually eliminating
the clear oscillatory profile seen for kn � k�.

This picture is easily validated, through a Fourier de-
composition, from measurements of the spectral relative en-
ergy content Ep(kn, ω) ≡ |F̂p(kn, ω)|2/∑

n |F̂p(kn, ω)|2; here
F̂p(kn, ω) is the Fourier transform of Fp(kn, t ). Figure 1(c)
illustrates such an analysis, for p = 4 and R = 0.043 corre-
sponding to the structure functions in Fig. 1(b), which clearly
shows that while all the energy is maximally contained, for
kn � k�, in the ω ∼ 10 (corresponding to Ro = 0.043) mode,
at wave numbers kn � k� the energy is distributed more uni-
formly among the other harmonics that we calculate.

From the time-dependent structure functions of the
sort shown in Figs. 1(a) and 1(b), we define the pth-
order shell-model analog of the integral timescale T I

p (kn) ≡∫ ∞
0 Fp(kn, t )dt . In practice (to avoid contamination from sta-

tistical noise at long times [26]), the upper limit of the integral
is restricted to times when Fp(kn, t ) has reached a value of
0.6 and we have checked that our results are insensitive if this
limit is varied between 0.4 and 0.8.

TABLE I. Summary, for kn � k�, of our results for the dynamic exponents zp (column 3) calculated through the bridge relations (5) from
the equal-time exponents ζp obtained through ESS [91–93] (column 2) for different orders p (column 1). Columns 4–6 lists the dynamic
exponents for different Rossby numbers obtained directly from our shell model simulations. (We note that the marginal increase in the error
bars and mean exponents, while still being consistent with the theoretical prediction, as Ro → 0 is likely due to the shrinking of the inertial
range kn � k� as k� becomes larger with decreasing Rossby numbers.)

zp

p ζp zp [Eq. (5)] Ro = 0.809 Ro = 0.232 Ro = 0.161 Ro = 0.043

1 0.379 ± 0.006 0.621 ± 0.006 0.63 ± 0.01 0.64 ± 0.02 0.65 ± 0.03 0.67 ± 0.07
2 0.707 ± 0.005 0.672 ± 0.008 0.673 ± 0.009 0.68 ± 0.01 0.68 ± 0.01 0.67 ± 0.06
3 1.0 0.707 ± 0.005 0.719 ± 0.009 0.703 ± 0.009 0.72 ± 0.01 0.73 ± 0.04
4 1.267 ± 0.007 0.733 ± 0.007 0.72 ± 0.01 0.72 ± 0.01 0.746 ± 0.008 0.76 ± 0.02
5 1.51 ± 0.02 0.75 ± 0.02 0.72 ± 0.02 0.74 ± 0.01 0.761 ± 0.008 0.79 ± 0.02
6 1.74 ± 0.03 0.77 ± 0.03 0.76 ± 0.02 0.75 ± 0.02 0.78 ± 0.01 0.80 ± 0.03
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In Fig. 2 we show log-log plots of T I
2 (kn) and T I

4 (kn) vs
kn for Ro = 0.043. Clearly, for kn � k�, the plateau in T I

p (kn)
leads to a dynamic exponent zp = 0 as indicated by the dashed
best-fit lines. In the lower inset, we plot the values of these
plateau for different orders vs 1/�; the dashed line fit for each
order shows clearly that the theoretical prediction from the
multifractal analysis T I

p ∝ 1/�, for kn � k�, holds. However,
for kn � k�, the integral timescale seems to be clearly a power
law with zp �= 0 which extends over a decade as shown by
the black lines which best fit the data. From plots such as
these we extract, through a least-squares fit, zp (for different
values of Ro) from 500 different measurements; in Table I
we list the mean of these exponents and their standard de-
viations as error bars. To further illustrate the quality of the
scaling range for higher wave numbers, in the upper inset
we show a log-log plot of the fourth vs the second-order
integral timescale in a manner reminiscent of the extended
self-similarity (ESS) [91–93] technique used for equal-time
measurements. This representation shows a clear scaling with
the best-fit (black line) slope z4/z2 ≈ 1.09, consistent with
what one would obtain from the multifractal theory. While this
ESS-like approach is convincing, we would advise caution in
overinterpreting the role of such an extended self-similarity
for dynamic exponents in the absence of a theory analogous
to what is known for equal-time structure functions [91–93].

Comparing the different columns in Table I, it is clear
that the bridge relations (5) are indeed satisfied for all
Rossby numbers for wave numbers kn � k�. Furthermore,
in the rotation-dominated scales kn � k�, we find (within
error bars) zp = 0, again consistent with our theoretical
prediction (5).

In this paper we have addressed the issue of dynamic
scaling in rotating turbulence by using the tools of the
Frisch-Parisi multifractal formalism and then validated our
predictions through detailed numerical simulations of a shell
model which factors in the Coriolis force. By adopting a
quasi-Lagrangian approach, our work complements earlier
(Eulerian) studies [62,63] of time-dependent correlation func-

tions in such flows. We obtained a set of exponents (5)
and associated bridge relations and found, unsurprisingly,
for wave numbers larger than the Zeman scale, that even
strongly rotating flows show dynamic multiscaling which is
completely consistent with what has been known [26,28].
Surprisingly, for wave numbers which are dominated by
the rotation, the relevant timescales are scale independent
and thence zp = 0, in sharp contrast to estimates from local
timescale arguments. This is because at such scales rotation is
the dominant mechanism when compared with those imposed
by the nonlinear term. Hence, naively, one would expect that
the dominant timescale here would be ∼1/�; the multifractal
approach picks out this dominant timescale over all others.
This is perhaps because at these scales a local turnover time
approach fails to factor in the timescale imposed on the flow
by rotation which dominates over the intrinsic (and local)
timescales arising in the flow itself. Thus a comparison of
the timescales which emerge from arguments based on the
turnover time with those from the multifractal model showed
a greater disparity at rotation-dominated scales than those
which are not underlining the singular nature of the Coriolis
force especially when it comes to dynamic correlators. Fur-
thermore, curiously, the intermittency corrections seen in the
equal-time measurements seem to be absent from the dynam-
ics altogether. This is an example of a turbulent flow where
such a decoupling of a fundamental feature of turbulence
happens when we move from the statics to the dynamics and
deserves more rigorous investigation in the future.
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