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We report on three-dimensional direct numerical simulation of wave turbulence on the free surface of a
magnetic fluid subjected to an external horizontal magnetic field. A transition from capillary-wave turbulence
to anisotropic magneto-capillary wave turbulence is observed for an increasing field. At high enough field,
wave turbulence becomes highly anisotropic, cascading mainly perpendicularly to the field direction, in good
agreement with the prediction of a phenomenological model, and with anisotropic Alfvén wave turbulence.
Although surface waves on a magnetic fluid are different from Alfvén waves in plasma, a strong analogy is
found with similar wave spectrum scalings and similar magnetic-field dependent dispersionless wave velocities.
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Introduction. Most nonlinear wave systems reach a wave
turbulence regime as a result of wave interactions [1,2]. This
phenomenon occurs in various domains at different scales
such as ocean surface waves, plasma waves, hydroelastic or
elastic waves, internal or inertial waves, and optical waves [2].
The weakly nonlinear theory (called weak turbulence theory)
derives analytically the solutions of the corresponding kinetic
equations [1–5]. These solutions, known as the Kolmogorov-
Zakharov (KZ) spectra, describe the energy transfers toward
small scales (direct cascade) or large ones (inverse cas-
cade). Although these solutions have been tested in different
systems, numerical and experimental works are currently a
paramount of interest to understand in what extent this theory
can describe real physical systems.

One of the most important systems is Alfvén waves in
magnetohydrodynamics (MHD) [6], initially observed in lab-
oratory plasma [7–10], and recently in astrophysical plasma
such as the Sun’s outer [11] or inner [12] atmosphere.
Three-dimensional (3D) Alfvén waves in a turbulent regime
were initially predicted to follow the isotropic Iroshnikov-
Kraichnan spectrum [13,14]. However, they become strongly
anisotropic in the presence of an intense magnetic field and
transfer energy mainly in the plane transverse to the field, thus
becoming nearly two-dimensional [2,15,16]. The spectrum
of this anisotropic weak turbulence regime has been de-
rived [17,18], then observed in Jupiter’s magnetosphere [19],
and was recently confirmed numerically [20,21]. An anal-
ogous anisotropic behavior is predicted for hydrodynamic
waves on the surface of a magnetic fluid subjected to a
horizontal magnetic field [22]. Although wave turbulence
regimes have been observed on the surface of a ferrofluid in
an external magnetic field both experimentally [23,24] and
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numerically [25], the anisotropic regime has never been re-
ported so far in such a system, to our knowledge.

In this Letter, we show the existence of an analogy between
Alfvén wave turbulence and wave turbulence on the surface of
a magnetic fluid. The analogy is not only qualitative but also
quantitative in terms of cascade of energy. In particular, we
show that an anisotropic MHD wave turbulence emerges at a
high enough magnetic field with a wave spectrum showing
similar scalings than the ones of anisotropic Alfvén wave
turbulence predictions.

Theoretical backgrounds. We consider an ideal incom-
pressible magnetic liquid of infinite depth subjected to an
external horizontal magnetic field B directed along the x-axis.
The dispersion relation of linear waves on the surface of such
a ferrofluid reads, neglecting gravity, [26]

ω2(k) = [B2/(μ̃ρ)]k2
x + (γ /ρ)k3, (1)

where k ≡ |k| =
√

k2
x + k2

y is the wave number, ω is the angu-

lar frequency, γ and ρ are the surface tension and mass density
of the liquid, μ̃ = μ0(μ + 1)/(μ − 1)2, μ0 is the magnetic
permeability of a vacuum, and μ is the relative permeability of
the liquid. Equation (1) describes the anisotropic propagation
of surface waves. We define v2

A = B2/(μ̃ρ), the group velocity
of dispersionless magnetic surface wave propagating along
B (analogous to Alfvén velocity [6]). Note that μ here is
constant, whereas μ experimentally depends on B [24]. This
change has no impact here since vA is the parameter used to
quantify magnetic effects.

The power spectrum of the surface elevation S(k) is defined
as the square modulus of the Fourier transform of the surface
elevation η(x, y). Without magnetic field, the KZ spectrum for
isotropic capillary wave turbulence reads [4]

Sc(k) = CKZP1/2(γ /ρ)−3/4k−15/4, (2)
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where CKZ is the nondimensional KZ constant and P is the
energy flux per unit area and density. The energy spectrum
is Ec(k) = (γ /ρ)k2Sc(k). To date, the KZ spectrum has been
very well confirmed for capillary waves both experimentally
(e.g., see [27–30]) and numerically [31–35] for weak nonlin-
ear capillary waves. For B �= 0, so far, no weak turbulence
prediction for magneto-capillary waves exists. Only dimen-
sional analysis has been done [23,24]. For Alfvén waves in a
plasma within a strong magnetic field (e.g., along x), the en-
ergy transfer by three-wave interactions has been shown to be
frozen in the field direction and to occur only in the transverse
direction to B [15]. The weak turbulence predictions for the
power spectrum of such anisotropic Alfvén wave turbulence
(ky � kx, i.e., |k| ∼ ky) reads [16–18]

Sm(k) = CmP1/2v
−3/2
A k−3

y , (3)

where Cm = 1.467 [36] (a
√

2π factor was missing in [18]).
The energy spectrum is Em(k) = v2

akSm(k).
Model equations. The numerical model used here is based

on the Hamiltonian equations describing the MHD motion of
an ideal irrotational and incompressible ferrofluid subjected to
an external horizontal magnetic field. We assume the absence
of free electric charge and current in the fluid, which means
that the magnetic field in the liquid is also potential. In the
quadratic nonlinear approximation, the equations of boundary
motion are written as

ηt = k̂ψ − k̂(ηk̂ψ ) − ∇⊥(η∇⊥ψ ) + D̂kη, (4)

ψt = ∇2
⊥η + 1

2
[(k̂ψ )2 − (∇⊥ψ )2] + V 2

A k̂−1ηxx

− AμV 2
A

2
[2k̂−1∂x(ηk̂ηx − ∇⊥η · ∇⊥k̂−1ηx ) − η2

x

− 2ηηxx − (∇⊥k̂−1ηx )2] + F (k, t ) + D̂kψ , (5)

where ∇⊥ = {∂x, ∂y} is the nabla operator, ψ is the velocity
potential, k̂ is the integral operator having the form k̂ fk =
k fk , k̂−1 is the inverse k̂-operator, V 2

A = v2
A[ρ/(gγ )]1/2 is the

nondimensional MHD wave speed, g is the gravity accel-
eration, and Aμ = (μ − 1)/(μ + 1) is the magnetic Atwood
number. D̂k is the viscosity operator acting as D̂k fk = −ν(k −
kd )2 fk , for k � kd , and D̂k = 0, for k < kd , the coefficient ν

determines the intensity of energy dissipation (see [37–39]).
More details on the derivation of Eqs. (4) and (5) from poten-
tial equations are given in the Supplemental Material [40]. The
pumping term F (k, t ) in Eq. (5) is defined in Fourier space
as F (k, t ) = F (k) exp[iω(k)t], where F (k) = F0 exp[−(k −
k0)4/k f ], where F0 is the forcing amplitude reached at k = k0.
The wave vectors are pumped in the Fourier space in the
range k ∈ [1, k f ] (see below), and in all directions. In the
absence of dissipation and pumping, exact analytical solutions
of Eqs. (4)–(5) has been found in the strong-field limit and
μ � 1 [37,38].

For finite μ, the surface waves collapse under the action
of infinitely strong horizontal field [41]. Thus, for a correct
simulation of the free surface MHD wave turbulence, it is
necessary to take into account the regularizing effects of vis-
cosity and surface tension. Equations (4) and (5) are solved
numerically using the pseudospectral methods with the total

FIG. 1. Free surface gradient at a fixed time in the steady state
(t = 250) for different values of B, i.e., different VA: V 2

A = (a) 0,
(b) 25, (c) 100, and (d) 300. B is along the x-axis. Lin-scale color
bar.

number of Fourier harmonics N × N . The time integration
scheme is based on the explicit fourth-order Runge-Kutta
method with a step dt . To stabilize the numerical scheme,
a low-pass anti-aliasing filter is used [31]. At each integra-
tion time step, harmonics with wavenumbers greater than
ka are equated to zero. The effect of this low-pass filtering
can be thus interpreted as “superviscosity” acting at small
scales. Simulations are performed in a periodic box of size
2π × 2π with N = 1024, dt = 5 × 10−5, F0 = 2000, k0 = 3,
k f = 6, kd = 150, ka = 212, and ν = 10. All numerical sim-
ulations are carried out for a magnetic fluid with Aμ = 0.5,
which corresponds to μ = 3. We present below four series
of simulations with different values of the magnetic param-
eter V 2

A = 0, 25, 100, and 300. The typical wave steepness
ε ≡ 〈√∫

S ||∇η(x, y, t )||2dxdy/S
〉
t
used is 0.16 and is found to

be almost constant when B is increased. The stationary state
is reached after a time t ≈ 50, and each simulation lasts up to
t = 500.

Phenomenological analysis. The theoretical spectrum ex-
pected from our model equations [Eqs. (4) and (5)] is
obtained following a phenomenological method described in
Ref. [16,36] and detailed in the Supplemental Material [40].
We assume a strong magnetic field (VAkx � k3/2

y ) and an
anisotropy of the wave field (ky � kx). The fourth member of
the rhs of Eq. (5) provides an estimation of the nonlinear mag-
netic timescale as T m

nl ∼ ψ/(V 2
A k2

x η
2). Assuming that all the

magnetic potential energy is transferred to capillary kinetic
energy, one has V 2

A kxη
2 ∼ ψ2ky, and thus T m

nl ∼ 1/(ψkykx )
with ψ2 ∼ kyE/kx. Using the power budget, the energy flux
then reads P ∼ kyE/(ωT 2

nl ), with E being the energy spec-
trum. The power spectrum of surface elevations, Sm(k) =
E (k)/(V 2

A k), finally reads Sm(k) ∼ P1/2V −3/2
A k−3

y , which is
found to be the same as the shear-Alfvén wave turbulence
prediction of Eq. (3).

Anisotropic regime. Fig. 1 shows the gradient of the free
surface at a fixed time in the steady state for different B. We
observe a transition from an isotropic regime [Fig. 1(a)] to
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FIG. 2. (a)–(c) Power spectra S(kx, ω) of surface elevations in the field direction (x-axis) for different B, i.e., different VA. Log-color bar.
The red-dashed lines correspond to Eq. (1) (dispersion relation) and white dash-dotted lines to nondispersive wave propagation, ω = VAkx .
(d)–(f) Power spectra S(ky, ω) of waves traveling along y-axis. The red dashed lines correspond to ω = k3/2

y and ω = k3/2
y /21/2. (g) and (h):

Cross sections S(kx, ky, ω
�) of the power spectrum at a fixed angular frequency ω� = 600 for different fields V 2

A = 0 and V 2
A = 300, respectively.

Red-dashed lines correspond to |k(ω�)| using Eq. (1).

a highly anisotropic regime [Fig. 1(d)]. Indeed, the surface
relief in Fig. 1(d) becomes almost unidirectional, correspond-
ing to surface waves propagating mainly in the direction
perpendicular to B (see below). This anisotropy is due to the
stabilizing effect of a horizontal magnetic field on a magnetic
liquid. Indeed, for waves propagating in the field direction, the
field lines pierce the wavy liquid-gas interface, and flatten it
in the field direction as a consequence of the field boundary
conditions at the interface [22,42]. This behavior is close to
the anisotropy observed when Alfvén waves propagate in the
direction of a magnetic field [2], although of a different origin.

Nonlinear dispersion relation. The anisotropy is also
evidenced by the full power spectrum S(k, ω) of surface ele-
vations. Figs. 2(a)–2(c) show the spectrum S(kx, ω) for waves
traveling along the field direction for different B, i.e., different
VA. For B = 0, the energy injected at low k is redistributed
within a large range of wave numbers around the dispersion
relation of Eq. (1), as expected. When B is increased, the
dispersion relation is deformed [see Fig. 2(b)], then becomes
quasidispersionless in the field direction [see Fig. 2(c)]. The
spectra S(ky, ω) of waves traveling normally to the field are
shown in Figs. 2(d)–2(f) for different B. Figure 2(d) corre-
sponds to pure capillary waves (B = 0). When B is increased,
waves of higher and higher wavenumbers are generated. Such
enhanced energy transfers perpendicular to the field direc-
tion when the latter is increased are a consequence of the
anisotropic effect described above. Figs. 2(e) and 2(f) display
the emergence of a second branch in the dispersion relation.
This branch corresponds to bound waves (harmonics due to
nonresonant interactions) [43]. Figs. 2(g) and 2(h) show the
cross sections S(kx, ky, ω

�) of the power spectrum for a fixed
angular frequency value, ω�. For B = 0 [see Fig. 2(g)], the
energy is distributed isotropically in all directions along a

circle of radius |k(ω�)| (only the first quadrant is shown).
When B is increased, the energy is redistributed anisotropi-
cally and is much stronger in the perpendicular direction than
in the field direction [see Fig. 2(h)]. This effect is reported for
all frequencies (see Supplemental Material [40]). A stronger
nonlinear broadening also appears since bound waves occur
normal to the field direction. To sum up, at high magnetic
field, anisotropic wave propagation is observed (ky � kx) as
expected by weak MHD (or shear-Alfvén) wave turbulence as
well as appearance of nonlinear coherent structures in the y
direction.

Wave interactions. The MHD surface wave turbulence ob-
served here involves nonlinear waves cascading towards small
scales as a result of anisotropic three-wave resonant interac-
tions occurring mainly in the perpendicular direction of the
magnetic field (see inset of Fig. 3). These three-wave resonant
interactions are well evidenced by computing the third-order
correlation (or bicoherence) of surface elevations (see Supple-
mental Material [40]).

Wave-number spectrum. To quantify the transition from
isotropic capillary wave turbulence to anisotropic MHD wave
turbulence, we compute the power spectra of surface eleva-
tions in frequency, S(ω), and in wave number S(k). S(k) is
shown in Fig. 3 for different VA. At zero field, the spec-
trum is in good agreement with the KZ spectrum in k−15/4

of Eq. (2). At intermediate field, the spectrum exponent de-
creases slightly, but is still close to the one predicted by
weak turbulence theory. At a high enough field, we observe a
transition from the KZ spectrum to a spectrum in k−3 in rough
agreement with the scaling of the phenomenological model
and of anisotropic Alfvén wave turbulence of Eq. (3) (see
main Fig. 3). Specifically, the inset of Fig. 3 shows the spectra
S(kx ) along the field direction (x-axis) and S(ky) perpendicular
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FIG. 3. Power spectra S(k) of surface elevations for different VA.
Curves have been shifted for clarity. Dashed line: capillary-wave
turbulence theory of Eq. (2) [4]. Solid line: anisotropic MHD wave
turbulence theory of Eq. (3). Inset: Spectra in the field direction S(kx )
(green line) and normal to the field S(ky ) (blue line). V 2

A = 300.

to it (y-axis) for V 2
A = 300. S(ky) is found to scale as k−3

y as
expected by Eq. (3) whereas S(kx ) is more than one order of
magnitude smaller than S(ky) in the inertial range. Thus, the
spectrum, S(k) = Ck (P,VA)k−3, observed in the main Fig. 3,
is mainly due to the energy transferred perpendicularly to the
external field. We now determine the scaling of the coefficient
Ck with the energy flux P and with the magnetic parameter
VA by performing two series of simulations: (i) at a fixed
magnetic field (V 2

A = 300) for different amplitudes of the en-
ergy pumping (i.e., different P); (ii) at a fixed rate of energy
dissipation P for different fields. The spectrum is then found
to increase with the pumping as Ck (P) ∼ P1/2 [see inset (a) of
Fig. 4] and to decrease with the magnetic field as Ck ∼ V −3/2

A
[see inset (b)] for high enough VA. Note that Cky , the coefficient
of the spectrum S(ky), is observed to follow the same scaling.
When returning to the dimensional variables, we find thus

S(k) ≈ S(ky) = CP1/2v
−3/2
A k−3

y , (6)

where C is a constant, independent of P and VA, to be found
numerically (see below). Eq. (6) is similar to the spectrum
scalings found above by the phenomenological model and
to Eq. (3) describing anisotropic Alfvén waves in plasma
subjected to a strong magnetic field. Although MHD surface
waves on a magnetic fluid is physically different from MHD
Alfvén waves in plasma, the anisotropic effect on the energy
transfer due to the magnetic field is common and leads to the
same scaling for the wave spectrum. Note that in plasma, no
wave propagates normal to the field (only magnetic energy is
transferred to the normal direction by shearing) whereas, in
our case, capillary waves propagates normal to the field, the
magnetic energy being transferred to capillary energy.

Frequency spectrum. We now compute the frequency spec-
trum S(ω) for different VA as shown in Fig. 4. At zero field, the
simulations again show a good agreement with the predicted
KZ spectrum in S(ω) ∼ ω−17/6 [4]. At large enough VA, the
spectrum is less steep and scales as S(ω) = Cωω−7/3. The

101 102 103
10-15

10-10

10-5

10-4 10-3 10-2

10-3

10-2

10 20 30

FIG. 4. Power spectra S(ω) of surface elevations for different
VA. Curves have been shifted for clarity. Dashed line: capillary-wave
turbulence theory in ω−17/6 from Eq. (2) using ω ∼ k−3/2 [4]. Solid
line: predictions for anisotropic MHD surface wave turbulence from
Eq. (3) using ω ∼ k−3/2. Inset: spectrum coefficients Ck (square), Cky

(diamond) and Cω (circle) versus (a) P for fixed V 2
A = 300, and (b) VA

for fixed P ≈ 2.7 × 10−3. Solid lines: best fits in P1/2V −3/2
A .

coefficient Cω is found to scale as P1/2 and V −3/2
A (see insets

of Fig. 4) as for Ck . Returning to the dimensional variables
thus leads to

S(ω) = C′(γ /ρ)2/3P1/2v
−3/2
A ω−7/3, (7)

where C′ is a constant. Note that the empirical spectra of
Eqs. (6)–(7) are found to be consistent with each other since
they verify S(ω)dω = S(k)dk ≈ S(ky)dky, using ky � kx and
ω(k) from Eq. (1). This also gives C′ = 2C/3. We find the
values of the constants C = 1.7 and C′ = 1.34 (using the best
fits of Cky and Cω in Fig. 4(a). C is close to the theoretical
value Cm = 1.467 found for shear-Alfvén wave turbulence
in plasma [36] and the ratio 2C/3C′ = 0.85 is, as expected,
close to 1. Moreover, the spectrum scaling with the energy
flux in P1/2 is consistent with the fact that three-wave reso-
nant interactions are involved here [2]. Finally, the timescale
separation hypothesis of wave turbulence is verified here since
the nonlinear time is found much longer than the linear time
regardless of k (see Supplemental Material [40]). A typical
resonant triad is also shown in [40] to highlight that resonant
wave vectors are of the same order of magnitude suggesting
that wave interactions are local. Our results thus differ from
two-dimensional MHD weak-turbulence predictions leading
to nonlocal interactions and a flat steady-state spectrum [44].

Conclusion. We have numerically reported a transi-
tion from isotropic capillary-wave turbulence to a strongly
anisotropic MHD wave turbulence on a surface of a magnetic
fluid, for a high enough magnetic field. In this anisotropic
regime, the wave spectrum is found to be in good agree-
ment with the prediction of three-dimensional weak MHD
(shear-Alfvén) wave turbulence. This highlights the broad
application of weak wave turbulence where different phys-
ical systems can lead to similar phenomena, only because
they share similar dispersion relations and the same nonlinear
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interaction process (three-wave resonant interactions). Such
quantitative analogy between Alfvén waves in plasma and
surface waves on magnetic fluids deserve further studies, in
particular theoretically, that could lead to a better understand-
ing of plasma by studying them more easily. The analogy
discovered here could be pushed forward to explore open
questions in wave turbulence such as the properties of large
scales [30], or the critical balance separating weak turbulence
from strong turbulence [21]. The phenomenon reported here
could also be observed experimentally using a ferrofluid with
a high magnetic susceptibility and a high saturation mag-
netization. However, such ferrofluids are currently still too

viscous (at least ten times the water value) which would pre-
vent wave interactions to occur. Finally, similar effects should
be expected in electrohydrodynamics of nonconducting liq-
uids in a strong electric field due to the equivalence between
the underlying equations [45].
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